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Preface 

This book is about receivers for digital communications. The word digital carries a 
double meaning. It refers to the fact that information is transported in digital form. 
It also refers to the property of the receiver to retrieve the transmitted information, 
apart from the analog front end, entirely by means of digital signal processing. 

The ever-increasing demand for mobile and portable communication ultimately 
calls for optimally utilizing the available bandwidth. This goal is only attainable by 
digital communication systems capable of operating close to the information theo- 
retic limits. The implementation of such systems has been made possible by the 
enormous progress in semiconductor technology which allows the communication 
engineer to economically implement “systems on silicon” which execute: 

1. Advanced compression algorithms to drastically reduce the bit rate required to 
represent a voice or video signal with high quality. 

2. Sophisticated algorithms in the receiver for power control, channel estimation, 
synchronization, equalization, and decoding. 

3. Complex protocols to manage traffic in networks. 
4. User-friendly graphical man-machine interfaces. 

Seen from a different perspective we argue that the communication engineer to- 
day can trade the familiar physical performance measures bandwidth and power 
eficiency for signal processing complexity. As a consequence, the design process 
is characterized by a close interaction of architecture and algorithm design, as 
opposed to a separation between theory and implementation in the traditional 
way. 

This book differs substantially from other texts in communication engineering in 
the selection and treatment of topics. We focus on channel estimation, synchroniza- 
tion, and digital signal processing. In most books on digital communications, syn- 
chronization and channel estimation are addressed only superficially, if at all. This 
must give the reader the impression that these tasks are trivial and that the error per- 
formance is always close to the limiting case of perfect channel knowledge and syn- 
chronization. However, this is a most unfortunate misconception for the following 
reasons: 

1. Error performance: Synchronization and channel estimation are critical to error 
performance; 

2. Design effort: A large amount of design time is spent in solving these problems; 

xix 
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3. Implementation: A very large portion of the receiver 
dedicated to synchronization and channel estimation. 

hardware and software is 

In our endeavour to write this book we have set the following goals. First, we 
have made an effort to systematically structure the information on these topics to 
make it accessible to the communication engineer, and second, we hope to convince 
the reader that channel estimation and synchronization algorithms can be developed 
very elegantly using mathematical estimation theory. By this we hope to supply the 
reader not only with a collection of results but to provide an elegant mathematical 
tool to solve design problems. 

The book falls naturally into four major parts. Following the introduction (Part 
A), Part B is devoted to mathematical background material. Part C is concerned 
with baseband communication. Part D deals with passband communication over 
time variant channels. Part E addresses transmission over fading channels. The 
structuring of the material according to types of channels is motivated by the fact 
that the receiver is always designed for a given channel. For example, the engineer 
designing a clock recovery circuit for a fiber-optical channel receiver does not need 
to worry about channel estimation algorithms for fading channels. 

BASIC MATERIAL 

The purpose of this part of the book is to provide a concise treatment of those topics 
in random process theory, signal analysis, and estimation theory that are used later 
on in the book. It is not intended as a replacement for formal courses in these topics 
but might serve to fill in a limited number of gaps in the reader’s knowledge. For the 
mathematically versed reader it serves as a quick summary of results and introduc- 
tion to the notation used. 

BASEBAND COMMUNICATION 

There are four sections in this part. Section 2.1 provides an introduction to baseband 
communication with emphasis on high data rate applications. We discuss the practi- 
cally important topic of line coding which is often ignored in more theoretically in- 
clined books on communication theory. Section 2.2 provides a classification of 
clock recovery circuits and the disturbances which impair the performance of such 
circuits. The next two sections (2.3 and 2.4) are devoted to an in-depth treatment of 
the two main classes of clock recovery circuits. We discuss the differences and com- 
monalities of error feedback synchronizers (Section 2.3) and spectral line generat- 
ing synchronizers (Section 2.4). We also study the effect of jitter accumulation in a 
chain of repeaters. In section 2.5 we analyze in detail the performance of three prac- 
tically important synchronizers. The influence of different disturbances such as self- 
noise and additive noise are discussed. Self-noise reducing techniques, which are 
crucial when clock recovery circuits are cascaded, are described. 
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PASSBAND COMMUNICATION OVER TIME INVARIANT CHANNELS 

Chapter 3 briefly reviews the fundamentals of passband transmission over a time in- 
variant channel. In Chapter 4 the optimum maximum-likelihood receiver is rigor- 
ously derived. We differ from the usual treatment of the subject by deriving a fully 
digital receiver structure, comprising digital matched filter, interpolator, variable 
rate decimator, and carrier phase rotator. While the optimal receiver is clearly non- 
realizable, it forms the basis for suitable approximations leading to practical receiv- 
er structures, the key issue being the principle of synchronized detection. In Chapter 
5 estimation theory is used to systematically derive algorithms for timing and carri- 
er phase synchronization. Chapter 6 is concerned with performance analysis of syn- 
chronizers. We derive lower bounds on the variance of synchronization parameter 
estimates. These bounds serve as a benchmark for practical synchronizers. The 
tracking performance of carrier and symbol synchronizers is analyzed in Section 
6.3. Nonlinear phenomena, such as acquisition and cycle slips, are discussed in 
Section 6.4. Chapter 7 derives the bit error rate performance degradation as func- 
tion of the carrier phase and timing error variance for practically important modula- 
tion formats. Chapter 8 is concerned with the derivation of digital algorithms for 
frequency estimation and the performance analysis of these algorithms. Chapter 9 
discusses timing recovery by interpolation and controlled decimation. Chapter 10 is 
devoted to implementation. We address the design methodology and CAD tools. A 
recently completed DVB (Digital Video Broadcasting) ASIC chip design serves as 
a case study to illustrate the close interaction between algorithm and architecture 
design. 

COMMUNICATION OVER FADING CHANNELS 

Chapter 11 gives an introduction to fading channels. Starting with time-continuous 
and discrete-equivalent flat and selective fading channel models, the statistical char- 
acterization of fading channels as well as techniques of modeling and simulation of 
discrete-equivalent fading channels are discussed. Chapter 12 is concerned with the 
fundamentals of detection and parameter synchronization on fading channels. 
Based on mathematical transmission models, optimal estimation-detection receiver 
structures for joint detection and synchronization are derived. Chapter 13 presents 
realizable receiver structures for synchronized detection on flat and selective fading 
channels. The concept of outer and inner receivers is reviewed, with emphasis on the 
role of diversity. Inner receiver structures, particularly suited for serial or TDMA- 
like channel access, are discussed for both flat and selective fading channels, detail- 
ing on decision metric computation and preprocessing of the received signal. A 
brief extension to CDMA systems concludes the chapter. Parameter synchroniza- 
tion for flat fading channels is the topic of Chapter 14. Algorithms for non-data-aid- 
ed (NDA), decision-directed (DD), and data-aided (DA) flat fading channel estima- 
tion and their performance are discussed in detail. In Chapter 15 adaptive 
algorithms for NDA/DD selective fading channel estimation, as well as methods of 



xxii PREFACE 

DA snapshot acquisition and channel interpolation, are presented and discussed. Bit 
error results, both for uncoded and coded transmission, and a comparison between 
NDALDD and DA performance conclude this final chapter. 

We invite comments or questions regarding the text to be sent to us at the follow- 
ing email addresses: meyr@ert.rwth-aachen.de, fechtel@hl.siemens.de, mm@lci. 
rug.ac.be. 

POST SCRIPT 

This book was intended as a companion volume to Synchronization In Digital 
Communications, by H. Meyr and G. Ascheid, published by Wiley in 1990. In writ- 
ing this book we increasingly felt that the 1990 title did not adequately describe the 
content, and so the title of this volume was changed. Nevertheless, when we speak 
of Volume 1, we refer to the 1990 publication. 

Aachen, Germany 
August I997 

I~EINRICH MEYR 
MARCMOENECLAEY 
STEFAN A. FECHTEL 
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Introduction and Preview 

It is a certainty that communication will be essentially fully digital by the 
end of the century. The reason for this development is the progress made in 
microelectronics which allows to implement complex algorithms economically to 
achieve bit rates close to the information theoretic limits. 

The communication model studied in information theory is shown in Figure 1. . 
Information theory answers two fundamental queitions: 

1. What is the ultimate data compression? (answer: the entropy H) 
2. What is the ultimate transmission rate of communications? (answer: the 

channel capacity C) 

In information theory we are concerned with sequences. Source symbols from 
some alphabet are mapped onto sequences of channel symbols x = (~1, . . . . z~, . ..) 
which then produce the output sequence y = (~1, . . . . yn, . . .) of the channel. 
The output sequence is random but has a distribution that depends on the input 
sequence. From the output sequence we attempt to recover the transmitted message. 

In any physical communication system a time-continuous waveform s(t) x) 
corresponding to the sequence x is transmitted, and not the sequence itself. The 
assignment of the channel symbol sequence to the waveform is done by the 
modulator. In addition to the sequence x the waveform depends on a set of 
parameters 8 = (0~ , 0~). The subset 6~ is related to the transmitter and 8~ 
are parameters of the channel. These parameters are unknown to the receiver. In 
order to be able to retrieve the symbol sequence x the receiver must estimate these 
unwanted parameters from the received signal. The estimates are then used as 

+ Source ) Source 
Encoder 

) Channel 
Encoder 

f 

binary digits 

Figure 1 Idealized Communication Model Studied in Information Theory 
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Figure 2 Physical Communication Model. The receiver comprises an inner 
receiver to estimate the channel parameters and an outer receiver for the decoding 
of the data. 

if they were true values. Even if the parameters are not strictly related to units 
of time we speak of “synchronized detection” in abuse of the precise meaning of 
synchronization. 

In our physical communication model we are thus concerned with an inner 
and an outer receiver, as shown in Figure 2. The sole task of the inner receiver is 
to produce an (output) sequence y(&, &) such that the “synchronized channel” 
has a capacity close to that of the information theoretic channel - which assumes 
there are no unknown parameters. The outer receiver has the task to optimally 
decode the transmitted sequence. 

In the simplest case of an additive noise channel the parameters 8 = { &, 0~) 
may be assumed constant but unknown. The parameter set 6 includes, for example, 
the phase 0 or the fractional time delay 6. The channel estimator of Figure 2 in 
this case has the task of estimating a set of unknown parameters in a known signal 
corrupted by noise. The parameter adjustment is done, for example, by shifting 
the phase 0(t) of a voltage-controlled oscillator (VCO) such that the estimation 
error $(t> = e(t) - 8(t) is minimized. 

The channel model discussed above is not applicable to mobile communica- 
tions. These channels are time variant. The task of the channel estimator then 
consists of estimating a time-variant set of parameters. Mathematically, we have 
to solve the problem of estimating a random signal - the channel impulse response 
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- in a noisy environment. The parameter adjustment block performs tasks such 
as the computation of channel-dependent parameters (the taps of a matched filter 
or an equalizer, to mention examples). 

We said earlier that the sole task of the inner receiver is to produce a good 
channel for the decoder. To achieve this goal, it is necessary to fully utilize 
the “information” content of the received signal. Since we are interested in digital 
implementations of the receiver, this implies that we must find conditions such that 
the entire information of the continuous time signal is contained in the samples 
{ y(t = ICT, , x; 0)) of the received signal (l/T8 : sampling rate). It will be shown 
that conditions exist such that time discretization causes no loss of information. 
We mathematically say that the samples y( ICT, , x; 0) represent su.cient statistics. 

It is obvious that the amplitude quantization must be selected in a way that the 
resulting distortion is negligible. This selection requires a careful balance between 
the two conflicting goals: the performance-related issues - which require high 
resolution - and an implementation complexity, which strongly increases with the 
increasing number of quantization levels. 

The picture of Figure 2 deceivingly suggests that it is (readily) possible to 
separate the estimation of unwanted parameters 8 and the estimation of the useful 
data sequence x. Unfortunately, this is not the case. 

In the general case the received signal y(t) x; 0) contains two random se- 
quences x (useful data) and 8 - the randomly varying channel parameters which 
cannot be separated and must in principle be jointly estimated. For complexity 
reasons, this is not feasible. 

An elegant way out of this dilemma is to impose a suitable frame structure 
on the physical layer. (At the higher level of the OS1 model information is always 
structured in frames.) A frame structure allows to separate the task of estimating the 
random channel parameters from the detection of the useful data sequence. Because 
of this separation of the two random sources, the complexity of the algorithm is 
drastically reduced. In many practical cases it is only this separation which makes 
algorithms realizable. 

Figure 3 illustrates the principle of separation. The bit stream is composed of 
frame symbols (shown shaded) and useful data information. Using the known frame 

Ii Ii+1 
A . I 1 I 1 

7 
-T--+ 

i+l L -CT 

q : Frame 

q : Useful data 

Figure 3 Frame Structure 
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symbols, the channel parameters are estimated in the shaded bit stream segments. 
Conversely, during the transmission of the data symbols, the channel parameters 
are assumed to be known and the information bits are decoded. It is important 
to notice that the frame structure can be matched to the channel characteristics to 
meet two conflicting requirements. On the one hand the number of known frame 
symbols should be minimized since the efficiency of the channel use 

7 average length of 
r)=- 

I+F frame/data segments 
(1) 

decreases with increasing 7. On the other hand, the accuracy of the estimate of 
the channel parameters increases with increasing number of channel symbols F. 

Example I: Time-Invariant Channel 

In this case we need no frame structure for the estimation of the channel parameters 
such as phase 8 or the fractional time delay 6 (F = 0). The data dependence of 
the received signal can be eliminated by various means. 

Example 2: IEme-Variant (Fading) Channel 

Since the channel impulse is time-variant, a frame structure is required. The exact 
form depends on the channel characteristics. 

We can summarize the discussions on models and bounds as follows. The 
separation principle defines two different tasks which are performed by an inner and 
an outer receiver, respectively. The outer receiver is concerned with an idealized 
model. The main design task includes the design of codes and decoders possibly 
using information about the channel state from the inner receiver. The channel is 
assumed to be known and is defined by the probability p(y lx). The inner receiver 
has the task to produce an output such that the performance of the outer receiver 
is as close as possible to the ideal of perfect channel knowledge. The optimal 
inner receiver assumes perfect knowledge of the transmitted symbol sequence in 
the frame segments, see Figure 3. (An unknown random sequence is considered 
as unwanted parameter.) In this volume we are concerned with the design of the 
inner receiver. 

The outer receiver is the domain of information theory. Information theory 
promises error-free transmission at a bit rate of at most equal to the channel 
capacity C, 

Rb < C - (2) 

In a practical system we must accept a nonzero transmission error probability. 
The acceptable error probability for a bit rate Rb measured in bits per second is 
achieved for a bandwidth B and the signal-to-noise ratio y. The numerical value 
of B and y depend on the system characteristic. In order to allow a meaningful 
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comparison among competing transmission techniques, we must define properly 
normalized performance measures. For example, it would not be very meaningful 
to compare the error probability as a function of the signal-to-noise ratio (SNR) 
unless this comparison was made on the basis of a fixed bandwidth, or equivalently 
a fixed data rate. The most compact comparison is based on the normalized bit rate 

Ra 
u=- 

B 
[bits/s/Hz] (3) 

and the signal-to-noise ratio y . 
The parameter u is a measure for the spectral eficiency as it relates the 

transmission rate Rb measured in bits per second to the required bandwidth 
measured in Hz. Spectral efficiency has the unit bits per second per hertz. 

The parameter y is a measure for the power eficiency since it specifies the 
relative power required to achieve the specified bit error rate. Both measures are 
affected by coding and the inner receiver. 

The performance measure of the inner receiver is the variance of the unbiased 
estimate. The variance of any estimate can be shown to be greater than a 
fundamental bound known as the Cramer-Rao bound. 

The inner receiver causes a loss A of spectral and power efficiency due to 
the allocation of bandwidth to the frame structure 

A 
F - --- 

F+r 
(4) 

and a detection loss AD due to imperfect synchronization. Detection loss AD is de- 
fined as the required increase in SNR “y, associated with an imperfect reconstruction 
of the parameter set 8 (see Figure 2) at the receiver relative to complete knowledge 
of these parameters (perfect sync) for maintaining a given error probability. 

Traditionally the communication engineer is concerned with a design space 
comprising the dimensions power and bandwidth. In this design space the com- 
munication engineer can trade spectral efficiency versus power efficiency. 

State-of-the-art communication systems operate close to the theoretical limits. 
These systems have become feasible because of the enormous progress m .ade in 
microelectronics which makes it possible to implement complex digital signal 
processing algorithms economically. As a consequence a third dimension has 
been added to the design space: signal processing complexity (see Figure 4). 

The communication engineer today has the o.ption to trade physical perfor- 
mance measures - power and bandwidth - for signal processing complexity, thus 
approaching the information theoretic limits. This very fact has revolutionized 
the entire area of communications. We have tried to take this aspect into account 
when writing this book by giving implementations of digital algorithms the proper 
weight. 

While we have clearly defined performance measures for bandwidth and 



Introduction and Preview 

I 
Signal Processing 
Complexity 

b 

Bandwidth 

Figure 4 The 3-Dimensional Design Space 

power, unfortunately, there exist no such universally applicable measures of 
complexity. If the algorithms run on a programmable processor, then the number 
of operations per unit of time T (where l/T is the rate at which the value of 
the algorithm is computed) is a meaningful indicator of complexity. If an ASIC 
(application-specific integrated circuit) is employed, a possible measure is the so- 
called AT product, which is the ratio of silicon area A divided by the processing 
power (proportional to l/T). 
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Chapter I Basic Material 

1 .I Stationary and Cyclostationary Processes 

In telecommunications, both the information-bearing transmitted signal and 
the disturbances introduced by the channel are modeled as random processes. This 
reflects the fact that the receiver knows only some statistical properties of these 
signals, rather than the signals themselves. From these known statistical properties 
and the observation of the received signal, the receiver computes an estimate of 
the transmitted information. 

The simplest random processes to deal with are stationary random processes. 
Roughly speaking, their statistical properties (such as the variance) do not change 
with time (but, of course, the instantaneous value of the process does change 
with time). Several channel impairments, such as additive thermal noise and the 
attenuation of a non-frequency-selective channel, can be considered as stationary 
processes. However, the transmitted signal, and also interfering signals (such as 
adjacent channel interference) with similar properties as the transmitted signal, 
cannot be considered as stationary processes. For example, the variance of an 
amplitude-modulated sinusoidal carrier is not independent of time: it is zero at 
the zero-crossing instants of the carrier, and it is maximum halfway between zero 
crossings. The transmitted signal (and interfering signals with similar properties) 
can be modeled in terms of cyclostationmy processes; these are processes with 
statistical properties that vary periodically with time. 

In the following, we briefly review some basic properties of stationary and cy- 
clostationary processes which will be used in subsequent chapters; both continuous- 
time and discrete-time processes are considered. For a more complete coverage 
of random processes on an engineering level, the reader is referred to the Bibli- 
ography at the end of of this section[ l-31. 

1.1.1 Continuous-Time Stationary Processes 
A complex-valued continuous-time random process x(t) is strict-sense 

stationary (or stationary for short) when its statistical properties are invari- 
ant under an arbitrary time shift to. In other words, ~(t> and z(t - to) 
have identical statistical properties. The processes ~1 (t), 22(t), . . . , ZN (t) are 
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10 Basic Material 

jointly stationary when they have jointly the same statistical properties as 
Xl@ - to), x2@ - to), “‘, XIV@ - to). 

The statistical expectation 
the time variable t . Indeed, 

Wt)l of a stationary process does not depend on 

J%w = Jwt - to)1 Ito t= ~w91 (l-1) = 

We will use the notation m E = E[x(t)] for the statistical expectation value of the 
stationary process x(t). Also, the autocorrelation function E[x*(t) x(t + u)] of a 
stationary process does not depend on the time variable t. Indeed, 

E[x*(t) x(t + u)] = E[x*(t - to) x(t + u - o t >I 1 to=t 
= E[x*(O) x(u)] (l-2) 

The autocorrelation function will be denoted as R,(U) := E[x* (t) x(t + u)]. The 
power spectral density S,(w) of a stationary process is the Fourier transform of 
the autocorrelation function R, (u) : 

+oO 

G(w) = J R,(u) exp (-jw~) du 

--oo 
(1-3) 

Note that the autocorrelation function R,(u) is complex conjugate symmetric about 
u 0: = 

R;(-u) = E[x(t) x*(t - u)] 

= E[x*(t) x(t + u)] (l-4) 

= R,(u) 

Consequently, the power spectral density is real-valued: 

+oO --oo 

s;(w) = J Rz(-u) exp (jwu) du = J RE(-u) exp (-jwu) du = &(w) 

-CO 03 
(l-5) 

Also, it can be shown that S,(w) > 0 [3]. The power of a stationary process 

x(t) is defined as E [ lx(t)l”]. As Rs(u) and S$(w) are a Fourier transform pair, 
we obtain 

E [jx(t)j”] = R,(O) = r&(w) g 
--oo 

(l-6) 

In a similar way, it is easily verified that the cross-correlation function 
E[x(t) x(t + u)] of x*(t) and x(t) d oes not depend on t; this cross-correlation 
function will be denoted as Rzcm(u). The cross spectrum Sz*o(w) of z*(t) and 
x(t) is the Fourier transform of Rfez(u). Both RTez(u) and ,S&(w) are even 
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functions: 

Ro*z(-U) = lqz(t) z(t - u)] = E[z(t) z(t + u)] = R,tz( u) 

+oO 

s&(-W) = J Rc*z(u) exp (jw~) du 

-00 
+oO 

= J Rz*E(-u) exp (-jwu) du = Sz*z(w) 

-CO 

11 

(l-7) 

(l-8) 

When z(t) is a real-valued stationary process, then RZec(u) = R,(u) and 
Sz*&) = S&w); in this case, both R,(u) and S$(w) are real-valued even 
functions. 

A process x(t) is said to be wide-sense stationary when its statistical ex- 
pectation E[x(~)] and the auto- and cross-correlation functions E[z*(t) z(t + u)] 
and E[z(t) ~(t + u)] d o not depend on the time variable t . The processes 
51(t), Zl(t)t “‘? ZN(~) are jointly wide-sense stationary when their statisti- 
cal expectations E[zi (t)] and the correlation functions E[z! (t) ~j (t + u)] and 
E[zi(t) ~j(t + u)] do not depend on t. 

A time-invariant (not necessarily linear, not necessarily memoryless) operation 
on one or more jointly stationary processes yields another stationary process. 
Indeed, because of the time-invariant nature of the operation, applying to all input 
processes the same time shift gives rise to an output process with an identical time 
shift; because of the jointly stationary nature of the input processes, their statistics 
are invariant under this time shift, so that also the statistical properties of the 
output process do not depend on the time shift. A special case of a time-invariant 
operation is a linear time-invariant filter, characterized by its impulse response 
h(t). The output y(t) is related to the input z(t) by 

Y(t> = J h(t - u) x(u) du (l-9) 

When z(t) is (wide-sense) stationary, it is easily verified that y(t) is also (wide- 
sense) stationary. The statistical expectation my = E[y(t)], the power spectral 
density S, (o), and the cross spectrum SY*Y (w) are given by 

my = H(0) m, (l-10) 

se/(w) = lfw12 s&4 (l-11) 

Sy’&) = H(w) q-w) Sz*&> (1-12) 

where H(w) is the filter transfer function, i.e., the Fourier transform of the impulse 
response h(t). 
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1.1.2 Continuous-Time Cyclostationary Processes 

A complex-valued continuous-time random process z(t) is strict-sense cy- 
clostationary with period T (or cyclostationary with period T for short) when its 
statistical properties are invariant under a time shift kT, where k is an arbitrary 
positive or negative integer. In other words, z(t) and z(t - kT) have identical 
statistical properties. The processes Xl(t), I, . . . . zj~(t) are jointly cyclo- 
stationary with period T when they have jointly the same statistical properties as 
q(t - kT), q(t - kT), . . . . zN(t - kT). 

The statistical expectation m,(t) = E[z(t)] of a cyclostationary process is 
periodic in the time variable t with period T. Indeed, 

mz(t) = E[s(t)] = E[z(t - kT)] = m,(t - kT) (1-13) 

Hence, the expectation can be expanded into a Fourier series: 

+CQ 
m,(t) = c 

kc-m 

(1-14) 

where the Fourier coefficients { mx,k} are given by 

T/2 
1 

mx,k =-- 
T J (1-15) 

-T/2 

Also, the auto- and cross-correlation functions R,(t, t + U) = E[z*(t) z(t + u)] 
and R,*,(t, t + U) = E[z(t) z(t + u)] of a cyclostationary process are periodic 
in t with period T. Indeed, 

Rx@, t + u) = E[z*(t) z(t + u)] 
= E[z*(t - kT) z(t - kT + u)] 

= R,(t - kT,t - kT+u) 

(1-16) 

Rx*,@, t + u) = Jqz(t) z(t + u)] 
= E[z(t - kT) z(t - kT + u)] 

= R,+,(t - kT, t - kT + u) 

(1-17) 

This implies that these correlation functions can be expanded into a Fourier series: 

Rx@, t + u) = E rx,k(u) exp (j2r F) 

kc-m 

(1-18) 

R,*,(t,t + u) = gy 0 P( 
kt 

h*x,k f.4 ex j2r T  (1-19) 
k=-m 
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where the Fourier coefficients (T~,~(u)} and {~,*,,k(2d)} are given by 

T/2 

J R,(t,t + u) exp (l-20) 

-T/2 

T/2 

J R,*,(t,t + u) exp (-j27r F) dt 

-T/2 

(1-21) 

The Fourier transforms of Y~,~(u) and Y~*=,~(u) will be denoted as Sz,k(~) and 
Sze2,k(~), respectively. 

A process x(t) is said to be wide-sense cyclostationary with period T when 
its statistical expectation mx(t) and the auto- and cross-correlation functions 
I&( t, t + U) and RZ*z (t , t + U) are periodic in t with period T. The pro- 
cesses xl(t), x2(t), . . . . xN(t) are jointly wide-sense cyclostationary with pe- 
riod T when their statistical expectations E[x;(t)] and the correlation functions 
E[xr(t) xj(t + u)] and E[xi(t) xj(t + u)] are periodic in t with period T. 

From a (wide-sense) cyclostationary process x(t) one can derive a (wide- 
sense) stationary process x(t) by applying a random shift to x(t) : 

x(t) = x(t - T) (l-22) 

where T is uniformly distributed in the interval [0, T], and independent of x(t). The 
statistical expectation mX and the correlation functions R,(u) and IQX(u) of this 
(wide-sense) stationary process x(t) can be expressed in terms of the corresponding 
moments of the (wide-sense) cyclostationary process x(t): 

mx = (mx(t))t = mx,O (l-23) 

R,(u) = (R,(t, t + q, = rx,o(20 (l-24) 

R,*,(u) = (R,*x(t,t + u)>t = Tx*x,O(U) (l-25) 

where (. . .)t denotes averaging over the time variable t ; for instance, 

(&(t,t + u)), = f / Rx(t,t + u> dt (l-26) 

-T/2 

Hence, the power spectral density S,(w) and the cross-spectral density Sxox(w) 
are given by Sx,o(w) and Sz~,,o(w), th e F ourier transforms of (R, (t , t + u)), and 
(R,*x(t, t + 4>t., respectively. Consequently, the power of the randomly shifted 
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process x(t) is given by 

--CO 
(l-27) 

= (R&J)), = 
-03 

Sometimes, &,0(w) and r,,a(O) are also referred to as the power spectral density 
and the power of the (wide-sense) cyclostationary process z(t), respectively. 
Although S,,O(W) is not the Fourier transform of R&t, t + u), the interpretation of 
S,(w) as the spectrum of z(t) is reasonable, because, as will be shown in Section 
1 .1.4, S,,O(W) is the quantity measured by a spectrum analyzer operating on the 
(wide-sense) cyclostationary process z(t). 

A similar reasoning as for stationary processes reveals that a time-invariant 
(not necessarily linear, not necessarily memoryless) operation on one or more 
jointly cyclostationary processes with period T yields another cyclostationary 
process with the same period. Taking a time-invariant linear filter with impulse 
response h(t) as a special case of a time-invariant operation, the output y(t) is 
related to the input z(t) by 

+oO 
y(t) = J 

h(t - u) x(u) du (l-28) 
-CO 

When z(t) is (wide-sense) cyclostationary with period T, then y(t) is also (wide- 
sense) cyclostationary with period 2’. Its statistical expectation my (t) and the auto- 
and cross-correlation functions R,(t , t + U) and Ryey (t , t + U) can be expressed 
in terms of the corresponding moments of the process z(t) : 

my(t) = 
J 

h(t - v) m,(v) dv 

-03 

(l-29) 

+oO 

R&t + u) = JJ h’(t-v) h(t+u-v - w) R&v, v + w) dv dw (l-30) 

-CO 

+=J 

Ry&,t + u) = JJ qt - v) h(t + u - v - w) Rx+&, v + w) dv dw (1-31) 

-CG 

Note that (l-29)-(1-31) are valid for any process z(t) at the input of the filter 
with impulse response h(t). The above functions are periodic in t with period 
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T, and can be expanded into the following Fourier series that are analogous to 
(l-14), (l-18), and (1-19): 

Ry(t,t + u) = E ry,k(u) exp (j2* g) 

k- --CO 

(l-32) 

(l-33) 

+oO 

Ryey (t, t + u) = c rg’Y,k u ex 0 P( 
kt 

j2r T 
k- --00 

(l-34) 

The Fourier coefficients in the above series are related to the corresponding Fourier 
coefficients of the process z(t) by 

s y*y,k a = 0 H( -w + ‘Gk - H(w) sx*x,k(w> 

(l-35) 

(l-36) 

(l-37) 

where H(w) is the transfer function of the filter, while sy ,k (w) and sy*Y,k (w) 
are the Fourier transforms of the coefficients ry,k (u) and ry*y,k (u). The power 
spectral density Sy ,0(w) of the randomly shifted process y( t - T) is given by 

SYd4 = Ifw12 Sx,o(w) 

where S,,O(W) is the power spectral density of the randomly shifted process 
cc(t - T). Now, in the special case where H(w) = 0 for Iw 1 > n/T, we obtain 

H(y) = H*(w- F) H(w) 

(l-38) 

=H(-w+F) H(w)=0 for k#O 

so that the Fourier coefficients with k # 0 in (l-32)-(1-34) are identically zero. 



16 Basic Material 

Consequently, (l-32)-( l-34) reduce to 

my(t) = H(O) %I!,0 (l-39) 

%(tJ + u) = ~I,o(u), with &,0(w) = IH( S3c,o(~) (l-40) 

Ry’&, t + u) = QV,O(~, with Sy*y,~ (4 = fw w-4 s,*,,o(q (l-41) 

It is important to note that my(t), &,(t,t + u) and R,=,(t,t + u) in (l-39)-(1-41) 
do not depend on t. Hence, passing a (wide-sense) cyclostutionary process z(t) 
through a lowpass filter, whose bandwidth (in hertz) does not exceed 1/2T, yields 
a wide-sense stationary process y(t). The corresponding power spectral density 
Sy(w) and cross-spectral density Sy*y(w) are given by SY,D(W) and Sy~Y,~(w), 
respectively, and are the same as for the randomly shifted process y(t - T). 

1.1.3 Discrete-Time Stationary Processes 
A discrete-time process is a sequence (2~) of random variables; we can 

think of these variables as being produced at a rate of one random variable per 
interval of duration T. Many properties of continuous-time random processes can 
be extended to discrete-time processes. 

A discrete-time complex-valued process {xk} is strict-sense stationary (or 
stationary for short) when it has the same statistical properties as {x~+K}, where 
I< is an arbitrary integer. Following a similar reasoning as for continuous-time 
stationary processes, it can easily be shown that the statistical expectation E[zk] 
of zk, the autocorrelation function E[z$ ~k+~] of {zk}, and the cross-correlation 
function E[zk xk+,,J between {xi} and (XIE} do not depend on the time index 
Ic; these moments will be denoted as m,, R,(m), and &et(m), respectively. 
The power spectral density &(exp (jwT)) of {zk} and the cross-power spectral 
density S,t,(exp (jwT)) between {z;} and {ok} are defined as the discrete-time 
Fourier transforms of the corresponding correlation functions 

&(exp ($0)) = CR,(m) exp (-jtimT) 
772 

(l-42) 

S,*,(exp (jwT)) = CR,*,(m) exp (-jWmT) 
m 

(l-43) 

Note that the above spectra are periodic in w with period 27r/T. As for continuous- 
time stationary processes, it can be shown that R,(m) has complex conjugate even 
symmetry, Ss (exp (jw T)) is real-valued and nonnegative, and both R,+,(m) 
and S,=.(exp (jwT)) are even functions. The sequence { yk }, resulting from a 
time-invariant (not necessarily linear, not necessarily memoryless) operation on a 
stationary sequence {zk}, is also stationary. 
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A complex-valued random sequence {zk} is wide-sense stationary when its 
statistical expectation E[zk], its autocorrelation function E[x~ zk+J, and the 
cross-correlation E[zk zk+,,.J between {xi} and {zk) do not depend on the time 
index k. 

Applying a (wide-sense) stationary sequence {zk} to a linear filter with 
impulse response {hk) yields a (wide-sense) stationary sequence {yrc), given by 

yk = c h-m xm 

m 

As for continuous-time (wide-sense) stationary processes, it can be shown that 

my = H(d”> m, (l-44) 

&,(exp (GT)) = IH(exp (NY2 S&P &T)) (l-45) 

Qy(exp (jwT)) = H(exp ($0)) H(exp (-jwT)) S,*,(exp (jwT)) (l-46) 

where H(exp (jwT)) is the transfer function of the discrete-time filter: 

H(exp ($0)) = c h, exp (-jwmT) 
m 

(l-47) 

Note that (l-44)-(1-46) are the discrete-time counterpart of (l-10)-(1-12). 
When no confusion with continuous-time processes is possible, occa- 
sionally the notation S,(w), Sy’Y(w), and H(w) will be used instead of 
SY(exp (j&T)), SYaY(exp (j&T)), and H(exp ($!I’)), respectively. 

A discrete-time (wide-sense) stationary process {xk} can be obtained by 
sampling a continuous-time (wide-sense) stationary process s(t) at a fixed rate 
l/T. Defining xk = s(kT + to), where to denotes the sampling phase, it is easily 
verified that 

mx = m, (l-48) 

Rx(m) = R,(mT) (l-49) 

Rx*x(m> = &*,(mT) (l-50) 

where m, , I&(u), and RSeS (u) are the expectation of s(t), the autocorrelation 
function of s* (t), and the cross-correlation function of s*(t) and s(t), respectively. 
Translating (l-49) and (l-50) into the frequency domain yields 

S&exp (jd’)) = $ c S m (u-y 

sx*x(exp (jwT)) = $ c SSeS (U - F) 
m 

(1-51) 

(l-52) 
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where S,(w) and Ss+J ( ) w  are the spectrum of s(t) and the cross spectrum of s* (t) 
and s(t), respectively. Note that the statistical expectation m, and the correlation 
functions R,(m) and RZgZ (m) do not depend on the sampling phase to, because 
of the (wide-sense) stationarity of s(t). 

Taking samples, at a rate l/T, of a (wide-sense) cyclostationary process s(t) 
with period T yields a (wide-sense) stationary sequence { zk} = { s(lcT + to)}. 
One easily obtains 

m, = m,(to) = C m,,k exp 
k 

In the above, m,(t), R,(t,t + u), and R,*,(t, t + U) are the expectation of s(t), 
the autocorrelation function of s(t), and the cross-correlation function of s* (t) 
and s(t), respectively; ?n,,k, rb,k(U), and r,*,,k(U) are the coefficients in the 
Fourier series expansion of these functions. Converting (l-54) and (l-55) into the 
frequency domain yields 

S$(exp (jwT)) = c exp (j g t 
k 

o) I$ ,,,k(u - F)] U-56) 

f%&xp (W’)) = Cexp (j 7 to 
k 

(l-57) )I 
where Ss,k(U) and S8*s,k(w) are the Fourier transforms of r,,k(U) and r$*S,k(U), 
respectively. As the (wide-sense) cyclostationary process s(t) is in general not 
wide-sense stationary, the statistical expectation m, and the correlation functions 
R%(m) and Rzez(m) corresponding to the (wide-sense) stationary sequence { xk} 
depend on the sampling phase to. 

1.1.4 Examples 
Additive Thermal Noise 

Additive thermal noise n(t) corrupting the received signal is modeled as a 
real-valued stationary random process with zero mean and power spectral density 
&(w). When S,(w) t k a es on a constant value of No/2 within the bandwidth of 
the useful signal, n(t) is referred to as being white within the signal bandwidth. 
Truly white noise has a power spectral density which equals No/2 for all w; its 
corresponding autocorrelation function equals (No /2) S(U), where S(U) denotes 
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the Dirac impulse. As in practice the receiver contains a filter which rejects the 
frequency components of the received signal that are not contained within the 
bandwidth of the useful signal, additive noise which is white within the signal 
bandwidth can be replaced by truly white noise. 

Data Symbol Sequence 

At the transmitter, the digital information to be sent to the receiver is translated 
into a sequence {uk} of data symbols, which take values from an alphabet of 
size M; usually M is an integer power of 2. When the data symbol sequence 
is uncoded, {ug} is modeled as a stationary sequence of statistically independent 
equiprobable symbols. When coding for error detection or error correction is used, 
redundancy is added to the data symbol sequence; in this case, the data symbols 
are no longer statistically independent. 

Linear Modulation 

At the transmitter, the data symbol sequence {uk} is converted by means 
of a modulator into a real-valued signal, which is sent over the communications 
channel. Often used is linear modulation, yielding a transmitted signal which is a 
linear function of the data symbol sequence. 

In the case of baseband transmission, linear modulation gives rise to a 
transmitted signal s(t), given by 

s(t) = c ana g(t - mT) 
?n 

(l-58) 

where {a,} is a sequence of real-valued data symbols, l/T is the channel symbol 
rate, and g(t) is the real-valued baseband pulse-amplitude modulation (PAM) pulse. 
In the case of passband transmission with center frequency we in radians per 
second, linear modulation yields the transmitted signal fiRe[s(t) exp &et)], 
where s(t) is again given by (l-58), but the data symbols ck and/or the baseband 
pulse g(t) can now be complex-valued. 

When the data symbols ak are real-valued, the modulation is called one- 
dimensional. Often used is Mary pulse-amplitude modulation (M-PAM), 
where the data symbols take values from an alphabet of size M, given by 
{fl, f3, .“, &(A4 - 1)) with M an integer power of 2. In baseband transmis- 
sion, also ternary signaling corresponding to the alphabet { - 1 , 0,l) is encountered. 
Figure l-l shows an M-PAM alphabet for M = 4. 

When the data symbols ak are complex-valued, the modulation is called two- 
dimensional. Often encountered are Mary phase-shift keying (M-PSK) and Mary 
quadrature amplitude modulation (M-QAM). For M-PSK, the symbol alphabet is 
the set (exp (j2nm/M) ] m = 0, 1, . . . , M - l}, where M is usually a power 
of 2; the cases M = 2 and M = 4 are also called binary phase-shift keying 
(BPSK) and quaternary phase-shift keying (QPSK), respectively. For M-QAM, 
M is usually an even power of 2; in this case, the real and imaginary part of ak 
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-w 
-3 -1 1 3 ak 

Figure l-l 4-PAM Constellation 

both belong to the alphabet f 1; f3, . . . , +z- l)}. Figures l-2 and l-3 
show the M-PSK alphabet for M = 8 and the M-QAM alphabet for A4 = 16, 
respectively. 

When the data sequence {uk} is stationary, s(t) from (l-58) is cyclostationary 
with period T, in both cases of baseband and passband transmission. The 
cyclostationarity can be verifed by showing that s(t) and s(t - Kf) have identical 
statistical properties. Indeed, as the channel symbol sequence is stationary, (a,} 
has the same statistical properties as {a,-~}. Hence, the process s(t - IcT), 
given by 

s(t-kT)=~u,g(&IcT-mT) 
m = c am-k g(t - mT) 

m 

has the same statistical properties as s(t). Let us assume that E[ak] = 0, so that 
also E[s(t)] = 0. The correlation functions R, (t , t + U) and RJmS (t , t + U) are 
given by 

R,(t, t + u) = c R,(n) g(t - mT) g(t + u - mT - nT) (l-59) 
m,n 

&*a@, t + u) = c Raea g(t - mT) g(t + u - mT - T-AT) (l-60) 
m,n 

/ I I / / 

1 : 
0’ / / / /,’ --- 

Figure 1-2 8-PSK Constellation 
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Figure 1-3 16-QAM Constellation 

where R,(n) and R,ta( n are the autocorrelation function of {uk} and the cross- ) 
correlation function of {u;} and {uk ), respectively. As s(t) is cyclostationary, 
R, (t , t + U) and R, 9 J (t , t + U) can be expanded into the Fourier series (l- 18) and 
(l-19), with x replaced by s. Denoting the Fourier transforms of rS ,k (u) and 
w,l~(u) by S&w) and S Sf s ,il: (u), respectively, it can be verified from (l-59) 
and (l-60) that 

s,,k(w) = f Sa(exp (jwT)) G(w) G* (w - T) (1-61) 

&s,k(w> = $ S,*,(exp (jwT)) G(w) G (-w + y) (l-62) 

In the above, &(exp (jwT)) and &eo.(exp (jwT)) are the spectrum of {Q) and 
the cross spectrum of {u;} and { ak}, respectively. The spectrum of the randomly 
shifted process s(t - T), where r is uniformly distributed in the interval (0, T), 
and the cross spectrum of s*(t - T) and s(t - T) are given by 

&,0(w) = f Sa(exp (j&T)) IG(w) I” (l-63) 

s,*,,o(w) = $ Sa*.(exp(jwT)) G(w) G(-w) (1-W 

When G(w) = 0 for IwI > r/T, it follows from (1-61) and (l-62) that s,,k(w) = 
sj'&d) = 0 for k # 0. H ence, when the bandwidth (in hertz) of the baseband 
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pulse g(t) does not exceed 1/2T, the signal s(t) is wide-sense stationary. In the 
case of independent data symbols, we obtain R,(n) = RamO (n) = 0 for n # 0, 

yielding S,(exp (jwT)) = R,(O) = E []ak]z] and Saea(exp (jwT)) = Raaa(0) = 

E [a:], which simplifies (l-59)-( l-60) and (l-61)-( l-62). 

The Spectrum Analyzer 

The operation of a spectrum analyzer is illustrated in Figure 1-4. In order to 
obtain an estimate of the power spectral density of a signal s(t) at u = we, the 
following operations are performed: 

. The signal s(t) is multiplied by exp (-jwct), in order to shift the frequency 
component at w  = wa to w  = 0. 

. The resulting signal s(t) = s(t) exp (-jwat) is applied to a narrowband 
lowpass filter with transfer function H(w), which yields the signal y(t), 
containing only the frequency components of s(t) near w  = wc. 

. The squared magnitude of y(t) is obtained and applied to an averaging filter 
with transfer function H, (w ) , to produce an estimate x(t) of the direct current 
(DC) component of the squared magnitude of y(t). 

In the following we will investigate the statistical expectation E[z(t)], for 
the cases of a wide-sense stationary and a wide-sense cyclostationary zero-mean 
input signal s(t). 

In the case of a zero-mean wide-sense stationary process s(t), it is easily 
verified that the autocorrelation function E[z*(t) c(t + u)] of z(t) does not depend 
on t ; denoting this autocorrelation function by R,(U), one obtains 

R,(u) = R,(u) exp(-jw04 (1-65) 

from which the power spectral density of x(t) is found to be 

s,(w) = s, (w + wo) (l-66) 

However, note that z(t) is not wide-sense stationary, because RZa2 (t , t + u) 
depends on t: 

&+(V + u) = R,*,(u) exp [-jwc (2t + u)] (l-67) 

Figure 1-4 Block Diagram of Spectrum Analyzer 
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As the autocorrelation function of z(t) does not depend on t , it follows from (l-30) 
that also the autocorrelation function of y(t) is not dependent on t. In this case, 
(l- 11) is valid, yielding 

sYw = IN4l” S& +wo) (l-68) 

Hence, the expectation of the squared magnitude of y(t) is given by 

qlYw12] = jmlfw12 S,(w +wo) g 
-00 

(l-69) 

which is independent of t. Consequently, 

+oO 
%+)I = jmh,,(t - u> E[lv(u)l”] du = &v(O) 1 IH( s& +wo) g 

-CO -CO 

(l-70) 
where h,(t) is the impulse response of the averaging filter. When the bandwidth 
of the lowpass transfer function H(U) is so small that SJ (U + ~0) is essentially 
constant within this bandwidth, then E[z(t)] is well approximated by 

E[z(t)] S 1 ss (wo) (1-71) 

which is proportional to the power spectral 
stationary process s(t), evaluated at w  = wc. 

density Ss (w) of the wide-sense 

In the case of a wide-sense cyclostationary process s(t), the autocorrelation 
function R,(t) t + u) is given by 

&(t,t + u) = R,(t,t + u) exp (-jwcu) (l-72) 

which is periodic in t with period T. Both R,(t , t + u) and R, (t , t + u) can 
be expanded into a Fourier series like (1-18); it is easily verified that their 
Fourier series coefficients are related by r$,k( u) = rs,k (u) exp (-jwc u), which 
yields &,k (w) = Ss,k(u + wc). However, note that s(t) is in general not wide- 
sense cyclostationary, because the cross-correlation function R,co(t, t + u) is not 
periodic in t with period T (unless wo happens to be a multiple of T/T): 

&,(V + u) = R,&t + u) exp [(+0(2t + u))] (l-73) 

As R,(t , t + u) is periodic in t with period T, it can be derived from (l-30) that 
also Ry (t , t + U) is periodic in t with period T. Hence, both Ry (t , t + u) and 
R, (t , t + u) can be expanded into a Fourier series [see (l- 18) and (l-33)]; their 
Fourier series coefficients ry,k (u) and r,,k (u) are related by (1-36). Assuming 
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that H(w) = 0 for ]w > n/T], the Fourier series coefficients vy,k ( U) with k # 0 
in (l-33) are identically zero, so that (l-40) holds: R,(t , t + U) does not depend 
on t. Consequently, 

+oO 

+N12] = pw12 S&0(4 g = J PW12 Ss,o(w + wo) - 2 (l-74) 

--oo --oo 

-03 -CO 

(l-75) 

Assuming that the bandwidth of the lowpass transfer function H(w) is so small 
that S,,a(w + ~0) is essentially constant within this bandwidth, then E[z(t)] is 
well approximated by 

E[z(t)] = (l-74) 

which is proportional to the power spectral density S,,O(W) of the 
stationary randomly shifted process s(t - r), evaluated at w = we. 

wide-sense 

The spectrum analyzer output z(t) can be decomposed into its useful com- 
ponent E[z(t)], evaluated above, and a zero-mean self-noise component z(t) - 
E[z(t)], caused by the statistical fluctuation of the input signal s(t). The self- 
noise variance can be reduced by decreasing the bandwidth of the averaging filter. 

1.1.5 Main Points 
A complex-valued process x(t) is stationary (in the strict sense) when it 

has the same statistical properties as the time-shifted process x(t - to), for any 
time shift to. Consequently, the statistical expectation E[x(t)], the autocorrelation 
function E[z*(t) x(t + u)] and the cross-correlation function E[z(t) z(t + u)] 
do not depend on the time variable t. Stationarity is preserved under time- 
invariant operations. A process z(t) is wide-sense stationary when E [z(t)], 
E[z*(t) x(t + u)], and E[z(t) z(t + u)] d o not depend on the time variable t. 
The (wide-sense) stationarity is preserved by time-invariant linear filtering. 

A complex-valued process z(t) is cyclostationary (in the strict sense) with 
period T when it has the same statistical properties as the time-shifted process 
z(t - kT), for any integer k. Consequently, the statistical expectation E [x(t)], 
the autocorrelation function E[z*(t) z(t + u)] and the cross-correlation function 
Jwt) 4t + 41 are periodic in t with period T. Cyclostationarity is preserved 
under time-invariant operations. A process z(t) is wide-sense cyclostationary with 
period T when E[x(t)], E[x*(t) z(t + u)], and E[z(t) z(t + u)] are periodic in t 



1.2 Complex Envelope Representation 25 

with period 2’. The (wide-sense) cyclostationarity is preserved by time-invariant 
linear filtering; when the filter bandwidth (in hertz) is less than 1/(2T), the filter 
output is wide-sense stationary. 

Discrete-time (wide-sense) stationary processes are defined in a similar way as 
their continuous-time counterpart and have similar properties. Sampling a (wide- 
sense) stationary process at a fixed rate or a (wide-sense) cyclostationary process 
with period T at a rate l/T yields a discrete-time (wide-sense) stationary process. 
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1.2 Complex Envelope Representation 

In circuit theory, it is common practice to represent a sinusoidal signal 
fi A cos (wat + 0) by its phasor A exp (je), where A denotes the root-mean- 
square (rms) amplitude and 6’ the phase of the sinusoid. The relation 

4 A cos (wet + 0) = d Re[A exp (j6) exp (jwat)] (l-77) 

indicates how the sinusoidal signal is to be derived from its representing phasor 
A exp (je). 

In telecommunications, information is often conveyed by means of a bandpass 
signal, resulting from modulating a sinusoidal carrier; such a signal can be viewed 
as a sinusoid whose amplitude and phase are fluctuating with time. In a way similar 
to the phasor representation from circuit theory, a bandpass signal x(t) with center 
frequency we can be represented by its complex envelope XL(~). The bandpass 
signal x(t) is given in terms of its representing complex envelope XL(~) by 

x(t) = fi Re[xL(t) exp (jwot)] (l-78) 

This is called the complex baseband representation of the bandpass signal x(t). 
The real and imaginary parts of XL(~) are the lowpass signals resulting from 
demodulating (i.e., translating to baseband) the bandpass signal x(t). The above 
representation is also valid when x(t) is not bandpass and wa chosen arbitrarily; in 
this general case, the resulting complex envelope XL(~) is not necessarily lowpass. 

In this section, we will define the complex envelope XL(~) of a signal x(t) 
with respect to some frequency wa, in both cases of deterministic signals and 
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random processes. Also, some statistical properties of the complex envelope of 
wide-sense stationary and cyclostationary processes will be derived. 

The notion of complex envelope has been used in many textbooks on random 
processes and on telecommunications, e.g., [l-6]. However, the reader should be 
aware that some authors drop the scaling factor of I/! in (l-78); therefore, some 
care should be taken when interpreting results from different authors. 

1.2.1 Complex Envelope of Deterministic Signals 
Any real-valued deterministic signal x(t), whose Fourier transform exists, 

can be represented by its complex envelope x~(t) with respect to an unmodulated 
carrier I/% cos (wet) at some (angular) frequency WO, with wo > 0. When x(t) 
is a carrier-modulated signal, the center frequency is usually (but not necessarily) 
taken as the frequency of the unmodulated carrier. The signal x(t) is related to 
its complex envelope x~(t) by 

x(t) = d Re[xL(t) exp (jwot)] 

Expressing z~(t) in polar form, i.e., z~(t) = Ix~(t)l exp [j arg (XL(~))], the 
above equation reduces to 

x(t) = fi lx~(t)l cos [wd + arg &5(t))] (l-80) 

where Ix~(t) I and arg (XL(~)) denote the instantaneous amplitude and phase, 
respectively, of the signal z(t). Expressing x~(t) in rectangular form, i.e., 
XL(t) = xc(t) + j xs(t) where zc(t) and zs(t) are the real and imaginary 
part of XL(~), yields 

x(t) = 2/2 w(t) cos (wet) - d5 xs(t) sin (u0t) (1-81) 

where xc(t) and xs(t) are the in-phase and quadrature components, respectively, 
with respect to an unmodulated carrier fi cos (wet). 

Given a signal x(t), eq. (l-79) does not define a unique zL( t); for example, 
adding in (l-79) a signal jv(t) exp (-jwot) to XL(t) yields the same x(t), for 
any real-valued u(t). A unique definition of x1;(t) in terms of x(t) follows easily 
from the frequency-domain interpretation of (l-79): 

X(4 = $ (XL@ - uo) + x;(--w - L&lo)) (l-82) 

where X(w) and XL( w  are the Fourier transforms of x(t) and XL(~). Denoting ) 
by U(W) the unit step function in the frequency domain, we define 

4 yj- x&d - uo) = U(W) X(w) (l-83) 
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This definition implies that (a/2) XL (w - ~0) consists of the positive-frequency 
content of X(w). As z(t) is a real-valued signal, X*(-w) = X(w), so that 

fi -y- x:(-w - w(J = u(-W) X(w) (l-84) 

represents the negative-frequency content of X(w). Hence, the Fourier transform 
XL(W) of the complex envelope XL(~) is given by 

X,(w) = d2 u(w + wo) X(w + wo) (l-85) 

The construction of X,(w) from X(w) is illustrated in Figure l-5. When the 
support of X(w) is the interval (-0, a), then the support of XL(U) is the interval 
(-we, Q - wc). Usually, but not necessarily, we belongs to the support of X(w). 

The corresponding time-domain definition of XL(~) is 

Q(t) = $ (z(t) + jk(t)) exp (-jwd) (l-86) 

where the real-valued signal i(t) is the Hilbert transform of z(t). Converting 

-wO 0 R-o0 0 

Figure 1-5 Illustration of X(w), XL (w ) 
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(l-86) into the frequency domain yields 

X,(w) = - 7 (X(u + wo) + jqw + wo)) 
where k(w) is the Fourier transform of P(t). Taking into account that 

u(u) = 1 j 
5 + 5 F-j sgn(4) 

(l-87) 

(l-88) 

where sgn(.) denotes the sign of its argument, identification of the right-hand sides 
of (l-85) and (l-87) yields 

2(w) = -j sgn(4 X(4 (l-89) 

This indicates that the Hilbert transform of z(t) is obtained by passing z(t) 
through a linear time-invariant filter with transfer function -j sgn(w). Such a 
filter is a phase shifter of -90 degrees for all positive frequencies. 

Figures l-6 and l-7 show two equivalent block diagrams, in terms of complex- 
valued signals, for obtaining the complex envelope XL(~) from z(t). The corre- 
sponding block diagrams in terms of real-valued signals are shown in Figures l-8 
and l-9. As the transfer functions fi U(W) and fi U(W + ~0) do not possess 
complex conjugate symmetry about u = 0, their corresponding impulse responses 
are complex-valued. The complex-valued signal zA (t) in Figure l-6 has frequency 
components only in the interval w > 0; zA(t) is called the analytic signal cor- 
responding to z(t), As 

xA(t) = $ [z(t) + j?(t)] (l-90) 

and z(t) and Z(t) are 90’ out of phase, the filter with transfer function fi U(W) 
is called a phase splitter. 

Let us determine the energy of the signals z(t), zA(i!), and XL(~). Considering 

Phase 
Splitter 

I 
ev(-hot) 

Figure l-6 Determination of XL(~) Figure 1-7 Determination of XL(~) from 
from z(t) by Means of Filtering z(t) by Means of Frequency Translation 
Followed by Frequency Translation Followed by Filtering 

r 
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Figure l-8 Decomposition of the Block Diagram from Figure l-6 into Real-Valued 
Operations on Real-Valued Signals 

Figure 1-9 Decomposition of the Block Diagram from Figure l-7 into Real-Valued 
Operations on Real-Valued Signals 
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Figure l-6 and taking into account that IX(w) 1 is symmetric about w  = 0, we 
easily obtain 

+m +a i-00 

J Iq@)12 dt = J IxA(u)I 
2 dw 

- =2 2n J lx(412 g 
-00 -CO 0 

i-00 
= j-lx(w,12 g = J z?(t) dt 

--oo -03 
i-00 too i-00 

J lzL(t)12 dt = J IXL(W>l 
2 dw J 2 dw 

- = 2n IxA(w+WO)l - 2lr 
-CO -00 -CO 

(1-91) 

+oO 

=2 J S,(w) g 
0 

i-00 

= jml&(w)~2 g = J x2(t) dt 

-CO -CO 

Hence, the analytic signal xA(t) and the complex envelope XL(~) have the same 
energy as the signal z(t). 

Let us consider a signal z(t) which is strictly bandpass about wa, i.e., X(w) 
is nonzero only for I Iw I - WOI < 27rB, with 27rB < wo; consequently, XL(W) is 
nonzero only in the interval Iw 1 < 27rB. In this case, XL(~) can be obtained from 
x(t) by performing the operations indicated by one of the two equivalent block 
diagrams in Figures l-10 and l-11, where HI(W) and Hi are given by 

6(w) = 0 

1 

fi Iw-wol<2?rB 

Iw + wol < 27rB (l-92) 

arbitrary elsewhere 

IwI < 2aB 

llwl - 2wol < 27rB (l-93) 

arbitrary, with Hz(-W) = Hi elsewhere 

HI(W) is the transfer function of a phase splitter (with complex-valued impulse 
response) whose operation is limited to frequencies w  satisfying I Iw I - wo I < 27rB 
whereas Hi is the transfer function of a lowpass filter (with real-valued 
impulse response) which does not distort the frequency components in the interval 
IwI < 27rB. Th e re evant Fourier transforms are also shown in Figures l-10 and 1 
1- 11. Note that the operations indicated in Figures l- 10 and 1- 11 correspond to 
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4nB 4nB 4xB 4xB 

-27cB 0 2nB 

4x8 41~8 

Figure l-10 Determination of XL(~) from z(t) by Means of Practical Bandpass 
Filtering Followed by Frequency Translation 

-2rB 0 2nB 
4nB 4nB 

* 
4n;B 4xB 

Figure l-11 Determination of XL(~) from z(t) by Means of Frequency Translation 
Followed by Practical Lowpass Filtering 
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the demodulation (i.e., translation to baseband) of the bandpass signal z(t), as 
performed in most receivers. 

Now suppose that some real-valued signal z(t) is given by 

x(t) = fi Re[s(t) exp &et)] (l-94) 

Let us investigate under which conditions s(t) equals the complex envelope XL(~) 
with respect to an unmodulated carrier fi cos (wet). Denoting the Fourier 
transform of s(t) by S(w), it follows from (l-85) and (l-94) that 

XL (w) = u(w + wo) [S(w) + s* (--w - Zuo)] (l-95) 

It is easily verified that (l-95) reduces to XL(W) = S(w), if and only if S(w) = 0 
for w < --CJO. Hence, when a signal x(t) is given by (l-94) and s(t) has no 
frequency components below -we, then s(t) is the complex envelope of x(t). 

Let us consider the signal y(t) at the output of a filter with transfer function 
H(w), driven by the input signal z(t). In the frequency domain, the complex 
envelope ye of y(t), with respect to fi cos (wet), is determined by 

YL(W) = 45 u(w + wo) Y(w + wo) 

= (u(w + wo) qw + wo)) (J” u(w + wo) X(w + wo)) (l-96) 

= HE(W) XL(Q) 

where HE(W) is defined by 

HE(W) = u(w + wo) qw + wo) (l-97) 

This indicates that the complex envelope ye of the signal y(t) at the output of 
a filter with transfer function H(w) is obtained by passing the complex envelope 
XL(~) of the input signal x(t) through a filter with transfer function HE(W), given 
by (l-94); note that HE(U) = 0 for w < -we. The corresponding impulse 
response hE(i!), which is the inverse Fourier transform of HE(W), is in general 
complex-valued. Figure 1-12 shows three equivalent block diagrams for obtaining 
the complex envelope ye from x(t). 

Let us represent XL(~), ye, and hE (i?) in rectangular form: 

XL(t) = xc(t) + jxs(t) 

YL (4 = YC (t) + jys (t) (l-98) 

hE(t) = hE,C(t) + jhE,S(t) 

Then (l-96) can be transformed into: yc(w> [ I[ HE,C(W) --HE,&) Xc Cw) = 
Ys Cw) %S(W) %dW) I[ 1 (l-99) 

XL5 cw> 
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Phase 
Splitter 

I 

w(-jo &I 

Y,(t) I-- 
Figure l-12 Three Ways of Obtaining ye from z(t) 

where HE,c(w) and HE,s(w) are the Fourier transforms of h~,~(t) and h~,~(t), 
respectively: 

1 
HE,c(w)= -(HE(w)+H~(-w)) 2 

1 (l-100) 
HE,s(w) = --: (HE@)- Hi(--u)) 

21 

A similar relation holds among XC (w) , XS (w), and X(w) and among 
y&g, y+>, and Y(w) . The relation (l-99) is illustrated in Figure 1- 13. 
It follows that, in general, the in-phase (or quadrature) component at the output of 
a filter is determined by both the in-phase and quadrature components at its input. 

Let us consider the case where H(w) is the transfer function of a bandpass 
filter, centered at w = we: H(w) = 0 for llwl - woj > 2xB with 27rB < wo. In 
this case, HE(W) in (l-97) satisfies HE(W) = 0 for IwI > 27rB; HE(W) is called 
the equivalent Zowpass transferfinction of the bandpass filter with transfer function 
H(w). The bandpass filter can be specified by means of two lowpass filters, with 
real-valued impulse responses h~,~(t) and h E, s (t ) , and corresponding transfer 
functions HE,c(w) and HE,s(w). F or th 
fi U(W) and fi U(W + 

e considered H(w), the transfer functions 
we m 1 ) ’ F’g ure 1-12 can be replaced by HI(U) and Hz(w), 

given by (l-92) and (l-93). 
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Figure l-13 Determination of ye(t) and ys(t) from xc(t) and zs(t) 

An important special case occurs when the impulse response hi happens 
to be real-valued, so that Hi(-w) = HE(W) ; this implies that HE(W) is zero 
for Iw 1 > wc. For positive w, the corresponding transfer function H-(w) exhibits 
complex conjugate symmetry about wa: 

u(wo + w) H(wo + w) = u(wo - w) H*(wO -u) (l-101) 

A filter with a transfer function H(w) satisfying (l-101) is called a symmetric 
bandpass$Zter. It follows from (l-101) that, for positive w, the magnitude IH( 
of a symmetric bandpass filter exhibits even symmetry about w  = wc, whereas its 
argument arg (H(w)) is odd-symmetric about w  = wa; this situation is depicted in 
Figure 1-14. The impulse response h(t) of a symmetric bandpass filter is given by 

h(t) = 2hE(t) cos (w()t) (l-102) 

As the impulse response hE(t) is real-valued, it follows that HE,s(u) = 0, so that 
HE(~)= HE,c(w). Hence, one obtains from (l-99): 

y&J> = HE,c(w) &@) 

ys(w) = HE,&)&(W) 
(l-103) 

This shows that the in-phase component at the output of a symmetric bandpass filter 
is determined only by the in-phase component at the input. A similar observation 
holds for the quadrature component at the output of a symmetric bandpass filter. 

In some cases, we need the complex envelope z~,e(t) of the signal z(t), with 
respect to an unmodulated carrier fi cos (wet + 0) rather than fi cos (wet); 
z~,e(t) is related to z(t) by 

z(t) = d Re[q&) exp (j (wG+e>)l (l-104) 
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t 

IH( 

/\ 
-00 0 00 

4nB 4x8 

Figure l-14 Amplitude and Phase Characteristics of a Symmetrical Bandpass 
Filter 

Denoting by IL(~) the complex envelope of z(t) with respect to fi cos (wet), 
we obtain 

x(t) = fi Re[z&) exp (jw&)] 

= fi Re[z,&) exp (-j0) exp (j (wot+O))] 
(l-105) 

from which we derive 

XL,&) = XL(~) exp (-3) (l-106) 

Hence, z~,~(t) is obtained by simply rotating Ed; consequently, z~,e(t) and 
XL(~) occupy the same bandwidth and have the same energy. The complex 
envelope x~,e(t) can be derived from x(t) by applying x(t) to either of the 
two equivalent structures from Figures l-6 and l-7, with exp (-jwot) replaced 
by exp (-j (wet + 0)). ‘I% e real and imaginary parts of XL,@(~) are the in- 
phase and quadrature components of x(t) with respect to an unmodulated carrier 
1/2 cos (wet + e>. 

1.2.2 Complex Envelope of Random Processes 

In Section 1.2.1, eq. (l-85) defines the Fourier transform XL(W) of the com- 
plex envelope XL(~) of the deterministic signal x(t) in terms of the Fourier trans- 
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form X(w) of z(t). From eq. (l-85) we derived z~(t) from z(t) by performing 
on x(t) either the filtering and the frequency translation indicated in Figure l-6, 
or, equivalently, the frequency translation and filtering indicated in Figure l-7. 

For random processes z(t) with finite power, the Fourier transform X(w) 
does not exist. However, it is still possible to define the complex envelope XL(~) 
of a random process z(t) with respect to an unmodulated carrier 2/2 cos (wet) 
at some frequency wa as the output of one of the two equivalent structures from 
Figures l-6 and l-7, when driven by z(t); this is because the operations involved 
(filtering, frequency translation) are well defined also for random processes. Many 
properties, valid for deterministic signals, can be extended to random processes: 

1. When the random process x(t) has frequency components only in the interval 
llwj - wei < 27rB, the transfer functions fi U(W) and 4 u(w - ~0) in 
Figures 1-6 and 1-7 can be replaced by HI (w ) and Hz(w), given by (l-92) 
and (l-93). 

2. When the random process x(t) can be written as (l-94), then s(2) equals the 
complex envelope XL(~) if and only if s(t) has frequency components only 
in the region w > -we. 

3. The complex envelope YL(~), of the random process y(t) resulting from 
applying the random process x(t) to a filter with transfer function H(w), 
equals the output of a filter with transfer function HE(w), given by (l-97), 
when driven by the complex envelope XL(~) of x(t). 

4. The complex envelope XL,@(~) of a random process x(t), with respect to an 
unmodulated carrier fi cos (wet + 8) , is given by XL(~) exp (--j6), where 
XL(~) denotes the complex envelope of x(t) with respect to I/$ cos (wet). 

A few remarks about the equality of random processes and the frequency content 
of random processes are in order. Equality of random processes is meant here 
in the mean-square sense: two random processes v(t) and w(t) are equal in the 
mean-square sense when 

E Ia - [ w(t)12] = 0 (l-107) 

A random process v(t) has its frequency content only in the region w E 0, when 
v(t) is equal in the mean-square sense to the random process w(t), which is 
defined by 

(l-108) 

where ha(t) is the impulse response of a filter with transfer function Ha(w), 
given by 

1 wER 
&-&) = (l-109) 

0 da 
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For a wide-sense stationary process v(t), it can be shown that v(t) has its frequency 
content only in the region w E Q when its power spectral density S,(w) is zero 
for w $! CX 

In telecommunications, a carrier-modulated signal can be represented by 
6 Re[s(t) exp (jwot)], h w ere s(t) has no (or at least negligible) frequency 
components in the interval ]w] > 27rB with 27rB < we; for instance, this condition 
is fulfilled in the case of linear modulation, where s(t) is given by (l-58), and 
the Fourier transform G(w) of the baseband pulse g(t) is essentially zero for 
]w ] > 27rB. Hence, the complex envelope of the carrier-modulated signal is 
simply given by s(t). The communications channel adds stationary noise to the 
carrier-modulated signal. The received signal (carrier-modulated signal plus noise) 
is applied to the demodulator structure from Figures 1- 10 and 1- 11. As the additive 
noise contribution to the demodulator output is a filtered version of the complex 
envelope of the input noise, we concentrate in the next section on some statistical 
properties of the complex envelope of wide-sense stationary processes. 

In Section 2.4, we will be faced with the complex envelope of a cyclostation- 
ary disturbance with period T, with respect to a sinusoid at frequency wo = 27r/T. 
The statistical properties of this complex envelope, needed in Section 2.4, are 
derived in the section on the complex envelope of wide-sense cyclostationary pro- 
cesses which can be skipped at first reading. 

Complex Envelope of Wide-Sense Stationary Processes 

Let us consider a real-valued zero-mean wide-sense stationary 
having a complex envelope XL (t) with respect to fi cos (wet): 

process x(t) 9 

x(t) = d Re[xL(t) exp (jwt)] (l-110) 

It follows from Figure l-6 that XL(t) can be written as 

XL(i) = xA(t) exp(+Ot) (l-111) 

where the analytic signal xA(t) is obtained by applying x(t) to a filter with transfer 
function fi U(W). Being a filtered version of the zero-mean wide-sense stationary 
process x(t), xA(t) is also zero-mean wide-sense stationary; hence, the statistical 
expectation E[xL (t)] is zero. 

Let us calculate the auto- and cross-correlation functions E[xL(t) xL(t + u)] 

and E[xL(t) xL(t +u)]. It follows from (l-111) that 

E[$(t) xL(t + u>] = R,,(u) exp (-+ou) 

@a(t) XL@ + u)] = R+/, (u) exp (-jwou) exp (-j2wot) (1-113) 

where R,,(u) and R,;,, (u) are the autocorrelation function of xA (t) and the 
cross-correlation function of x;(i) and xA(t), respectively. The power spectral 
density SC*(w) of XA(i!) and the cross-spectral density SZ;Z,(w) of xl(t) and 
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XA (t), which are the Fourier transforms of RA (u) and RA+ A (u), are easily derived 
from (l-11) and (1-12): 

S&) = 2 1u(w)12 S,(w) = au(w) S,(w) (1-114) 

S,LzA (w) = 244 u(-W) S&d) = 0 (1-115) 

where SZ (w) is the power spectral density of x(t). It follows from (l-l 12) and 
(l-l 13) that both the auto- and cross-correlation functions E[xE(t) XL (t + u)] 
and @x(t) XL@ + u)] d o not depend on the time variable t [the latter being 
identically zero because of (l-115)]; these correlation functions will be denoted 
as &(u) and R,;,, (u), respectively. Hence, the complex envelope XL(~) of a 
zero-mean wide-sense stationary process z(t) is also zero-mean and wide-sense 
stationary; the power spectral density SZL (w) of XL(~) and the cross-spectral 
density SZ;ZL(w) of x:(t) and XL(~) are given by 

& (w) = 2u(w + wo) S& + wo) (1-116) 

S,t&) = 0 * &;s&) = 0 (1-117) 

As SZ (w) is an even function of w, we easily obtain 

= 
s 

S,(w) E = E[x2(t)] 
--oo 

E [jr&)12] = yYs&) g = 2 )Ys& + uo) 2 

(1-118) 

-CO -W0 
+oO 

= 
s 

S&d) g = E[x2(t)] 

-03 

Hence, the random process x(t), its corresponding analytic signal XA (t) and its 
complex envelope 2~ (t) have the same power. Also, it follows from (l- 117) that 
x;(t) and XL (t + U) are uncorrelated for any value of u. 

The in-phase and quadrature components xc(t) and xs(t) of x(t) with respect 
to cos (wet) are also zero-mean and wide-sense stationary. Their auto- and cross- 
correlation functions can easily be derived by taking into account that xc(t) and 
x~(t) are the real and imaginary parts of XL(~). Making use of (l- 117) one obtains 

R,,(u) = &s(u) = l/2 fi[R,,(u>] (1-119) 

R r&u) = -&,,, (--u) = l/2 Im[&, (u)] (l-120) 

This shows that the in-phase and quadrature components of a wide-sense stationary 
process z(t) have the same autocorrelation function. Their cross-correlation 
function is an odd function of u, indicating that xc(t) and xs(t) are uncorrelated, 
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when taken at the same instant of time. From (l- 119) we derive 

q&t)] = R,,(O) = l/2 &L(O) = l/2 +L(t)12] = l/2 Jqx2(t)] 

E[x;(t)] = R,,(O) = l/2 RZL(0) = l/2 E [lx#l2] = l/2 E[s2(t)] 

(1 121) 

- 

Hence, the in-phase and quadrature components each contain half of the power of 
XL(~) or x(t). Denoting the Fourier transforms of Rzc(u), Ros(u), and RscGs(u) 
by SzC (w), Szs (w), and S3cC5s (w), respectively, the following frequency-domain 
relations are derived from (1-119) and (l-120): 

szc (w) = S&) = l/4 (s,, (4 + SZL (--w)) (1-122) 

S rc&) = -szczs(-w) = $ &(w) - Sd-4> (1-123) 

The spectra SzC (w) and S,,(w) are real, even, and nonnegative, whereas 
S GCzs(w) is imaginary and odd. The equations (l-116), (l-122), and (1-123) 
are illustrated in Figure 1-15. 

t 
s, w  

- 
w 

Figure l-15 Illustration of the Spectra S,(w), SsL (w), S$, (w), Szs (w), and 
S tcrs w  ( ) 
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When the positive-frequency content 
about the center frequency we, i.e., 

of the spectrum S,(w) is symmetric 

‘Ld@o + w) Sx(w0 + u) = u(w0 -w) S&o - w) (1-124) 

then x(t) is called a wide-sense stationary symmetric bandpass process. In this 
case SxL (w) is an even function of w [see (l- 116)], so that R,, (u) is real-valued. 
Hence, (1-122) and (1-123) reduce to 

sxc (w) = &,(w) = l/2 S3cL (w) = u(w + wo)S& + wo) (1-125) 

S xcxs (4 = 0 * Rxcxs(u) = 0 (1-126) 

It follows from (1-126) that xc(t) and zs(t + u) are uncorrelated for any value 
of u. 

The complex envelope XL,@(~) of x(t), with respect to fi cos (wet + 6), 
is given by z~(t) exp (-j0), where XL(~) denotes the complex envelope of x(t) 
with respect to fi cos (wet). Hence, when z(t) is wide-sense stationary we obtain 

Rx,,e (4 = R=,(u) 

R =cZ exL e I 9 (u) = RxtlL(u) exp (-2j0) = 0 
(1-127) 

We conclude that the autocorrelation function of ~~,e(t) and the cross-correlation 
function of 2* L,e(t) and ~~,e(t) do not depend on the value of 0, and, hence, are 
the same as for the complex envelope XL(~). 

Let us consider the case where x(t) is a real-valued zero-mean wide-sense 
stationary Gaussian random process. For Gaussian processes, the following general 
properties hold (see [3]): 

1. A wide-sense stationary Gaussian process is also stationary in the strict sense. 
2. Any linear operation on a Gaussian process yields another Gaussian process. 
3. The statistical properties of a zero-mean complex-valued Gaussian process 

v(t) are determined completely by the correlation functions E[v*(t) v(t + u)] 
and E[v(t) v(t + u)]. 

4. Uncorrelated real-valued Gaussian processes are statistically independent. 

From the above properties, the following conclusions can be drawn: 

1. The signal x(t), the corresponding analytic signal XA (t), the complex enve- 
lope XL(~), and the in-phase and quadrature components zc(t) and us are 
strict-sense stationary zero-mean Gaussian processes. 

2. The in-phase and quadrature components xc(t) and xs(t) have the same 
statistical properties. 

3. The in-phase and quadrature components xc(t) and zs(t) are statistically 
independent, when taken at the same instant of time, 

4. When CC(~) is a symmetric bandpass process [see (l- 124)], then xc(t) and 
xs(t + u) are statistically independent for any u. 
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5. The complex envelope zr;,e(t) of z(t), with respect to fi cos (wet + O), has 
the same statistical properties as the complex envelope z~(t) with respect to 
fi cos (w(Jt). 

The case of a Gaussian stationary process z(t) is important, 
noise at the input of the receiver can be modeled as such. 

because the additive 

Complex Envelope of Wide-Sense Cyclostationary Processes 

Let us consider a real-valued wide-sense cyclostationary process z(t) with 
period T, having a complex envelope XL(~) with respect to fi cos ((27rt/T)). 
The statistical expectation E[z(t)] and the autocorrelation function R,(t, t + U) = 
E[z*(t) x(t + u)] are both periodic in t with period T, and can be expanded into 
a Fourier series with coefficients Mu, k and rt,k (u) , respectively [see (l- 14) and 
(l- 18)]. The complex envelope ZL (t) is related to z(t) by 

XL(f) = (1-128) 

where the analytic signal xA(t) is obtained by applying z(t) to a filter with transfer 
function A/? U(W). Being a filtered version of the wide-sense cyclostationary 
process x(t), xA(t) is also wide-sense cyclostationary with period T. Hence, 
the statistical expectation E[zA(t)] and the correlation functions R,, (t, t + u) 
and Rzo dA (t, t + u) are periodic in t with period T. The statistical expectation 
J!?[zA(tfi and the correlation functions RzL(t, t + U) and R,;,, (t, t + u) are also 
periodic in t with period T: 

E[XL(t)] = E[xA(t)] exp -j F 
( > 

R,,.(t,t + u) = R,,(t,t +u) exp 

(1-129) 

(l-130) 

Rz;mL (4 t + u) = &;t, (t,t + U) exp (-j F) exp (-j F) (1-131) 

Hence, 
T. 

the complex envelope XL (t) is also wide-sense cyclostationary with period 

Let us concentrate on the Fourier series expansions (1-14X1-19) of E[x(t)], 
R,(t) t + u), and R,*,(t) t + u), and on the Fourier series expansions of 
E[xA(t)], R&t + u), and &;&,t + u), and of E[xL(t)], R,,(t,t + u), 

and R,;,, (t , t + U) ; the expansions related to XA (t) and XL (t) are obtained from 
(l-14)-( l-19) by replacing the subscript x by zA and XL, respectively. From 
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(l-129), (l-130), and (1-131) we obtain 

*XL ,k = *xA,k+l (1-132) 

rxL,k(U) = rxA,k ?A ex 0 P( -j 7) 

?‘x;xL,k(U) = rx;sA,k+2(u) exp 

The frequency-domain relations corresponding to (l- 133) and (l- 134) are 

sxt,k@) = SxA,k (u + $) 

sx;x,,k(‘d = sx>xA,k+2 U + $ 
( > 

(1-133) 

(1-134) 

(1-135) 

(1-136) 

where szL,k(w), szA,k(w), sxLZ,.,k(U), and sx>xA,k(W) are the Fourier trans- 
forms of yxL,k(‘?+ rxa,k(u), px;xL,k(u), and Tx;xA,k(u). Using (l-35)-(1-37), 
with H(w) = fi U(W) and th e subscript y replaced by XL, one obtains 

*xA,k = & u $$ mx,k 
( > 

S xA,k 0 = u w 0 2( 

(1-137) 

(1-138) 

‘X;XA,dW) = h(-w+ y) u(w) s&d) (1-139) 

where Sx.k (w) is the Fourier transform of the coefficient Tx,k(U) in the expansion 
(1-18). Hence, 

*xL,~ =fiu($(k+l)) *,,k+l (l-140) 

S xL.,k (w)=%u(w-$(k-1)) .(w+$) ,.,(w+$-) (1-141) 

&;x,,k(w) = 2 ‘U --w + T  ?@+I)) .(w+ g) sx,k+++ $) (l-142) 

which follows from substituting (l-137), (l-138), and (1-139) into (l-132), (l- 
135), and (1-136). 

Now we consider the process ye, which results from passing the wide- 
sense cyclostationary process XL(~) through a (possibly complex-valued) lowpass 
filter with transfer function Hop. Equivalently, ye is the complex envelope 
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of the process y(t), which results from passing z(t) through a bandpass filter with 
transfer function Hnp(w) = HLP(W - w~)+HE~(-w - we), which corresponds to 
a real-valued impulse response hnp (t) . We restrict our attention to the case where 
HLP(W) = 0 for 1~1 > r/T. It h as b een shown in Section 1 .1.2 that the resulting 
process ye is wide-sense stationary [see (l-39)-(1-41) with H(w) = HLP(W) 
and the subscripts z and y replaced by XL and ye, respectively] 

E[y~(f)] = HLP(O) mx,,O = HLP(O) fim,,l (1-143) 

s,,w = IHLPW12 &,oW 

2w 
= 1HLP(W)J2 2sqo w + - ( > T 

Sy;&) = HLP(W)HLP(-W)sx~xL,O(W) 

27F 
= HLP(q~LP(-qa,2 Q + - ( > T 

(1-144) 

(1-145) 

It is important to note that, although the complex envelope ye is wide-sense 
stationary, the corresponding bandpass signal y(t) = fi Re[yL(t) exp (jwct)] is 
in general not wide-sense stationary, but only wide-sense cyclostationary. Indeed, 
let us consider the autocorrelation function of y(t), which is given by 

R&t+ u) =Re[R& exp (j F)] 

+ Re kyzyL(u) exp (j F) exp (j F)] (l-1461 

Clearly, Ry (t , t + U) becomes independent of t only when 

44;?&) = 0 * s?&w = 0 (1-147) 

which is usually not fulfilled [see (l-145)] when the wide-sense cyclostationary 
complex envelope XL(~) has frequency components within the bandwidth of 
HLP(W). 

1.2.3 Example 
Let us consider the demodulator structure shown in Figure 1 

random process x(t) is given by 
16, where the 

x(t) = fi Re[s(t) exp (juot)] + n(t) (1-148) 

In (l-148), s(t) has frequency components only in the interval ]w I 
27rB < wa ; hence, s(t) is the complex envelope of the first term (: ,f 

< 27rB, with 
’ (1-148). The 

second term in (1-148) is stationary real-valued zero-mean Gaussian noise n(t), 
with power spectral density &(w). The transfer function iYr,p (w) in Figure l- 
16 satisfies Hop = 0 for Iw I > 27rB. The purpose of the demodulator is to 
suppress the frequency components of the noise n(t) that are located in the interval 
II4 - wol > 27rB, and to provide a signal y(t) consisting of a filtered version of 
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x(t) = &Re[s(t)exp(ic0&] + n(t) c +-H LpW ) y(t) 

I 
ew(-bo~) 

Figure 1-16 Demodulation of a Noisy Bandpass Signal 

s(t), disturbed by additive noise caused by the frequency components of the noise 
n(t) that are located in the interval 1 Iw 1 - wg 1 < 27r B. 

The demodulator from Figure 1-16 is equivalent to the structure shown 
in Figure 1-17, where no is the complex envelope of n(t) with respect to 
fi cos (wet). The contribution from n(t) to the output signal y(t> is a zero-mean 
stationary Gaussian process, whose power spectral density is given by 

IHLPW12S,L (4 = IffLP(4122U(W + wo)S& + wg) 

= 2 IffLP(q12s?& +w*) 
(1-149) 

Hence, as far as the statistics of y(t) are concerned, only the values of the power 
spectral density S,(w) in the interval I Iw I - wol < 2nB are important; hence, 
without loss of generality we can assume Sn (w) = 0 for llwl - wol > 27rB. 
In many cases of practical interest, the variation of Sri(w) within the interval 

II4 - wol < 27rB can be neglected with respect to the value S,(wo), so that the 
following approximation is appropriate 

No/2 II4 - wol <2nB 
ST&> = (l-150) 

0 elsewhere 

with No/2 = S, (~0). The corresponding noise n(t) is referred to as being “white 
within the signal bandwidth,” with power spectral density NO/~. Figure l-l 8 shows 
the power spectral densities &(w), SaL (w), &,(w), and Sns (w) of the noise 
n(t), its complex envelope nt (t), and the in-phase and quadrature components 
nc(t) and ns(t). As Sri(w) is symmetric about w = wo for w > 0, nc(t> and 
ns(t) are uncorrelated for any value of u. Hence, nc(t) and ns(t> are statistically 
independent identically distributed zero-mean Gaussian random processes, with 
a power spectral density that equals No/2 for IwI < 2xB and zero otherwise. 
However, as the value of their power spectral density for Iw 1 > 27rB does not 
influence the statistical properties of y(t), it is common practice to replace nc(t) 

Figure l-17 Equivalent Demodulator Structure Operating on Noisy Complex 
Envelope 
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-2rcB ’ 27cB 0 

-2nB I 
-- 

2nB Co 

Figure l-18 Illustration of the Spectra i&(w), SnL (w), Snc (w), and Stas (w) 
When n(t) Is White Noise 

and ns(t) by truly white processes, whose power spectral density equals No/2 
for all 0. 

1.2.4 Main Points 

The complex envelope XL(~) of a deterministic or random signal z(t), with 
respect to an unmodulated carrier fi cos (wet), is obtained by performing on z(t) 
the operations indicated in Figures l-6 and l-7; when z(t) is strictly bandpass and 
centered at w = wc, 2~ (t) is lowpass, and can also be obtained by performing the 
demodulation indicated in Figures l-10 and l-l 1. 

Let y(t) be the output of a filter, with transfer function H(w) and real-valued 
impulse response h(t), when driven by z(t) . Then the complex envelope ye (t) of 
y(t) is obtained by applying the complex envelope XL(~) of z(t) to a filter with 
transfer function HE (w) = ?.J(w + ~0) H(w + we). Unless H(w) is the transfer 
function of a symmetric bandpass filter [see (l-101)], the impulse response hE (t) 
is complex-valued. 
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The complex envelope ~~,e(t) of x(t), with respect to fi cos (wet + 0), 
equals XL(~) exp (-jt?), where XL(~) denotes the complex envelope of z(t) with 
respect to I/%! cos (wet). 

The complex envelope XL(~) of a zero-mean wide-sense stationary process 
x(t) is itself zero-mean wide-sense stationary. The in-phase and quadrature 
components xc(t) and us have the same power spectral density; their cross- 
spectral density is an odd imaginary function of w, which becomes identically zero 
when z(t) is a symmetric bandpass process [see (l- 124)]. When x(t) is wide-sense 
stationary and Gaussian, then z(t) is also strict-sense stationary; the corresponding 
xl;(t), xc(t), and xs(t) are also Gaussian strict-sense stationary processes. 

When a wide-sense cyclostationary process x(t) with period 2” is applied 
to a bandpass filter HBP(U) with Hup(w) = 0 for 1 Iw] - 27r/T] > r/T, then 
the resulting bandpass process y(t) has a complex envelope ye with respect 
to I/? cos (wat) which is wide-sense stationary. The bandpass process y(t) 
itself, however, is in general not wide-sense stationary, but only wide-sense 
cyclostationary. 
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1.3 Band-Limited Signals 

1.3.1 Correlation Function and Power Spectrum 
Let y(t) be the output of an ideal lowpass filter driven by x(t) 

00 

y(t) = J hLP(t - u) x(u) du 

-CO 

with 
1 if ]~/27r] < B 

HLP@) = 
0 else 

(see Figure 1-19). 

(1-151) 

(1-152) 
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Figure 1-19 Ideal Lowpass Filter 

The process z(t) is said to be band-limited to frequency B if it is not altered 
by the filtering operation, i.e., 

$z(t) - Y(t)12] = 0 (1-153) 

It is easily shown that this implies that the power spectrum is zero outside 
IwI > 27rB. Indeed, the difference signal e(t) = x(t) - y(t) can be 
thought to be generated by a filter [l - Hop] driven by z(t). The power 
spectrum of this signal is given by 

Se(w) = s,(w)ll - HLP(W)12 
= 0 for all w 

(1-154) 

if 
S&) = 0 for IwI > 27rB (1-155) 

For a cyclostationary process S,(w) must be replaced by S,,O(W). 
Since the power spectrum is deterministic and band-limited the correlation function 
has a series representation with the base functions. 

(#k(t) = 
sin (2?rB(t - &)) 

2aB(t - A) 

=si(,,,(,-A)) 

For l/T’ > 2B we obtain 

(1-156) 

(1-157) 

and for the cyclostationary process [eq. (l-14)] 

&(t, t + u) = C r,,n(u)eGj2xiT)nT 

n 

Tz,n(~~)~k(u) e 1 (j2n/T)nT (1-158) 

= c &(t,t + kTd)$k(u) 

k 

Notice that the series expansion in equation (1-158) is with respect to one variable 
only. 
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1.3.2 Sampling Theorem 
We will next prove that a band-limited random process can be expanded into 

a series where the base functions &(t) are given by (1-156). 

z(t + T) = 2 x(7 + a) A-b(t) 
?I=-00 

ccl 
= C 5(7+nTs)si +(t-nT.) 

n=-ca [ s 1 
(1-159) 

In the usual form of the theorem it is assumed that r = 0. If z(t) is a deterministic 
waveform then (1-159) is the celebrated sampling theorem. In the stochastic 
version of this theorem the equivalence is to be understood in the mean-square 
sense. 

[i 

00 
E z(t + T) - C x(r + nT,) si 

n=-co 
[& (t-nZ)][] =O 

Proof: We expand 

[I 2 z(T + nT,) A$) 

2 

E z(t +T) - 
n=-Co II 

= &(t + r; t + T) - c R,(t + 7; -r + IT,) h(t) 

- c R:(t + 7; 7 + nTd) q&(t) 
n 

(l-160) 

+ fx R&T, + 7; IT, + 7) ha(t) #q(t) n,l S--o0 
Using the series expansion of R,( t , t + u) of eq. (l- 158) it readily follows that 
the right-hand side of (l- 160) equals zero. 

1.3.3 Sampling of Bandpass Signals 
We consider a passband signal with a complex envelope XL(t) 

x(t) = & Re [XL(t)+ wet] (1-161) 

When x(t) is strictly bandpass and centered at wa (Figure l-20) 
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Figure l-20 Bandpass Signal 

then XL(~) is a complex lowpass process. It can be obtained from s(t) by 
performing the demodulation 

xw 
-j wet = fi Re [xL(t)ej “‘Ot] e-j wet 

Jz fi 
= TxL(t) + Txi(t)e-j2wof 

(1-162) 

The double-frequency term in eq. (1-162) is removed by a lowpass filter as shown 
in Figure 1-21. 

The analog-to-digital conversion can be moved closer to the input x(t) 

by simultaneously sampling the signal at carrier frequency we and frequency 
translating it to baseband. We denote by f8 = l/T8 the sampling frequency. Then 

x(t)e -j wet It=kT, = fi Re[x,#)ejWot] dwot It=uB (1-163) 

A very simple realization which avoids complex multiplication is obtained if 
we sample the signal at four times the carrier frequency fo : 

f8 = 4fo (1-164) 

Down Conversion 
*- b+$ 

Figure 1-21 Down Conversion Followed by Sampling 
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Since 
ejkwoTB = (j)” 

inserting this result into eq. (1-163) yields 

(1-165) 

(-j)kx(kT,) = $ [x&T,) + x;(kT,)(-qk] (1-166) 

We obtain the in-phase component at the even sampling instants 2kT, and 
the quadrature component at the odd instants (2k + l)TJ : 

(-l)“x(2kTa) = &! Re[xL(2kT,)] = dxe(2kTS) 

(-l)“x[(2k + l)T,] = -fiIm[q-(2k + l)T,] = -dx8[(2k + l)T,] (1-167) 

For further processing we need the quadrature components at the same 
sampling instant and not TJ apart. This can be achieved by digital interpolation 
of the sample values. For symmetry reasons both components are interpolated 

@kTd) = x,[2kT, - T,/2] 

x/,(2kT,) = x3[(2k - l)Ts + T,/2] 
(1-168) 

The functional block diagram of the combined samples and down converter 
is depicted in Figure 1-22. 

The real-valued signal x(t) is sampled at four times the carrier frequency fe . 
Subsequently the samples are sorted by a multiplexer, provided with alternating 
signs, and finally interpolated to obtain samples at the same time instant. Notice 
that the multiplexer decimates the sample rate by two. 

This digital equivalent of the down converter (Figure l-22) is very attractive 
for implementation reasons since it avoids the costly analog mixers and lowpass 
filters at the expense of digital signal processing circuitry in the interpolator. 
Functionally, the digital down converter provides the two quadrature components 
exactly since the phase increment between two consecutive samples equals WOT, = 
7r/2. An exact n/2 phase shift is crucial for optimum detection. It is difficult to 
achieve with analog circuits. 

If the signal x(t) is first down converted by an analog mixer, a minimum 
sampling rate of fJ 2 2B is required. The disadvantage of the digital sampler and 
down converter is t.he large oversampling rate of 4fe compared to the bandwidth 

fs = 4fo 0, 2, 4, . . . . 2k 

1,3,5, . . . . (2k+l) 

W-s) 

WT, 1 

Figure 1-22 Digital Sampling and Down Conversion 
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of the information-carrying envelope ZL (t). A generalization of the basic concept 
of the digital sampler and down converter, which maintains the simplicity of the 
digital circuitry but uses a smaller sampling rate, is discussed next. 

The idea behind this is quite simple. We are in search of a sampling rate 
which produces phase increments of 7r/2. 

,j k 2rfoT. = ej(rlW (1-169) 

The first solution to the above relation is the one discussed before, 
foTs = l/4. 

The general solution, however, is 

1 
foTS=f-+N >O 

4 
(l-170) 

where the negative sign yields negative phase increments of 7r/2. Hence 

which can be combined to 

fs=4fo. 
2n+l’ 

n20 (1-172) 

Basically eq. (1-171) states that we skip N cycles of the phasor ejwot before taking 
the next sample. There is a maximum N determined by the sampling theorem. 
We obtain samples of the quadrature components every 2T, units of time [see 
eq. (l-167)]. 

Hence 
l/(Z) 1 2B (1-173) 

or 
fa > 4B - 

A smaller sampling rate simplifies the A/D converter but requires more 
elaborate interpolation circuitry. This is a trade-off which the design engineer 
can exploit. 

Up to this point, it has been the desire to simplify digital circuitry by assuming 
certain relationships between carrier frequency and sampling rate. In some cases, 
it may be impossible to fulfill such relationships exactly. In this case, it may 
be desirable to choose fJ according to a more general rule. The most general 
requirement for the sampling rate is given by 

2fo + 2B 2fo - 2B 
N I f.9 I N-l 

(1-175) 

for N = 1, . . . . Nmax, 
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t X(o), X(e joTs ) 

/mirror spectra 

Figure l-23 Spectrum of Undersampled Signal 

(Note that the equality in the right equation only holds for N > 1.) If eq. (l- 
175) is satisfied, the mirror spectra of the sampled signal z( ICT,) will occupy the 
frequency space between the two components of the original spectrum as shown in 
Figure l-23. The minimum required sampling rate fa,min (for N = N,,,) is 
approximately twice the bandwidth 2B of the real bandpass signal. If (fo + B)/2B 
is an integer value fJ,min = 4B is exactly fulfilled. In this case, the minimum 
sampling rates resulting from conditions (1-172) and (1-175) coincide. 

The negative mirror images can be eliminated by means of a Hilbert trans- 
former. A discrete-time Hilbert transform filter with a frequency response of 

~~ cei 2xf Tm -j for 0 5 fTJ < i 
j for +<- fTs <l (1-176) 

will compute the quadrature component samples x5 (ICT,) from x(kT,) so that 
X(/CT,) and x, (kT,) form a Hilbert transform pair. Figure l-24 illustrates the 

28 I- 

b) 
- ja2Ts we ) 

L-m 28 

Figure l-24 (a) Spectrum of Analytic Signal, (b) Spectrum after Decimation 



1.3 Band-Limited Signals 53 

effect of the digital Hilbert transform operation on the spectrum. The undesired 
negative sideband portion is eliminated leaving behind the spectrum of a sampled 
complex signal Z(lcT,) which equals the envelope z~(kT~) shifted by a frequency 
offset fa from the origin. 

Since the resulting complex signal spectrum consumes only half of the 
bandwidth of the original real signal, in-phase and quadrature sample streams may 
be decimated by a factor of 2. Equation (1-176) can efficiently be approximated 
by a finite-impulse response (FIR2 filter with an odd number of coefficients NDHT 
and whose frequency response H (ej ;IrfTa) fulfills 

(1-177) 

In this case, the impulse response id(n), n 2 0 satisfies 

&(n) = 0 for n odd (1-178) 

Figure l-25 shows the functional block diagram of the down converter. 
Due to the property (l-178), decimation may be performed at the input of the 
unit by sorting the samples alternatively into in-phase and quadrature branches. 
The quadrature components are obtained by filtering with fid(ej2rfzTm). To 
compensate the FIR filter causality, the in-phase samples must be delayed by 
N’ = (NDHT - 1)/2. Finally, the known frequency offset fn is removed by 
phase rotation. This may be performed in conjunction with correction of the 
unknown carrier frequency error. 

1.3.4 Main Points 
Any band-limited signal can be represented by a series 

ccl 

z(t + 7) = C x(7 + nT,) si [$ - w] (1-179) 
12=-m 

with l/Ts 1 2B. If z(t) is a deterministic waveform, then (1-179) is the sampling 
theorem. In the stochastic version equivalence is understood in the mean-square 
sense. 

Discrete Hilbert 
Transformer 

Figure l-25 Digital Down Converter Using Hilbert Transform 
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By sampling a bandpass signal, one can simultaneously perform the operation 
of down conversion, provided the sampling rate fulfills the condition of eq. (l- 172). 
The samples z(lcT,) for even Ic is equal to the in-phase component of the envelope 
while for odd Ic we obtain the quadrature component. Bandpass sampling is very 
attractive for implementation reasons since it avoids the costly analog mixer. In 
some cases it may be impossible to fulfill the exact relationship between carrier 
frequency and sampling rate of eq. (1-172). In this case a generalized relation, 
eq. (l-175), may be applicable. The digital signal processing then demands a 
discrete Hilbert transform and a digital down conversion by the residual frequency. 
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1.4 Fundamentals of Estimation Theory 

1.4.1 Bounds on Estimation Errors 
The variance of the estimation error of suboptimal estimators can be obtained 

analytically only in a few isolated cases. In general it must be obtained by computer 
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simulation. While we thus obtain accurate results, including nonlinear effects such 
as quantization, for any given estimate we do not know how far from the optimum 
estimator we are. 

In this section we discuss bounds on the variance of the estimation errors 
for nonrandom but unknown parameters. Such bounds are useful since they allow 
to compare the variance of a suboptimal (but realizable) estimator to that of an 
optimal (but nonrealizable) estimator in order to assess the implementation loss 
of the suboptimal estimator. 

This section is based on the book by van Trees [l] where the reader can find 
a thorough and detailed discussion as well as the mathematical proofs. 

Let r be the received signal vector and 9 = (01, 02, . . . . L~K) a set of I< 
nonrandom parameters. The estimator for the ith parameter is denoted by t’&(r) 
Then the following theorem can be proved [ 1, p. 791. 

Theorem; Consider any unbiased estimates of 8a 

E[&(r)] = ei 

Then 

(l-180) 

oii = v++ - “(‘,I 2 Jii (1-181) 

where Jii is the iith element of the I< x I< square matrix J-l. The elements 
in J are given by 

The J matrix is commonly called Fisher’s Information Matrix. 
(1-181) holds if and only if 

a lnp(rie) a In drie) 1 

f?;(r) - 8i = 2 Ki,j(r) a ln:jrie) 
j=l j 

The 

(1-182) 

equality in 

(1-183) 

for all values of & and r. For a single parameter 0 the bound is commonly 
called the Cramer-Rao bound. To understand the significance of the theorem, it is 
constructive to consider a few simple examples. 

Example 1: Maximum-Likelihood (ML) Estimation of a Single Parameter 0 
Let 

fi = 8 + 1zi i= l,...,N (1-184) 

We assume that the ni are each independent, zero-mean Gaussian variables with 
variance ai. Then from 

PW = i + exp - (ri - q2 

r ora { I 
2 CT; 

, (1-185) 
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and 
f3 ln PW) =-$ &q-e) 1 1 a* =-g&)-e] 

the ML estimate is found by setting 

=o 
e^(r) 

From (1-187) it follows 

N 

j(r) k Cri =- 
i=l 

Using (1-184) the expected value of e(r) is found to be 

(1-186) 

(1-187) 

(l-188) 

r I] = ; 5 E[B + nil = 0 
i=l 

which shows that the estimate is unbiased. Because the expression (1-186) has 
exactly the form 

0 ln PW) 
de 

= $ p(r)-S] (1-189) 

the estimate reaches the bound with equality. (Any estimate that satisfies the bound 
with equality is called an efficient estimate.) 

The bound is readily found by differentiating (1-189) once more with respect 
to ~9 and taking the expected value. 

(l-190) 

Thus 

(1-191) 

Example 2: Nonlinear ML Estimation of a Single Parameter. 
We assume the same conditions as in Example 1 with the exception that the variable 
0 appears in a nonlinear manner. We denote its dependency by s(O) 

ri = s(e) + 7Ei (1-192) 
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Using 

(1-193) 

we obtain 

8 lw(W = N 1 IV 
de oi 

1 
yy c (ri - @>> 

a’=1 1 $g (1-194) 

In general the right-hand side cannot be written in the form required by (1-183) 
and therefore an unbiased efficient estimate does not exist. 

The likelihood equation is the expectation of 

=o 
04(r) 

(1-195) 

If the range of s(0) includes l/N 5 Ti a solution exists 
i=l 

8(8(r)) = f 2 Ti 
i=l 

If (l- 196) can be satisfied, then 

(1-196) 

(1-197) 

Observe that we tacitly assume that the inverse function s-l exists. If it does not, 
even in the absence of noise we shall be unable to determine 0 unambiguously. 
Taking the second derivative of In P(rj0) with respect to 0 we find 

a2 In +le) 
828 = s {-[$$12+ [k g(,-S(e))] $$} (l-198) 

Observing that for an unbiased estimate we must have 

J(+ e(ri-s(e))] = 0 

i=l 

(1-199) 

we obtain the following bound for any unbiased estimate 

(l-200) 

We see that the bound is exactly the same as in Example 1 except for a factor 
[th(0)/t16-j2. Th e intuitive reason for this factor and also some feeling for the 
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T Y=W 

Figure 1-26 Nonlinear Estimation of Single Parameter 

conditions under which the bounds will be useful may be obtained by inspection 
of Figure l-26. 

Define y = s(O), then ri = y + ni. The variance in estimating y is just 
az/N. However, if the error in estimating y is small enough so that the slope 
is constant, then 

and 

Y - +o> 

@ - e”) N lqq/ae loo 
(l-201) 

(l-202) 

We observe that, if the noise is weak, almost all values of y cluster around the actual 
value 80 where linearization of s(B) applies. We can thus expect that the CramCr- 
Rao (CR) bound gives an accurate answer in the case that the parameter appears in 
a nonlinear manner. The performance of the nonlinear estimator approaches that 
of a linear estimator which provides an e#cient estimate. 

The properties of the ML estimate, which are valid when the error is small, 
are generally referred to as asymptotic. This occurs if the variance of the noise 
becomes small, e.g., when the number of independent observations becomes very 
large. 

Nonlinear estimation is generally plagued by threshold effects. At low SNRs 
there is a range in which the variance rises very rapidly as the SNR decreases. As 
an example consider the PLL behavior discussed in Chapter 6, Volume 1. Below 
the threshold, the CR is no longer useful. 
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Chapter 2 Baseband Communications 

2.1 Introduction to Digital Baseband Communication 

In baseband communication, digital information is conveyed by means of a 
pulse train. Digital baseband communication is used in many applications, such as 
. Transmission at a few megabits per second (Mb/s) of multiplexed digitized 

voice channels over repeatered twisted-pair cables 
. Transmission of basic rate ISDN (16Okb/s) over twisted-pair digital subscriber 

lines 
. Local area networks (LANs) and metropolitan area networks (MANS) oper- 

ating at 10-100 Mb/s using coaxial cable or optical fiber 
. Long-haul high-speed data transmission over repeatered optical fiber 
. Digital magnetic recording systems for data storage 

This chapter serves as a short introduction to digital baseband communication. 
We briefly consider important topics such as line coding and equalization, but 
without striving for completeness. The reader who wants a more detailed treatment 
of these subjects is referred to the abundant open literature, a selection of which 
is presented in Section 2.1 S. 

2.1.1 The Baseband PAM Communication System 
Baseband communication refers to the case where the spectrum of the trans- 

mitted signal extends from zero frequency direct current (DC) to some maximum 
frequency. The transmitted signal is a pulse-amplitude-modulated (PAM) signal: 
it consists of a sequence of time translates of a baseband pulse which is amplitude- 
modulated by a sequence of data symbols conveying the digital information to be 
transmitted. 

A basic communication system for baseband PAM is shown in Figure 2-l. 

TRANSMllTER I CHANNEL I RECEIVER 
1 I I I I I I 

Figure 2-l Basic Communication System for Baseband PAM 
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At the transmitter, the sequence of information bits (bk) is applied to an encoder, 
which converts {bk} into a sequence (uk} of data symbols. This conversion is 
called line coding, and will be considered in more detail in Section 2.1.3. The 
information bits assume the values binary zero (“0”) or binary one (“l”), whereas 
the data symbols take values from an alphabet of a size L which can be larger than 
2. When L is even, the alphabet is the set {fl, f3, . . . . =t(L - l)}, for an odd L 
the alphabet is the set (0, f2, f4, . . . . =t(L - 1)). 

The data symbols enter the transmit filter with impulse response gT (t), whose 
Fourier transform is denoted by GT(w). The resulting transmit signal is given by 

s(t)=~u,gT(t-mT-ET) (2-l) 
m 

where VT is the symbol rate, i.e., the rate at which the data symbols are applied 
to the transmit filter. The impulse response g*(t) is called the baseband pulse of 
the transmit signal. The quantity ET is a fractional unknown time delay between 
the transmitter and the receiver (1~1 5 3). The instants {H’} can be viewed as 
produced by a hypothetical reference clock at the receiver. At the transmitter, the 
lath channel symbol ak: is applied to the transmit filter at the instant Kf + ET, 
which is unknown to the receiver, Figure 2-2 shows a baseband pulse g*(t) and 
a corresponding PAM signal s(t), assuming that I, = 2. 

Figure 2-2 (a) Baseband PAM Pulse gT(t), (b) Binary PAM Signal s(t) 
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The channel is assumed to be linear. It introduces linear distortion and adds 
noise. The linear distortion (amplitude distortion and delay distortion) is char- 
acterized by the channel frequency response C(u). It causes a broadening of 
the transmitted pulses. The “noise” is the sum of various disturbances, such as 
thermal noise, electronics noise, cross talk, and interference from other commu- 
nication systems. 

The received noisy PAM signal is applied to a receive filter (which is also 
called data filter) with frequency response GR(w). The role of this filter is to 
reject the noise components outside the signal bandwidth, and, as we will explain 
in Section 2.1.2, to shape the signal. The receive filter output signal y(t; E) is 
sampled at symbol rate l/T. From the resulting samples, a decision (&) is made 
about the data symbol sequence (ah}. The sequence (&k} is applied to a decoder, 
which produces a decision 

11 8, on the information bit sequence { bk ). 

The signal at the output of the receive filter is given by 

y(t; E) = c a,g(t - mT - ET) + n(t) (2-2) 
m 

where g(t) and n(t) are the baseband pulse and the noise at the receive filter 
output. The Fourier transform G(w) of the baseband pulse g(t) is given by 

G(w) = Gz+)C(+z+) (z-3) 

Let us denote by {kT + ZT} the sequence of instants at which the sampler at the 
receive filter output is activated. These sampling instants are shifted by an amount 
tT with respect to the instants (IcT} produced by the hypothetical reference clock 
of the receiver. Then the lath sample is given by 

!/k(e) = ak SO(e) + c ak-na h(e) + nk Q-4) 

m#O 

where yk(e), h(e), and nk are short-hand notations for y( IcT + 2T; E), 
g(mT - eT), and n( IcT + CT), while e = E - i denotes the difference, nor- 
malized by the symbol duration T, between the instant where the Kth symbol ak 
is applied to the transmit filter and the Lth sampling instant at the receiver. 

In order to keep the decision device simple, receivers in many applications 
perform symbol-by-symbol decisions: the decision &k is based only on the sample 
yk (e). Hence, only the first term of the right-hand side of (2-4) is a useful one, 
because it is the only one that depends on ck. The second term is an intersymbol 
infelference (ISI) term depending on ck -m with m # 0, while the third term is 
a noise term. When the noise n(t) at the receive filter output is stationary, the 
statistics of the noise sample nk do not depend on the sampling instant. On the 
other hand, the statistics of the useful term and the IS1 in (2-4) do depend on the 
sampling instant, because the PAM signal is cyclostationary rather than stationary. 

Let us consider given sampling instants (IcT + gT} at the receive filter output. 
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The symbol-by-symbol decision rule based on the samples YA! (e) from (2-4) is 

m - 1 < yk(e)/go(e) 5 m + 1 m # k(L - 1) 
Cik = Y- 1 L - 2 < !/k(e)h’O(e) 

-L+l yk(e)/gO(e> 5 -L + 2 

(2-5) 
where the integer m takes on only even (odd) values when L is odd (even), This 
decision rule implies that the decision device is a slicer which determines the 
symbol value &k which is closest to & (e)/go( e). In the absence of noise, the 
baseband communication system should produce no decision errors. A necessary 
and sufficient condition for this to be true is that the largest magnitude of the IS1 
over all possible data sequences is smaller than 1 go(e) I, i.e., M(e) > 0 where 
M(e) is given by 

W4 = I go(e) 1 - max thn) m;to am g-m e E ()I (2-6) 

When M(e) < 0, the data symbol sequence yielding maximum IS1 will surely give 
rise to decision errors in the absence of noise, because the corresponding yk (e) is 
outside the correct decision region. When M(e) > 0, a decision error can occur 
only when the noise sample nk from (2-4) has a magnitude exceeding M(e) ; M(e) 
is called the noise margin of the baseband PAM system. The noise margin can be 
visualized by means of an eye diagram, which is obtained in the following way. 
Let us denote by ~e(t ; E) the receive filter output signal in the absence of noise, i.e., 

yo(t;&) = Cam g(t - mT- 0) 

m 
(2-7) 

The PAM signal ~o(t ; E) is sliced in segments yo,i (t ; E), having a duration equal 
to the symbol interval 2’: 

!Jo(t; d iT 5 t < (i + 1)T 
PO,&; E) = (2-Q 

0 otherwise 

The eye diagram is a display of the periodic extension of the segments yo,i(t; E). 
An example corresponding to binary PAM (L = 2) is shown in Figure 2-3. As 
g(t) has a duration of three symbols, the eye diagram for binary PAM consists of 
23 = 8 trajectories per symbol interval. Because of the rather large value of g(r), 
much IS1 is present when sampling the eye at t = 0. The noise margin M(e) 
for a specific sampling instant is positive (negative) when the eye is open (closed) 
at the considered instant; when the eye is open, the corresponding noise margin 
equals half the vertical eye opening, 

The noise margin M(e) depends on the sampling instants IcT + 2T and the 
unknown time delay ET through the variable e = e - i. The optimum sampling 
instants, in the sense of minimizing the decision error probability when the worst- 
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(a) (b> 

Figure 2-3 (a) Baseband PAM Pulse g(t), (b) Eye Diagram for Binary PAM 

case IS1 is present, are those for which M(e) is maximum. Using the appropriate 
time origin for defining the baseband pulse g(t) at the receive filter output, we can 
assume without loss of generality that M(e) becomes maximum for e = 0. Hence, 
the optimum sampling instants are IcT+ ET, and e = E - E^ denotes the timing error 
normalized by the symbol interval. The sensitivity of the noise margin M(e) to 
the normalized timing error e can be derived qualitatively from the eye diagram: 
when the horizontal eye opening is much smaller than the symbol interval T, the 
noise margin and the corresponding decision error probability are very sensitive 
to timing errors. 

Because of the unknown delay 0 between the receiver and the transmitter, 
the optimum sampling instants { IcT + ET} are not known a priori to the receiver. 
Therefore, the receiver must be equipped with a structure that estimates the value of 
e from the received signal. A structure like this is called timing recovery circuit or 
symbol synchronizer. The resulting estimate 6 is then used to activate the sampler 
at the instants (Kf + Z7’). The normalized timing error e = E - i should be kept 
small, in order to avoid the increase of the decision error probability, associated 
with a reduction of the noise margin M(e). 

2.1.2 The Nyquist Criterion for Eliminating ISI 

It is obvious that the shape of the baseband pulse g(t) and the statistics of 
the noise n(t) at the output of the receive filter depend on the frequency response 
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GR(w) of the receive filter. Hence, the selection of GR(w) affects the error 
probability when making symbol-by-symbol decisions. The task of the receive 
filter is to reduce the combined effect of noise and ISI. 

Let us investigate the possibility of selecting the receive filter such that all 
IS1 is eliminated when sampling at the instants {kT + ET}. It follows from (2-4) 
that IS1 vanishes when the baseband pulse g(t) at the receive filter output satisfies 
g(mT) = 0 for m # 0. As G( w is the Fourier transform of g(t), g (mT) is ) 
for all m given by 

+w 
g(mT) = J dw 

G(w) exP (Mq g 

-W 

+w (2n+l)*lT 

= c / G(w) exp (jm&‘)g 
“=-00(2n-1)x/T 

(2-9) 

Taking into account that exp(jmwT) is periodic in w with period 27r/T, we obtain 

AIT 

h-m = J ‘%d (w) 
dw 

exP (jw T) 217 
-nJT 

where Gad(w) is obtained by folding G(w): 

&d(w) = E G(w - F) 
r&=-w 

(2- 10) 

(2-l 1) 

Note that Gad(W) is periodic in w with period 27r/T. It follows from (2-9) that 
Tg (-mT) can be viewed as the mth coefficient in the Fourier-series expansion 
of Gfid(w): 

Gad(w) = T c g(-mT) exp (jmwT) 
m=-co 

(2-12) 

Using (2-12) and the fact that Gad(w) is periodic in w, we obtain 

g(mT) =0 for m#O tj Gad(W) is constant for 10 1 < x/T 

(2-13) 
This yields the well-known Nyquist criterion for zero ISI: a necessary and sufficient 
condition for zero IS1 at the receive filter output is that the folded Fourier transform 
Gfid(w) is a constant for Iw 1 < ?r/T. 

The Nyquist criterion for zero IS1 is sometimes referred to as the&st Nyquist 
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criterion. A pulse satisfying this criterion is called an interpolation pulse or a 
Nyquist-I pulse. Let us consider the case where G(w) is band-limited to some 
frequency B; i.e., G(w) = 0 for Iw( > 27rB. 

l When B < 1/(2T), G~,-J(w) = G(u) for 1~1 < n/T. As G(w) = 0 for 
27rB < IwI < r/T, G fld w cannot be constant for 1~1 < x/T. Taking (2-3) ( ) 
into account, it follows that when the bandwidth of the transmit filter, of the 
channel or of the receive filter is smaller than 1/2T, it is impossible to find 
a receive filter that eliminates ISI. 

. When B = l/(273, Gm( w is constant only when, within an irrelevant ) 
constant of proportionality, G(w) is given by 

T I4 < 4T 
G(w) = (2- 14) 

0 otherwise 

The corresponding baseband pulse g(t) equals 

sin (Irt/T) 
dt) = &/T (2- 15) 

. 

Using (a close approximation of) the pulse (sin (rt/T))/(nt/T) is not practi- 
cal: not only would a complicated filter be required to approximate the abrupt 
transition in G(w) from (2-14), but also the performance is very sensitive to 
timing errors: as the tails of the pulse (sin (st/T))/(rt/T) decay as l/t, the 
magnitude of the worst-case IS1 tends to infinity for any nonzero timing error 
e, yielding a horizontal eye opening of zero width. 
When B > 1/(2T), the baseband pulse g(t) which eliminates IS1 is no longer 
unique. Evidently, all pulses that satisfy g(t) = 0 for It I 2 T eliminate ISI. 
Because of their time-limited nature, these pulses have a large (theoretically 
infinite) bandwidth, so that they find application only on channels having a 
bandwidth B which is considerably larger than 1/(2T); an example is optical 
fiber communication with on-off keying of the light source. When bandwidth 
is scarce, one would like to operate at a symbol rate l/T which is only slightly 
less than 2 B. This is referred to as narrowband communication. 

When 1/(2T) < B < l/T, the Nyquist criterion (2-13) is equivalent to 
imposing that G(w) has a symmetry point at w = ?r/T: 

G($+u)+G*(F-w) =G(O) for (u(<?r/T (2- 16) 

A widely used class of pulses with 1/(2T) < B < l/T that satisfy (2- 16) are the 
cosine rolloff pulses (also called raised cosine pulses), determined by 

sin (?rt/T) cos (curt/T) 
dt) = &/T 1- 4cx2t2/T2 

(2- 17) 
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withO<cu< 1. Fora= 0, (2-17) reduces to (2-15). The Fourier transform 
G(w) of the pulse g(t) from (2-17) is given by 

G(w) = 
{ 

:,2 [l - sin (w)] 
0 

~~~~\~~~~!r(l+ Q) (2-18) 
W -= a! 

Hence, the bandwidth B equals (1 + a)/(2T), and a/(2T) denotes the excess 
bandwidth [in excess of the minimum bandwidth 1/(2T)]. cy is called the rolloff 
factor. Some examples of cosine rolloff pulses, their Fourier transform and the 
corresponding eye diagram are shown in Figure 2-4. Note that IS1 is absent when 
sampling at the instants kT. The horizontal eye opening decreases (and, hence, 
the sensitivity to timing error increases) with a decreasing rolloff factor. 

From the above discussion we conclude that a baseband PAM pulse g(t) that 

(a) 

09 

Figure 2-4 Cosine Rolloff Pulses: (a) Baseband Pulse gT(t) , (b) Fourier 
Transform G(w) , (c) Eye Diagram for Binary PAM (25% Rolloff), (d) Eye 
Diagram for Binary PAM (50% Rolloff), (e) Eye Diagram for Binary PAM (100% 
Rolloff) 



2.1 Introduction to Digital Baseband Communications 69 

roll-off = 25% 

1. 

0. 

-1. 

(d 

(4 

roll-off = 50% 

1.0 

0.5 

0.0 

-0.5 

-1.0 

010 015 1.0 1.5 2.0 

VT 

roll-off = 100% 

1 



70 Baseband Communications 

eliminates IS1 must satisfy the Nyquist criterion (2-13). In order that a receive 
filter exist that eliminates ISI, it is necessary that the available bandwidth exceed 
half the symbol rate. 

As the receive filter which eliminates (or at least substantially reduces) IS1 
yields a baseband pulse g(t) whose folded Fourier transform Gad(w) is essentially 
flat, the receive filter is often referred to as a (linear) equalizer. The equalizer 
must compensate for the linear distortion introduced by the channel and therefore 
depends on the channel frequency response C(w). When there is sufficient a 
priori knowledge about C(w), the equalizer can be implemented as a fixed filter. 
However, when there is a rather large uncertainty about the channel characteristics, 
the equalizer must be made adaptive. 

Generally speaking, the equalizer compensates for the channel attenuation 
by having a larger gain at those signal frequencies that are more attenuated by 
the channel. However, the noise at those frequencies is also amplified, so that 
equalization gives rise to a noise enhancement. The larger the variation of the 
channel attenuation over the frequency interval occupied by the transmit signal, 
the larger this noise enhancement. 

2.1.3 Line Coding 

In many baseband communication systems, there is some frequency value B 
beyond which the linear distortion rapidly increases with frequency. For example, 
the attenuation (in decibels) of a twisted-pair cable is proportional to the square- 
root of the frequency (skin effect). This sets a limit on the bandwidth that can 
be used for baseband transmission: if the transmit signal contained components at 
too high frequencies, equalization of the severe linear distortion would give rise 
to a large noise enhancement, yielding a considerable performance degradation. 
In addition, in many applications the transmitted signal is severely distorted near 
zero frequency, because of transformer coupling or capacitive coupling, which 
reject DC. In these cases, the transmit signal should have low spectral content 
near zero frequency, in order to avoid excessive linear distortion and a resulting 
performance degradation. 

It is clear from the above that we must control the transmit spectrum in order to 
avoid both high frequencies and frequencies near DC. We recall from Section 1.1.4 
that the power spectrum S,(w) of the transmit signal s(t) from (2-l) is given by 

S&) = $s.( ejwT) IGT (w) 1’ (2-19) 

where Sa ( ejwT) is the power spectrum of the data symbol sequence. Hence, the 
control of the spectrum is achieved by acting on the transmit pulse g(t) and/or on 
the spectrum of the data symbol sequence. The latter is achieved by means of line 
coding: line coding involves the specification of the encoding rule that converts 
the information bit sequence {bk} into the sequence {ak} of data symbols, and 
therefore affects the spectrum of the data symbol sequence. 
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In addition to spectrum control, line coding should also provide timing 
information. Most symbol synchronizers can extract a reliable timing estimate 
from the received noisy PAM signal, only when there are sufficient data symbol 
transitions. When there are no data symbol transitions (suppose uk = 1 for all E), 
the receive filter output signal in the absence of noise is given by 

YO(CE) = E ( g t-kT-ET) 

= ;-j-j q!) exp [j?z& -q] (2-20) 

---00 

Note that ya(t; 6) is periodic in t with period T, so that one could be tempted to 
conclude that timing information can easily be extracted from yo(t; E). However, 
when G(w) = 0 for Iwl > 27rB with B < l/T (as is the case for narrowband 
communication), the terms with k # 0 in (2-20) are zero, so that yo~(t; E) contains 
only a DC component, from which obviously no timing information can be derived. 
The same is true for wideband pulses with G(27rm/T) = 0 for m # 0 (as is the 
case for rectangular pulses with duration T). Hence, in order to guarantee sufficient 
timing information, the encoding rule should be such that irrespective of the bit 
sequence (bk}, the number of successive identical data symbols in the sequence 
{CQ} is limited to some small value. 

As the spectrum SQ (eiWT) is periodic in w with period 27r/T, it follows 
from (2-19) that the condition S,(w) = 0 for IwI > 27rB implies GT(w) = 0 for 
1~1 > 27rB. Hence, frequency components above w = 2nB can be avoided only 
by using a band-limited transmit pulse. According to the Nyquist criterion for zero 
ISI, this band-limitation on GT(w) restricts the symbol rate l/T to l/T < 2 B. 

A low spectral content near DC is achieved when Ss(0) = 0. This condition 
is fulfilled when either GT( 0) = 0 or So ( ej”) = 0. 

. When GT(O) = 0 and l/T is required to be only slightly less than 2B 
(i.e., narrowband communication), the folded Fourier transform GH&) of 
the baseband pulse at the receive filter output is zero at w = 0. This indicates 
that equalization can be performed only at the expense of a rather large noise 
enhancement. The zero in the folded Fourier transform Gfid(U) and the 
resulting noise enhancement can be avoided only by reducing the symbol 
rate l/T below the bandwidth B. Hence, using a transmit pulse gT(t) with 
GT(O) = 0 is advisable only when the available bandwidth is sufficiently 
large, but not for narrowband applications. 

. In the case of narrowband communication, the recommended solution to 
obtain S8 (0) = 0 is to take SQ (ej ‘) = 0. Noting that S, (ej”) can be 
expressed as 
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it follows that Sa (ej”) = 0 when the encoding rule is such that the magnitude 
of the running digital sum, RDS (n), given by 

RDS(n) = 2 uk 
k=-oo 

(2-22) 

is limited for all N, and for any binary sequence (bk} at the encoder input. 

For some encoders, there exist binary input strings (such as all zeroes, all ones, 
or alternating zeroes and ones) which cause long strings of identical data symbols 
at the encoder output. In order that the transmitted signal contains sufficient 
timing information, the probability of occurrence of such binary strings at the 
encoder input should be made very small. This can be accomplished by means 
of a scrambler. Basically, a scrambler “randomizes” the binary input sequence 
by modulo-2 addition of a pseudo-random binary sequence. At the receiver, the 
original binary sequence is recovered by adding (modulo-2) the same pseudo- 
random sequence to the detected bits. 

Binary Antipodal Signaling 

In the case of binary antipodal signaling, the channel symbol c&k equals +l 
or -1 when the corresponding information bit bk is a binary one or binary zero, 
respectively. Unless the Fourier transform G(w) of the baseband pulse at the 
receive filter output satisfies G(27rm/T) # 0 for at least one nonzero integer 
m, this type of line coding does not provide sufficient timing information when 
the binary information sequence contains long strings of zeroes or ones. The 
occurrence of such strings can be made very improbable by using scrambling. 
Also, in order to obtain a zero transmit spectrum at DC, one needs GT(O) = 0. 
Consequently, the magnitude of the running digital sum is limited, so that the 
codes yield no DC, 

Quaternary Line Codes 

In the case of quaternary line codes, the data symbol alphabet is the set 
{f l,f3}. An example is 2BIQ, where the binary information sequence is 
subdivided in blocks of 2 bits, and each block is translated into one of the four 
levels fl or f3. The 2BlQ line code is used for the basic rate ISDN (data rate 
of 160 kb/s) on digital subscriber lines. 

2.1.4 Main Points 
In a baseband communication system the digital information is conveyed by 

means of a pulse train, which is amplitude-modulated by the data. The channel 
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is assumed to introduce linear distortion and to add noise. This linear distortion 
broadens the transmitted pulses; the resulting unwanted pulse overlap gives rise 
to ISI. 

The receiver consists of a receive filter, which rejects out-of-band noise. 
Data detection is based upon receive filter output samples, which are taken once 
per symbol. These samples are fed to a slicer, which makes symbol-by-symbol 
decisions. The decisions are impaired by IS1 and noise that occurs at the sampling 
instants. 

The receive filter output should be sampled at the instants of maximum noise 
margin. These optimum sampling instants are not a priori known to the receiver. A 
timing recovery circuit or symbol synchronizer is needed to estimate the optimum 
sampling instants from the received noisy PAM signal. 

The receive filter must combat both noise and ISI. According to the Nyquist 
criterion, the receive filter should produce a pulse whose folded Fourier transform 
is essentially flat, in order to substantially reduce the ISI. Such a filter is called 
an equalizer. When the system bandwidth is smaller than half the symbol rate, 
equalization cannot be accomplished. 

In many applications, the channel attenuation is large near DC and above some 
frequency B. In order to avoid large distortion, the transmit signal should have 
negligible power in these regions. This is accomplished by selecting a transmit 
pulse with a bandwidth not exceeding B, and by means of proper line coding to 
create a spectral zero at DC. Besides spectrum control, the line coding must also 
provide a sufficient number of data transitions in order that the receiver is able 
to recover the timing. 

2.1.5 Bibliographical Notes 
Baseband communication is well covered in many textbooks, such as [ l]-[6]. 

These books treat equalization and line coding in much more detail than we have 
done. Some interesting topics we did not consider are mentioned below. 
Ternary Line Codes 

In the case of ternary line codes, the data symbols take values from the set 
I-2,0, $2). In the following, we will adopt the short-hand notation (- , 0, +} 
for the ternary alphabet. 

A simple ternary line code is the alternate mark inversion (AMI) code, which 
is also called bipolar. The AM1 encoder translates a binary zero into a channel 
symbol 0, and a binary one into a channel symbol + or - in such a way that 
polarities alternate. Because of these alternating polarities, it is easily verified 
that the running digital sum is limited in magnitude, so that the transmit spectrum 
is zero at DC. Long strings of identical data symbols at the encoder output can 
occur only when a long string of binary zeroes is applied to the encoder. This 
yields a long string of identical channel symbols 0. The occurrence of long strings 
of binary zeroes can be avoided by using a scrambler. The AM1 decoder at the 
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Table 2-l 4B3T Line Code [l] 

Binary input block 

0000 

0001 

0010 

0011 

0100 
0101 

0110 
0111 

1000 
1001 

1010 

1011 

1100 

1101 

1110 

1111 

Ternary output block 

Mode A Mode B 

+o- +O- 

-+o -+o 

o-+ o-+ 

+-0 +-0 

++o -- 0 
o++ 0 -- 

+o+ -O- 
+++ --- 

++- -- + 
-++ + -- 

+-+ -+- 

+00 -00 

o+o o-o 

oo+ oo- 

o+- o+- 

-o+ -o+ 

receiver converts the detected ternary symbols into binary symbols. 0 is interpreted 
as binary zero, whereas + and - are interpreted as binary one. The AM1 code uses 
one ternary symbol to transmit one bit of information. Hence the efficiency of the 
AM1 code, as compared to transmitting statistically independent ternary symbols, 
equals l/ log, 3 z 0.63. AM1 is widely used for transmission of multiplexed 
digitized voice channels over repeatered twisted pair cables at rates of a few 
megabits per second. 

A higher efficiency and more timing information than (unscrambled) AM1 are 
obtained when using ternary block codes, which map blocks of k bits to blocks of 
n ternary symbols; such codes are denoted as kBnT. As an example, we consider 
the 4B3Tcode, which maps 4 bits to 3 ternary symbols according to Table 2-l. 

Note that there are two “modes”: when the running digital sum is negative 
(nonnegative), the entries from the first (second) column are used. In this way, 
the magnitude of the running digital sum is limited, which guarantees a spectral 
zero at DC. Also, it is not possible to have more than five successive identical 
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ternary symbols, so that timing information is always available. The efficiency of 
the 4B3T code equals 4/(3 log2 3) N 0.84. 4B3T achieves a higher efficiency than 
AMI, but shows a higher encoding/decoding complexity. 

Binary Line Codes 

In many applications involving optical fiber communication, the light source 
is keyed on/off. In this case, the channel symbols are binary, and the symbol 
alphabet is denoted {+, -}. 

Binary block codes converting a block of m information bits into a block 
of n binary channel symbols are denoted mBnB; their efficiency as compared to 
uncoded binary transmission equals m/n. 

In the case of zero-disparity codes, each block of n binary channel symbols 
contains the same number (n/2) of +‘s and -‘s. The number of possible code 
words equals N = (n!)/((n/2)!)2, but the number of code words actually used 
in a mBnB zero-disparity code equals 2m, which is the largest power of 2 not 
exceeding N. As the running digital sum is limited to the interval (-n/2, n/2), 
zero disparity codes yield a spectral null at w = 0. Also, there are sufficient 
data transitions for providing timing information. The IB2B zero-disparity code 
is called Manchester code (also called biphase) whose two code words are +- 
and -+. The Manchester code is used in coaxial-cable-based Ethernet local area 
networks in the token ring and in fiber optical communication systems, but its 
efficiency is only 0.5. The efficiency of the mBnB zero-disparity code increases 
with increasing n, but at the cost of increased encoding/decoding complexity. 

A higher efficiency than for zero-disparity codes is obtained when using 
bimode mBnB codes, where the code words do not have the same number of 
symbols + and -. As for the 4B3T ternary code described earlier, each block of 
m information bits can be represented by one of two code words; the code word 
reducing the magnitude of the running digital sum is selected by the encoder. 

Equalization 

. When only a single data symbol is transmitted, the receiver’s decision is 
affected only by additive noise, because IS1 is absent. The signal-to-noise ratio 
at the input of the slicer is maximized when the receive filter is the matched 
j&r. The frequency response of the matched filter is G~(w)C*(W)/SN(W), 
where GT(w) and C( w ) are the Fourier transforms of the transmit pulse and 
the channel impulse response and SN(W) is the spectrum of the noise at the 
receiver input. When the additive noise is Gaussian and the values that can 
be assumed by the data symbols are equiprobable, it can be shown that the 
optimum receiver, in the sense of minimizing the decision error probability, 
is the matched filter followed by the slicer. The corresponding decision error 
probability is called the matched filter bound: it is a lower bound on the 
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decision error probability of a baseband PAM communication system that is 
affected by Gaussian noise and ISI. 
The optimum linear equalizer, in the sense of minimizing the mean-square 
error between the sample at the input of the slicer and the corresponding 
data symbol, turns out to be the cascade of a matched filter and a transversal 
filter operating at a rate l/T. Because of the noise enhancement caused by 
the equalizer, the decision error probability is larger than the matched filter 
bound [7, 81. 
When symbol-by-symbol decisions are made, but the receiver is allowed 
to use decisions about previous data symbols, the IS1 caused by previous 
data symbols (i.e., the postcursor ISI) can be subtracted from the samples at 
the input of the slicer. This yields the decision-feedback equalizer (DFE), 
consisting of a forward equalizer which combats noise and precursor IS1 (Le., 
IS1 caused by future data symbols) and a feedback filter which generates from 
the receiver’s decisions the postcursor IS1 to be subtracted. The optimum 
forward equalizer (in the sense of minimizing noise and precursor ISI) is 
the cascade of the matched filter and a noise-whitening transversal filter 
operating at a rate l/T. The DFE yields less noise enhancement than the 
linear equalizer, assuming that the decisions that are fed back are correct, 
However, because of the decision-feedback, the DFE can give rise to error 
propagation [7][8]. 
The optimum receiver (in the sense of minimizing sequence error probability) 
in the presence of IS1 is the Viterbi equalizer (VE). It does not make symbol- 
by-symbol decisions, but exploits the correlation between successive receive 
filter samples for making a decision about the entire sequence by using a 
dynamic programming algorithm, operating on matched filter output samples 
taken at the symbol rate [9-l 11. When the eye at the matched filter output is 
open, the performance of the VE is very close to the matched filter bound [ 111. 
Fractionally spaced equalizers (i.e., transversal filters operating at a rate 
exceeding l/T) are able to compensate for timing errors [ 121. 
Various algorithms exist for updating adaptive equalizers [13]. 

Line Coding 

. Other ternary line codes than AM1 and 4B3T from Section 2.1.3 are bipolar n 
zero substitution (Bnzs), high-density bipolar n (HDBn), pair-selected ternary 
(PST), and MS43 [14]. 

l Other binary line codes than those considered in Section 2.1.3 are the Miller 
code (also called delay modulation), coded mark inversion (CMI), and bit 
insertion codes such as mBIC and DmBlM [ 15, 161. 

. The fiber-distributed data interface (FDDI) is a standard for a 100 Mb/s fiber- 
optic token ring. It uses a 4B5B line code with ample timing information, 
but with nonzero DC content. 
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. In the case of partial response coding (which is also called correlative level 
encoding), a controlled amount of IS1 is introduced deliberately by passing 
the data symbols to a transversal filter operating at the symbol rate, in order 
to perform spectral shaping. This transversal filter and the transmit filter can 
be combined into a single filter. Denoting the frequency response in the 
z-domain of the transversal filter by T(z), typical frequency responses are 

T(z)= 1 - z-l (dicode) 
T(z)= 1+ z-l (duobinary class 1) 
T(z)= (1 + z-‘) (1 - z-l) = 1 - zB2 (modified duobinary class 4) 

(2-23) 

Frequency responses having a factor 1 - z-l yield a spectral null at w = 0, 
whereas a factor 1 + z- ’ gives rise to a spectral null at the Nyquist frequency 
W = r/T. A spectral null at w = r/T allows transmission with the minimum 
bandwidth B = 1/(2T). The transmit signal is given by (2-l), where {ak} 
denotes the sequence of filtered symbols at the output of the transversal filter 
T(z). A simple receiver detects the filtered data symbols by performing 
symbol-by-symbol decisions (the optimum receiver would use the Viterbi 
algorithm in order to exploit the correlation between filtered data symbols). 
As the filtered symbols have more levels than the unfiltered symbols, a 
degradation of the decision error probability occurs. Decisions about the 
unfiltered data symbols could be obtained by applying the decisions {uk} 
about the filtered data symbols to a filter with frequency response l/T(x), as 
shown in Figure 2-5. As T(z) is a polynomial in z, l/T(z) is the frequency 
response of an all-pole filter. An all-pole filter can be realized only by 
means of feedback, so that the performance of the system shown in Figure 
2-5 is affected by error propagation. It can be shown that the problem of 
error propagation is circumvented by preceding the unfiltered data symbols 
at the transmitter, before entering the transversal filter T(z). Because of 
the preceding, the unfiltered data symbols can be recovered by means of 

noise 

kT+$T 

received 
signal K- unfiltered 

data out 

Figure 2-5 Partial Response System with Error Propagation 
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received 
signal 

kT+h 

Figure 2-6 Partial Response System with Preceding to Avoid Error Propagation 

memoryless symbol-by-symbol decisions (as indicated in Figure 2-6), so that 
error propagation does not occur [17]-[21]. 
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2.2 Clock Synchronizers 

2.2.1 Introduction 
The digital information, embedded in the transmitted PAM signal, is recovered 

at the receiver by means of a decision device. This decision device operates on 
samples of the noisy PAM signal y(t; e), taken at symbol rate l/T at the receive 
filter output, which is given by 

y(t; E) = C am g(t - mT - ET) + n(t) 
m 

(2-24) 

In (2-24) (am} is a sequence of zero-mean data symbols, g(t) is the baseband 
PAM pulse at the receive filter output, eT is an unknown fractional time delay 
(-l/2 5 c 5 l/2), and n(t) represents zero-mean additive noise. For maximum 
noise immunity, the samples upon which the receiver’s decision is based should 
be taken at the instants of maximum eye opening. As the decision instants are a 
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Y(t; d Loop 
Filter 

- vco l 

Figure 2-7 Ordinary PLL Operating on PAM Signal 

priori unknown (because of the unknown delay ET) the receiver must contain a 
device which makes an estimate of the normalized delay. Such a device is called 
a clock synchronizer or symbol synchronizer. The timing estimate E^ is used to 
bring the sampling clock, which activates the sampler at the receive filter output, 
in close synchronism with the received PAM signal. This is achieved by adjusting 
the phase of this sampling clock according to the value of the estimate E^. 

The received noisy PAM signal contains no periodic components, because the 
channel symbols (a,} have zero mean. Therefore, an ordinary PLL (see Chapter 
2 of Volume I) operating on the filtered received signal y(t; E) cannot be used to 
generate a clock signal which is in synchronism with the received PAM signal. Let 
us illustrate this fact by considering a PLL with multiplying timing error detector: 
the local reference signal r(t; i) given by 

r(t; 6) = l&i Kr sin ($ (t-eT)) (2-25) 

and is multiplied with the noisy PAM signal y(t ; E), as shown in Figure 2-7. Taking 
into account (2-24), the timing error detector output signal equals 

z(t; E, i) = c a, g(t - mT - ET) + n(t) fi Ii’ sin 
77-h 

] r ($(t-gT)) 

(2-26) 
For any values of E and 2, the statistical average of the timing error detector output 
is identically zero, because the channel symbols {a,} and the additive noise nit) 
have zero mean. As the average timing error detector output is zero irrespective of 
E and E^, there is no deterministic force that makes the PLL lock onto the received 
PAM signal. 

2.2.2 Categorization of Clock Synchronizers 
From the operating principle point of view, two categories of synchronizers 

are distinguished, i.e., error-trucking (or feedback, or closed loop) synchronizers 
and feedforward (or open loop) synchronizers. 

A general error-tracking synchronizer is shown in Figure 2-8. The noisy PAM 
signal y(t; e) and a locally generated reference signal r(t; i> are “compared” by 
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Figure 2-8 General Error-Tracking Synchronizer 

means of a timing error detector, whose output gives an indication of the magnitude 
and the sign of the timing error e = & - 2. The filtered timing error detector output 
signal adjusts the timing estimate e in order to reduce the timing error e. The 
timing estimate 2 is the normalized delay of the reference signal ~(t; e) which 
activates the sampler operating on y(t ; E). Hence, error-tracking synchronizers use 
the principle of the PLL to extract a sampling clock which is in close synchronism 
with the received PAM signal. Properties of error-tracking synchronizers will be 
studied in detail in Section 2.3. 

Figure 2-9 shows a general feedforward synchronizer. The noisy PAM receive 
signal y(t; e) enters a timing detector, which “measures” the instantaneous value 
of c (or a function thereof). The noisy measurements at the timing detector output 
are averaged to yield the timing estimate e (or a function thereof), 

PAM ) Receive Data 
Signal Filter yW l Sampler . Decision 

Device out 

4 

__) Timing 
Detector 

l Averaging t Reference 
- Signal --I 

Filter 
Generator 

Figure 2-9 General Feedforward Synchronizer 
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Figure 2-10 General Spectral Line Generating Synchronizer 

An important subcategory of both error-tracking and feedforward synchroniz- 
ers is formed by the spectral line generating synchronizers. A general spectral line 
generating synchronizer is shown in Figure 2-10. The received PAM signal, which 
does not contain any periodic components, passes through a suitable nonlinearity. 
In most cases, the output of the nonlinearity is an even function of its input. In Sec- 
tion 2.4, where spectral line generating synchronizers are treated in detail, we will 
show that the output of the nonlinearity contains periodic components, the phase 
of which is related to the normalized delay t. Viewed in the frequency domain, 
the output of the nonlinearity contains spectral lines at multiples of the channel 
symbol rate l/T. The periodic component with frequency l/T can be tracked by 
means of an ordinary PLL, whose VCO output signal then controls the sampler 
at the output of the receive filter. When the periodic component at frequency 
l/T is extracted by means of a PLL, the spectral line generating synchronizer 
belongs to the category of error-tracking synchronizers, because the VCO of the 
PLL is driven by an error signal depending on the normalized delay difference 
e = &- E^. Alternatively, the periodic component with frequency l/T can be 
selected by means of a narrowband bandpass filter, tuned to the channel symbol 
rate l/T, and serves as a clock signal which activates the sampler at the output 
of the receive filter. When the periodic component at frequency l/T is extracted 
by means of a bandpass filter, the spectral line generating synchronizer belongs to 
the category of feedforward synchronizers. Note that the feedforward spectral line 
generating synchronizer makes no explicit estimate of E (or a function thereof); 
instead, the cascade of the nonlinearity and the narrowband bandpass filter gives 
rise directly to the reference signal ~(t; e). 

Besides the above categorization into error-tracking and feedforward synchro- 
nizers, other categorizations can be made: 
. When a synchronizer makes use of the receiver’s decisions about the trans- 

mitted data symbols for producing a timing estimate, the synchronizer is said 
to be decision-directed; otherwise, it is non-data-aided. 

. The synchronizer can operate in continuous time or in discrete time. Discrete- 
time synchronizers use samples of the PAM signal y(t ; E), and are therefore 
well-suited for digital implementation. 

In Section 2.2.3 we will present examples of synchronizers belonging to various 
categories. 

2.2.3 Examples 
In this section we give a few specific examples of synchronizers, belonging 

to the various categories considered in Section 2.2.2. Their operation will be 
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Figure 2-11 Baseband PAM Pulse g(t) Used in Examples 

explained mainly in a qualitative way. A detailed quantitative treatment of these 
synchronizers will be presented in Section 2.5. 

For all cases, it will be assumed that the synchronizers operate on a noiseless 
PAM waveform y(t; &), with a baseband pulse g(t), given by 

g(t) = 
$ (1+ cos ($)) ItI < T 

(2-27) 

0 otherwise 

The baseband PAM pulse g(t) is shown in Figure 2-l 1; note that its duration equals 
two channel symbol intervals, so that successive pulses overlap. The channel 
symbols (uk} independently take on the values -1 and 1 with a probability of 
l/2 (binary antipodal signaling). 

The Squaring Synchronizer 
The squaring synchronizer is a spectral line generating synchronizer. The 

block diagram of the squaring synchronizer is shown in Figure 2-12. The PAM 
signal y(t ; &) enters a prefilter, which in our example is a differentiator. The 
squared differentiated signal contains spectral lines at DC and at multiples of the 
channel symbol rate l/T; the spectral line at the channel symbol rate is selected 
by means of a bandpass filter (feedforward synchronizer), or is tracked by means 
of a PLL (error-tracking synchronizer). 

Y (f 2) d it&E) i*(t;E) Bandpass Sampling 

dt 
e Squarer ) Filter 

or PLL Clock 

Figure 2-12 Block Diagram of Squaring Synchronizer 
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Figure 2-13 shows the PAM signal y(t; e), its time derivative $(t; E) and 
the squarer output i2 (t; 6). The squarer output consists of a sequence of 
identical pulses, with randomly missing elements; more precisely, the interval 
(mT+&T,mT+ET+T) contains a pulse if and only if a, # cs,,,+l, i.e., when 
a channel symbol transition occurs. The squarer output*i2(t; E) can be decomposed 
as the sum of two terms. The first term is the statistical expectation E [i2(t; e)] , 
which is periodic in t with period T; this is the useful term, consisting of spectral 
lines. The second term is a zero-mean disturbance jr2 (t ; e) - E [ g2 (t ; E)] , which 
is caused by the random nature of the channel symbols. This term is a self-noise 
term, which does not contain spectral lines and, hence, disturbs the synchronizer 
operation. 

The Synchronizer with Zero-Crossing Timing Error Detector 
The synchronizer with zero-crossing timing error detector (ZCTED) is an 

error-tracking synchronizer. The block diagram of this synchronizer is shown in 
Figure 2-14 and its operation is illustrated in Figure 2-15. 

The VCO output signal r(t; e) is a square wave with a frequency equal to 

$0: E) 
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kT+eT (k+ 1 )T+ET (k+P)T+eT (k+3)T+eT 

i ‘(1; e)-E[jr2(t; E)] 

Figure 2-13 Illustration of Squaring Synchronizer Operation 
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the channel symbol rate l/T, which has positive zero crossings at the instants 
IcT + iT. The ZCTED “compares” the zero-crossing positions of the PAM signal 
y(t; E) with those of the VCO output signal r(t; 2) in the following way. The 
ZCTED looks for the possible (positive or negative) zero crossing of the PAM 
signal, located between two successive positive zero crossings of the VCO output 
signal. When there is no such zero crossing of y(t; a), the ZCTED output z(t; E, i) 
is identically zero over the considered interval. When y(t; E) does exhibit a zero 
crossing in the considered interval, a rectangular pulse is generated at the ZCTED 
output. When the zero crossing of y(t ; E) leads the negative zero crossing of r(t; 2) 
in the considered interval, this rectangular pulse is positive and extends from the 
zero crossing of y(t ; e) to the negative zero crossing of ~(t; e). On the other hand, 
when the negative zero crossing of r(t; 2) leads the zero crossing of y(t; E), the 
rectangular pulse is negative, and extends from the negative zero crossing of ~(t; e) 
to the zero crossing of y(t ; a). Summarizing, the ZCTED output signal consists 
of a sequence of rectangular pulses, with missing elements each time there is no 
channel symbol transition. The polarity of each pulse gives information about 
leading or lagging of the zero crossings of the clock with respect to those of the 
received PAM signal, while the width of each pulse equals the amount of leading 
or lagging. 

The ZCTED output signal z(t ; E, 2) can be decomposed as the sum of a 
deterministic term E[x(t; E, e)], which equals the statistical expectation of the 
ZCTED output signal, and a zero-mean self-noise term ~(t; E, e) - E[c(t; t, E)], 
which is caused by the randomness of the channel symbols. Note that the 
deterministic term E[z(t ; E, e)] is periodic in t with period T. The synchronizer 
loop responds only to the lowpass content of the ZCTED output signal; the 
useful part of this lowpass content is the DC component of E[z(t ; E, z)], which is 
proportional to the normalized delay difference e = e - i. 

The Mueller and Miiller (M&M) Synchronizer 

The M&M synchronizer is a discrete-time error-tracking synchronizer, which 
derives an indication about the delay difference between the received PAM signal 
and the sampling clock from samples of the receive filter output signal y(t; e) 
taken at the channel symbol rate l/T. The M&M synchronizer is represented by 
the block diagram shown in Figure 2-16. The timing error detector produces a 
sequence { zk (E, i)}, which is determined by 

z&i) = c&B1 y(kT + E”T;E) - iik y(kT - T + ~T;E) (2-28) 

where 21, denotes the receiver’s decision about the mth channel symbol una. As the 
timing error detector makes use of the receiver’s decisions, the M&M synchronizer 
is decision-directed. For the sake of simplicity, we will assume that all decisions 
n am are correct, i.e., ii, = a,. As far as the synchronizer operation is concerned, 
this assumption is most reasonable when the decision error probability is smaller 
than about lo- 2. The actual error probability on most terrestrial baseband links is 
smaller than low2 by several orders of magnitude. 

The operation of the M&M synchronizer is illustrated in Figure 2-17. The 
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Figure 2-17 Illustration of M&M Synchronzer Operation 
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timing error detector output sequence (~12 (e, i) ) is a sequence of identical numbers, 
with randomly missing elements. The nonzero elements have the same sign as the 
normalized timing error e = E - g, while their magnitude is an increasing function 
of ]e 1. It depends on the channel symbol sequence {a,} which of the elements 
in the timing error detector output sequence are missing. For e < 0, the lath 
element is zero when cck-1 = ak+l ; for e > 0, the lath element is zero when 
ak = ck-2. The timing error detector output sequence can be decomposed as the 
sum of two terms. The first term is the statistical average E[xk(&, e)], consisting 
of identical elements which give an indication about the sign and the magnitude of 
the normalized delay difference between the PAM signal and the sampling clock. 
The second term is the zero-mean self-noise term Zk (&, g) - E[Xk (E, S)] , which 
disturbs the operation of the synchronizer. 

2.2.4 Disturbance in Clock Synchronizers 
When the received baseband PAM pulse g(t) extends over more than one 

channel symbol interval, the successively transmitted pulses partially overlap, In 
this case, the received PAM signal during the lath symbol interval does not depend 
on the Icth channel symbol al, only, but also on other channel symbols. This 
effect is called intersymbol interference (ISI). The IS1 affects the operation of the 
synchronizer, because it gives rise to a random disturbance at the output of the 
timing error detector of an error-tracking synchronizer, or at the output of the 
nonlinearity of a spectral line generating synchronizer. This disturbance is called 
self-noise; its statistics depend on the baseband PAM pulse and on the statistics 
of the channel symbols. In the simple examples considered in Section 2.2.3, the 
presence of self-noise is obvious from the missing elements in the squarer output 
(Figure 2-13), in the ZCTED output (Figure 2- 19, and in the M&M timing error 
detector output (Figure 2-17). 

Besides self-noise, also additive noise at the input of the receiver affects the 
operation of the clock synchronizer. However, in the case of terrestrial baseband 
communication, self-noise is the dominating disturbance for the following reasons: 

. Additive noise levels are small (signal-to-noise ratios for terrestrial baseband 
communication are in the order of 30 dB). 

. The bandwidth of the received PAM pulse is often smaller than the symbol 
rate l/T (i.e., twice the Nyquist frequency), so that the PAM pulse has a 
duration of several symbol intervals. This gives rise to considerable IS1 and 
much self-noise, 

Therefore, the emphasis in the design of clock synchronizers is on the reduction of 
the self-noise. As we shall demonstrate in Section 2.5, this can be accomplished 
by prefiltering the received PAM signal, so that the resulting baseband pulse has 
a suitable shape. 
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2.3 Error-Tracking Synchronizers 

2.3.1 The General Structure of Error-Tracking Synchronizers 
Error-tracking synchronizers generate a periodic reference signal which must 

be brought in synchronism with the received waveform. A nonlinear circuit, called 
the timing error detector, “compares” the received waveform with the locally 
generated reference signal and produces an error signal which gives an indication 
about the sign and the magnitude of their relative misalignment. This error signal is 
jiltered and fed back to the oscillator which generates the reference signal, so as to 
reduce the timing error between the received signal and the local reference signal. 

The general structure of an error-tracking synchronizer is shown in Figure 
2-18. The input signal y(t; E) is a noisy PAM signal, given by 

y(t; E) = C am g(t - mT - ET) + n(t) (2-29) 
m 

where l/T is the channel symbol rate, {am} is a stationary sequence of zero-mean 
channel symbols, g(t) is the baseband PAM pulse, ET is an unknown fractional 
time delay to be estimated by the synchronizer and n(t) is zero-mean stationary 
noise, which is statistically independent of the channel symbol sequence. It has 
been shown in Section 1.1.4 that y(t; &) is cyclostationary with period T. For more 
information about cyclostationary processes the reader is referred to Section 1.1.2. 
The local reference r(t; e> at the output of the VCO is a periodic waveform whose 
instantaneous frequency is determined by the signal u(t) at the input of the VCO: 

r(t; i) = s [$(t-iT)] (2-30) 

where S(W) is a periodic function of u, with period 27r, e.g., s(w) = sin (w), and 
e is the estimate of &. The effect of u(t) on the instantaneous frequency of the 
local reference is described by 

dE^ 1 1 -=- [ 1 --- 
dt To T + Ko u(t) (2-31) 

where l/To is the quiescent frequency of the reference signal, corresponding to a 
control signal u(t) which is identically zero, and the constant Kc is the “gain” of 
the VCO. Indeed, when u(t) is identically zero, 2 is a linear function of time: 

1 g(t) = - - - $ [ 1 To 
t + i(O) 

Hence, the resulting reference signal is periodic in t with period TO : 

r(t; 41 u(l)=o = (2-33) 
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Figure 2-18 Error-Tracking Synchronizer Structure 

The timing error detector performs a suitable time-invariant nonlinear operation 
on the input signal and the local reference, so that its output signal z(t) gives an 
indication of the instantaneous timing error e = & - g. The timing error detector 
output signal enters a linear time-invariant loop filter. Its frequency response in 
the Laplace domain is denoted by F(s) ; the frequency response in the frequency 
domain is F(w). The loop filter output signal u(t) determines the instantaneous 
frequency of the VCO according to (2-31) such that the timing error e is reduced. 

As the input signal y(t; E) has zero mean, it does not contain a deterministic 
periodic component, so that a conventional PLL cannot be used to estimate E. 
However, there is still some periodicity embedded in the input signal, because 
of its cyclostationarity with period T. This cyclostationarity is exploited by the 
synchronizer in order to make an estimate of E. 

There exists a large variety of timing error detector circuits; some examples 
are considered in Section 2.2.3. In spite of the many different types of timing 
error detector circuits encountered in practice, it will be shown that all error- 
tracking synchronizers can be represented by the same equivalent model, shown 
in Figure 2- 19, so that they can be analyzed in a unified way. Comparing the 
equivalent model with the synchronizer structure shown in Figure 2-18, we see 
that the equivalent model replaces the timing error detector output signal by the 
sum KDg(e) + N(t), where g(e) and N(t) are called the timing error detector 
characteristic and the loop noise, respectively. The useful component KDg(e) 
of the timing error detector output signal is periodic in e with period 1; also, it 
will be shown in Section 2.3.3 that g(0) = 0, and the timing error detector gain 
I(0 is usually chosen such that g’(O), the timing error detector slope at the origin, 
is normalized to 1. The loop noise N(t) represents the statistical fluctuations 
of the timing error detector output signal. These fluctuations are caused by the 
additive noise n(t) and the random nature of the channel symbols {a,} in the 
input signal y(t; E). The loop noise is a zero-mean wide-sense stationary process 
whose power spectral density S(w ; e) is periodic in the timing error e with period 
1. The equivalent model and the actual synchronizer structure have the same loop 
filter. The remaining part of the equivalent model corresponds to (231), with AF 
representing the frequency detuning of the VCO: 

(2-34) 
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1 N(t) 

Figure 2-19 Equivalent Model of Error-Tracking Synchronizer 

KO /S is the Laplace domain frequency response of an integrator with gain h’o g 
The equivalent model is a powerful means for studying error-tracking syn- 

chronizers. Indeed, the results obtained from investigating the equivalent model 
are valid for the whole class of error-tracking synchronizers. In order to relate 
a specific synchronizer to the equivalent model, one must be able to derive both 
the useful component Keg(e) of the timing error detector output and the loop 
noise spectrum S(w; e) from the description of the synchronizer. In the following, 
these quantities will be obtained for the general synchronizer structure shown in 
Figure 2- 18. 

Actually, Ilog and S(w ; e) will be derived under “open-loop” conditions. 
This involves opening the feedback loop (say, at the input of the loop filter) 
and applying a periodic reference signal ~(t; e) with period T and constant value 
of E^. From the resulting timing error detector output signal under open-loop 
conditions, the useful component Keg(e) and the loop noise spectrum S(w; e) 
will be determined. These quantities are assumed to remain the same when the 
loop is closed. This approximation is valid when the loop bandwidth (which will 
be defined in Section 2.3.4) is small with respect to the channel symbol rate. 

2.3.2 Open-Loop Statistics of the Timing Error Detector 
Output Signal 

In order to determine statistical properties of the timing error detector output 
signal under open-loop conditions, we consider an input signal y(t; 6) given by 
(2-29) with a constant value of E, and a periodic reference signal ~(t; g) with 
period T and a constant value of 6. The timing error detector output signal is 
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denoted by 2 (t ; E, 2) in order to indicate explicitly the dependence on the constant 
parameters E and 2. The case where both E and i are fluctuating in time will be 
briefly considered also. 

Taking into account the cyclostationarity of y(t; E) with period T, the periodic- 
ity of r(t; 2) with period T, and the time-invariant (but not necessarily memoryless) 
nature of the timing error detector circuit, it follows from Section 1 .1.2 that the 
timing error detector output signal under open-loop conditions is also cyclostation- 
ary with period T. In all cases of practical interest, the synchronizer bandwidth 
(to be defined in Section 2.3.4) is a small fraction (about one percent or even 
much less) of the channel symbol rate l/T, so that the synchronizer operation 
in closed loop is determined entirely by the lowpass content of the timing error 
detector output signal. Taking into account that the statistics of the timing error 
detector output signal in closed loop are essentially the same as in open loop, we 
can replace z(t; e, e) in open loop by its lowpass content ~~p(t; E, Z), without af- 
fecting the operation of the synchronizer when the loop will be closed. The signal 
ZLP(~;E, e) is defined as 

+oO 

ZLp (t ; e, t> = 
J 

hLp(t - u) i?$; e, i) du 

-00 
(2-35) 

where hop is the impulse response of an ideal lowpass filter with frequency 
response HLP(w), given by 

1 I4 < 4T 
HLP(W) = (2-36) 

0 I4 > r/T 

It has been shown in Section 1.1.2 that passing a cyclostationary process through 
a lowpass filter with a bandwidth (in hertz) not exceeding 1/(2T) yields a 
wide-sense stationary process. Hence, the lowpass content ZLP(~; &,Z) of the 
timing error detector output signal is wide-sense stationary. This implies that the 
statistical expectation E[zLP(~; E, e)] and the statistical autocorrelation function 
E[zLP(~; E, e) ZLP(~ + u; E, e)] do not depend on t. As ET ahd ET are time 
delays, it is easily verified that the joint statistical properties of y(t; e) and r(t; 8) 
are the same as for y(t - ST; E - 2) and ~(t - tT; 0). Hence, XL& E, 2) and 
XLP@ - tT; e - 6,O) have identical statistical properties. 

The lowpass content ~,p(t; E, t) can be uniquely decomposed into a useful 
component E[Q,P(~; E, e)] and a zero-mean disturbance N(t; E, i) called the loop 
noise: 

ZLP(t; e, e) = E[ZLP(t; e, EI)] + N(t; e, e) (2-37) 

As z&t; E, 2) and XL& - EIT; E - g, 0) have the same statistical properties and 
are both wide-sense stationary, one obtains 

E[z~~(~;E,~)] = E[zLP(~ - C!-';E - O)] 

= E[zLp(O; E - i, O)] 

= ICD g(E - i) 

(2-38) 
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which indicates that the useful component at the timing error detector output 
depends on the delays ET and EIT only through the timing error e = E - 2. 
Similarly, it follows that 

E[N(t; E, EI) N(t + u; E, i)] = E[N(t - EIT; E - f, 0) N(t + u - iT; E - i, 0)] 

= E[N(O; & - i, 0) N(u; E - i, O)] 

= &(u;& - e> (2-39) 

so that also the autocorrelation function of the loop noise depends only on the 
timing error. As the reference waveform r(t; e) is periodic in t with period T, it 
satisfies r(t;e) = r(t;b + 1) so that z~p(t;&,C) = z~p(t;~,i + 1). Hence, the 
useful component Keg(e) at the timing error detector output and the autocorre- 
lation function RN (u; e) of the loop noise are both periodic in the timing error e 
with period 1. The loop noise spectrum SN (w ; e) is the Fourier transform of the 
autocorrelation function RN (u; e). 

The useful component KDg( e) and the loop noise spectrum SN (w ; e) can 
easily be derived from the statistical expectation and the autocorrelation function 
of the timing error detector output signal s(t; 5, e), because z~p(t; E, e) results 
from a linear filtering operation on z(t; e, i). Taking into account (l-39) and 
(l-40), one immediately obtains 

KDg(& - 2) = (E[@; &I at (2-40) 

&v(u; E - El) = [(&(f, t + u; E, e)),lLp (2-41) 

where (. . .) t denotes time-averaging with respect to the variable t , [. . .lLp indicates 
that the quantity between brackets is passed through the ideal lowpass filter, whose 
frequency response H&w) is given by (2-36), and KZ (t , t + u; &, E”) denotes the 
autocovariance function of z(t; &, i): 

I<&, t + u; E, q = E[z(t; &, t> z(t + u; E, e)] - E[z(t; E, i)] E[z(t + u; E, i)] 
(2-42) 

Equivalently, I<, (t , t + u; &, e) is the autocorrelation function of the cyclostation- 
ary disturbance z(t; &, 2) - E[z(t; E, g)] at the timing error detector output. 

The important conclusion is that, as far as the operation of the synchronizer 
is concerned, the timing error detector output under open-loop conditions can be 
represented as the sum of: 

. A useful component Kog( e), which is a periodic function of the timing error 
e and 

. The zero-mean loop noise N(t), whose spectrum S(w ; e) is a periodic function 
of the timing error e [for notational convenience, N(t; &, 2) will be denoted 
by N(t) from now on]. 

In the case where both & and i are fluctuating in time, the above representation 
of the timing error detector output signal under open-loop conditions is still valid, 
provided that & and i are so slowly varying that they are essentially constant over 
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the correlation time of the loop noise (which is in the order of the channel symbol 
interval T) and over the possibly nonzero memory time of the timing error detector 
circuit (which is, at most, also in the order of the channel symbol interval T). 

2.3.3 The Equivalent Model and Its Implications 
Assuming that the loop bandwidth of the synchronizer (which will be defined 

in Section 2.3.4) is much smaller than the channel symbol rate l/T, the statistical 
properties of the timing error detector output signal under open-loop conditions 
remain valid when the loop is closed. This yields the equivalent model shown in 
Figure 2-19. Note that this equivalent model is the same as for a conventional 
PLL operating on a sinusoid disturbed by additive noise (see Chapter 3 of Volume 
1); hence, an error tracking clock synchronizer and a conventional PLL have very 
similar properties. 

In the absence of loop noise N(t) and for zero frequency detuning AF, the 
stable equilibrium points of the equivalent model are determined by the positive 
going zero crossings of g(e), assuming a positive open-loop gain. Because of the 
periodicity of g(e), there exists an infinite number of stable equilibrium points. By 
introducing a suitable delay in the definition of the local reference r(t; Z), the stable 
equilibrium points can be made coincident with e = . . . - 2, - 1 , 0, 1,2, . . . . Usually, 
the constant KD is determined such that the slope g’(0) at the stable equilibrium 
point is normalized to 1. The negative zero crossings of g(e) correspond to the 
unstable equilibrium points of the synchronizer. 

In the absence of loop noise and for nonzero frequency detuning, the stable and 
unstable equilibrium points correspond to the positive and negative zero crossings, 
respectively, of g(e) - y, where y = AF/(K&CD.F(O)) is the normalized 
frequency detuning. Hence, frequency detuning gives rise to a steady-state error, 
unless the DC gain F(0) of the loop filter becomes infinite. This can be achieved 
by using a perfect integrator in the loop filter. 

We now show that, in the presence of loop noise, the stable equilibrium 
points coincide no longer with those for zero loop noise, because the loop noise 
spectrum SN (w ; e) depends on the timing error e. This means that the loop noise 
contributes to the steady-state error; this phenomenon is called noise-induced drift. 
Let us assume that e = e, is a stable equilibrium point in the presence of loop 
noise, and that the timing error e( t ) takes on the value e, at t = 0. For t > 0, 
the timing error exhibits random fluctuations due to the loop noise N(t). On 
the average, the rate of change Ae/At = (e(At) - e(O))/At over a small time 
increment must be zero, because e(0) = e, is a stable equilibrium point. Indeed, a 
nonzero average rate of change would imply that some deterministic force pushes 
e(t) away from its initial position e,, which contradicts our assumption that e, is 
a stable equilibrium point. Hence, e, is such that 

KloE[s je(O)=e,] =0 (2-43) 

which expresses that, at a stable equilibrium point, the input signal and the 
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reference signal have the same average frequency. The left-hand side of the 
above equation is the definition of the intensity coefJicient K1 (e), evaluated at 
the stable equilibrium point (see Volume 1, Section 9.3.1). For a first-order loop 
[i.e., F(s) = 11, the timing error satisfies the system equation 

de 
z= 

-Ko Km(e) + AF - KoN(f) (2-44) 

When the synchronizer bandwidth becomes much smaller than the bandwidth of 
the loop noise, e(t) converges to the solution of the stochastic differential equation 

de = do &g(e) + AF + 1/4K(? 
d&v(o; e) 

de 1 dt + KO SN(O; e) dW G-45) 

where W(t) is a Wiener process with unit variance parameter, SN(O; e) is the loop 
noise power spectral density at w = 0, and the term involving the derivative of 
SN(O; e) is the It6 correction term (see Volume 1, Section 9.3.2). For the above 
stochastic differential equation, the intensity coefficient Ki (e) is given by 

k(e) = -Ko Keg(e) -t AF + 1/4K,2 
d&(0; e) 

de (2-46) 

The stable equilibrium points coincide with the negative zero crossings of 1C1 (e). 
When the loop noise spectrum SN(W; e) does not depend on e, the It6 correction 
term is identically zero, and the stable equilibrium points are the same as for zero 
loop noise. When the loop noise spectrum does depend on the timing error, the 
stable equilibrium points in the presence of noise are displaced in the direction 
of the increasing loop noise spectral density. This situation is depicted in Figure 
2-20, where el and e, denote the stable equilibrium points in the absence and 

dS(a = 0; e) 

de 

. 
e 

Figure 2-20 Illustration of Noise-Induced Drift 
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presence of loop noise, respectively. Also shown is a sketch of the probability 
density function of the timing error e in the presence of loop noise. As there 
is more noise in the region e > ei than in the region e < el , the timing error 
spends more time in the region e > el . This explains the strong asymmetry of 
the probability density function, which is decidedly non-Gaussian. In a similar 
way, it can be shown that a timing-error-dependent loop noise spectrum SN(W; e) 
affects also the position of the unstable equilibrium points, which coincide with 
the positive zero crossings of the intensity coefficient I<1 (e). 

Most of the time, the timing error e(t) fluctuates in the close vicinity of a 
stable equilibrium point. These small fluctuations, caused by the loop noise, are 
called jitter. This mode of operation can be described by means of the linearized 
equivalent model, to be considered in Section 2.3.4. Occasionally, the random 
fluctuations of the error e(t) are so large that the error moves into the domain 
of attraction of a neighboring equilibrium point: a cycle slip occurs. Cycle slips 
are nonlinear phenomena and, hence, cannot be investigated by means of a linear 
model. An in-depth treatment of cycle slips is provided in Volume 1, Chapters 
6 and 11. 

Let us consider the case where the initial timing error e(0) is very close to an 
unstable equilibrium point e, , located between the stable equilibrium points e, and 
e, + 1. For the sake of simplicity, let us assume that the synchronizer is a first-order 
loop, so that the timing error satisfies the stochastic differential equation (2-45). 
Note that e, corresponds to a positive zero crossing of the intensity coefficient 
Ii1 (e), given by (2-46). This is illustrated in Figure 2-21, When e(0) is slightly 
smaller than e,, the intensity coefficient Ki (e) is negative, so that the drift term 
Ki (e) dt in (2-45) has the tendency to drive the timing error toward the stable 
equilibrium point e, . However, in the vicinity of the unstable equilibrium point 
e, , the intensity coefficient I<1 (e) is very small. This can cause the timing error 
e(t) to spend a prolonged time in the vicinity of the unstable equilibrium point, 
before it finally reaches the neighborhood of the stable equilibrium point e, , This 
phenomenon is called hung-up. The occurrence of hang-ups gives rise to long 
acquisition times. Acquisition is investigated in Volume 1, Chapters 4 and 5. 

K,(e) 

- 

Figure 2-21 Intensity Coefficient Kl( e) 
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It has been shown in Volume 1, Section 3.2, that for some sequential logic 
timing error detectors, which make use only of the zero crossings of the input signal 
and the reference signal, the timing error detector characteristic has a sawtooth 
shape. At the unstable equilibrium points, the sawtooth characteristic jumps from 
its largest postive value to the opposite value, so that the restoring force near an 
unstable equilibrium point cannot be considered small. Hence, one might wonder 
whether hang-ups can occur in this case. The answer is that hang-ups are possible 
when additive noise is present at the input of the timing error detector. Indeed, 
Figure 3.2-5 in Volume 1 shows that the timing error detector characteristic has 
a sawtooth shape only when additive noise is absent. In the presence of additive 
noise, the slope of the characteristic at the unstable equilibrium point is finite (and 
decreases with increasing noise level); hence, the restoring force near the unstable 
equilibrium point is very small, so that hang-ups can occur. 

2.3.4 The Linearized Equivalent Model 
Under normal operating conditions, the timing error e(t), for most of the 

time, exhibits small fluctuations about a stable equilibrium point e,. Suitable 
measures of performance for this mode of operation are the steady-state error e, 
and the variance of the timing error. It is most convenient to analyze these small 
fluctuations by linearizing the equivalent model about the stable equilibrium point 
and applying standard linear filter theory. 

The nonlinear nature of the equivalent model is caused by: 

. The nonlinear timing error detector characteristic g(e) 

. The dependence of the loop noise spectrum SN(W; e) on the timing error e 

Linearization of the equivalent model involves the following approximations: 

s(e) = s(eS) + (e - e,) g’(h) (2-47) 

szv(w; e) = sN(u; e8) (2-48) 

where g’(e$) is the timing error detector slope at the stable equilibrium point 
for a small steady-state error e, and g’(e,) is well approximated by g’(0) = 1. 
This yields the linearized equivalent model, shown in Figure 2-22. The steady-state 

Figure 2-22 Linearized Equivalent Model 
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error e, to be used in the linearized equivalent model is the steady-state error for 
zero loop noise, i.e., a positive zero crossing of g(e) - AF/(K~KD F(0)). This is 
motivated by the fact that, for a low loop noise level and/or a small synchronizer 
bandwidth, the Ito correction term has only a minor influence on the position of 
the stable equilibrium point (see Figure 2-20). 

The linearized equivalent model can be transformed into the model shown in 
Figure 2-23, where H(s), given by 

KAx7’(eJ P(s) 
H(s) = s + KoKog’(e,)F(s) 

(2-49) 

which is called the closed-loop frequency response (in the Laplace domain) of the 
synchronizer. Note that H(s) is the frequency response of a lowpass filter with unit 
gain at DC; consequently, 1 - H(s) is the frequency response of a highpass filter. 
It is evident from Figure 2-23 that the timing error e(t) consists of three terms: 

. The steady-state error e, 

. The highpass content of &(t). This reflects that the synchronizer can track 
with a negligible error only a slowly fluctuating delay ET. 

l The lowpass content of the disturbance N(t)/Kog’(e,) 

An important parameter is the one-sided loop bandwidth BL (in hertz) of the 
synchronizer, which is a measure of the bandwidth of the closed-loop frequency 
response: 

In many cases of practical interest, e(t) is fluctuating very slowly with respect 
to the channel symbol rate l/T. Therefore, it is possible to use a small loop 

Figure 2-23 Contributions to the Timing Error e(t) 
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bandwidth for reducing the effect of loop noise on the timing error e(t), while 
still having a negligible contribution to the timing error from the fluctuations of 
e(t). Typical values of BLT are in the order of one percent, and, in some cases, 
even much smaller. 

2.3.5 The Linearized Timing Error Variance 
Assuming that I is essentially constant over many channel symbol intervals, 

so that its contribution to the timing error is negligible, and taking into account 
the wide-sense stationarity of the loop noise N(t), application of the linearized 
equivalent model yields a wide-sense stationary timing error e(t). Its statistical 
expectation and variance do not depend on time, and are given by 

E[e(t)l = e3 (2-5 1) 

+oO 
1 

vaNt)l = [KDg,(eb)12 J 
dw 

lw412 sw3> ijy 
--oo 

(2-52) 

Because of the small loop bandwidth BL, we expect that the timing error variance 
is determined mainly by the behavior of the loop noise spectrum SN(W; e,) in the 
vicinity of w = 0. When the variation of the loop noise spectrum within the loop 
bandwidth is small, i.e., 

1 (Ty& IsN(w;e,) - SN(O;%)l < s&l; e,) w A 
(2-53) 

the loop noise spectrum is well approximated by its value at w = 0, as far as the 
timing error variance eq. (2-52) is concerned. Taking into account the definition 
eq. (2-50) of the loop bandwidth, this approximation yields 

var[e(t)] 2 (SBLT) ~K(o~~){l~ 
D e3 

(2-54) 

However, for many well-designed synchronizers the loop noise spectrum 5’~ (w ; e, ) 
reaches its minimum value at w = 0; this minimum value can be so small (and in 
some cases even be equal to zero) that the variations of the loop noise spectrum 
within the loop bandwidth cannot be ignored, and the approximation eq. (2-54) 
is no longer accurate. 

When the variation of SN(W; e,) within the loop bandwidth cannot be ne- 
glected, we use the Parseval relation to obtain 

+oO 

J dw +m 
Iw4l” SN(W3) - = 27r J hz(f) RN(~) dt (2-55) 

-CO -03 

where RN(t; e,) is the autocorrelation function of the loop noise [i.e., the inverse 
Fourier transform of SN(W; e,)], and hs(t) is the inverse Fourier transform of 
]H(w)j2. Denoting the inverse Fourier transform of H(w) by h(t), it follows that 
hz(t) is the autocorrelation function of the pulse h(t). As h(t) is causal [i.e., 
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w = 0 for t < 01, hs(t) is given by 

h2(4 = J h(u) h(t + u) du 
0 

We manipulate (2-56) further into 

J h(t)&(t; e,)dt 
-CQ +=J +m 

=h2 (0) s RN@; e,)dt + 2 s (h(O) - h(t))(-RN@; e,))dt -CO 0 

(2-56) 

(2-57) 

Noting that 

+CQ i-00 
h(O) = J 

h2(u) du = 
s 

BITTS g = 2 BL (2-58) 
0 -00 

too 

2 
J 

RN(t; e,) dt = &(O; e,) (2-59) 
0 

the first term in eq. (2-57) corresponds to the approximation eq. (2-54), which 
neglects the variation of SN(W; e,) within the loop bandwidth. Hence, the second 
term of eq. (2-57) incorporates the effect of the variation of SN(W; e,), and can 
be written as 

2 7@2@) - b(t)) (-RN@; e,)) dt 
0 

= ~lH(u)l’ [&v(w; e,) - SN(O; e,)] 2 
(2-60) 

Obviously, this term should not be neglected when the inequality (2-53) does not 
hold. 

For BLT << 1, hs(t) decays much slower than RN (t ; e,) with increasing 
It I. For those values of t yielding a nonnegligible contribution of RN( t; e,) to 
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the second term of eq. (2-57), hz(t) is still close to hz(O), so that IQ(O) - hz(t) 
can be approximated by the first term in its Taylor series expansion about t = 0. 
This approximation is carried out in Section 2.3.10; here we simply state the main 
results. 

Case 1: 

For large w, IH( decays like l/w. 
The second term in eq. (2-57) is well approximated by 

2 jm(h2(0) - /&2(t)) (-&v(t; e,)) dt 

+oO 

Eh2(0) J (-t&(t; e,)) dt 

0 

The right-hand side of (2-61) is proportional to (BLT)~, because of the factor 
h2(0). 

Case 2: 

For large w, IH( decays faster than l/w. 
The second term in (2-57) is well approximated by 

2 +m(k@) - b(t)) (-&v(t; e,)) dt Z f S$,f’(O; e,) ru2 IH@)12 g J 
0 

where 

-00 

(2-62) 

Sg)(O; e,) = 
d2 

~WW,) w = o (2-63) 

The right-hand side of (2-62) is proportional to (BLT)~, because of the integral 
over w. The result (2-62) can also be obtained by simply approximating in (2-60) 
the variation of SN(W; e,) by the first term of its Taylor series expansion: 

Siv(w; e,) - Sjv(O; e,) N l/2 Sg)(O; e,) w2 - w4) 

Note that the approximation (2-62) is not valid for case 1, because the integral 
over w does not converge when l.H(w) I decays like l/u for large w. 

From the above results, we conclude that the timing error variance consists 
of two terms: 

. The first term ignores the variation of SN(W; e,) within the loop bandwidth, 
and is proportional to SN(O; e,) and BLT. 
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. The second term is caused by the variation of SN(W; e,) within the loop 
bandwidth. For small BLT, this term is essentially proportional to the square 
(when IH( decays like l/w for large w) or the third power [when IH( 
decays faster then l/w for large w] of BLT. 

When SN(W; e,) is essentially flat within the loop bandwidth, the first term 
dominates for small BLT. However, when the variation of SN(W; e,) within 
the loop bandwidth is large with respect to S(0; e,), i.e., when SN(W; e,) = 0 or 
SN(W; e,) has a sharp minimum at w = 0, the second term dominates; in this case 
it is advantageous that I H (w) I decays faster than l/w, so that the resulting timing 
error variance is proportional to the third power instead of the square of BLT. 

Loop filters with the following frequency response (in the Laplace domain) 
are commonly used in phase-locked loops: 

. First-order loop: F(s) = 1 

. Perfect second-order loop: F(s) = 1 + a/s 
l Imperfect second-order loop: F(s) = (1 + s~l)/(l + STY) 

These loop filters all have in common that their frequency response F(w) becomes 
constant for large frequencies. Hence, the magnitude of the corresponding closed- 
loop frequency response H(w) behaves asymptotically like l/w. This implies that 
the contribution from the loop noise spectrum variation to the timing error variance 
is proportional to ( BLT)~. When the loop noise spectrum variations cannot be 
neglected with respect to the loop noise spectrum at w = 0, the following numerical 
example will show the benefit of adding an extra pole to the loop filter, in which 
case the contribution from the loo 

s 
noise spectrum variation to the timing error 

variance is proportional to ( BLT) . 

Numerical Example 

We compute the timing error variance (2-52) at e, = 0, as a function of BLT, 
for two different loop noise power spectral densities Sr (w; 0) and S~(W; 0), and 
two different closed-loop frequency responses H1 (s)and Hz(s). It is assumed that 
the timing error detector slope equals 1. We denote by var( i, j) the timing error 
variance corresponding to the power spectral density Si (w; 0) and the closed-loop 
frequency response Hj (s), with i = 1,2 and j = 1,2. 

. Power spectral densities: 
The considered power spectral densities Sr (w; 0) and S~(W; 0) are given by 

&(w; 0) = 
Tcos2(wT/2) (wTI < n= 

(2-65) 
0 otherwise 

S2(w;O) = 
T sin2 (UT/~) IwTl < 2n 

(2-66) 
0 otherwise 



2.3 Error-Tracking Synchronizers 103 
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Figure 2-24 Loop Noise Power Spectral Densities Sl (w ; 0) and S2 (w ; 0) 

and are shown in Figure 2-24. For small BLT, Sl (w ; 0) is essentially constant 
within the loop bandwidth. As S2(0; 0) = 0, the variation of S~(W; 0) within 
the loop bandwidth cannot be ignored, even for very small BLT. 

Closed-loop frequency responses and corresponding bandwidths: 

1 
I&(s) = - BL,I 

1 
=- 

1 + ST 47 (2-67) 

1 
H2w = (1 + 9T)(l+ ST/lo) BL,~ 

1 
=- 

4.4 7 (2-68) 

For large w, [HI( and IH2(w)j decay like l/w and 1/w2, respectively. 
. Timing error variances: 

The timing error variances var(i, j) are shown in Figure 2-25, for i = 1,2 
and j = 1,2. The following observations can be made: 

. For the considered range of BLT, the curves for var( 1,l)and var( 1,2) 
practically coincide. Indeed, as 5’1 (w; 0) is nearly fiat within the con- 
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Figure 2-25 Timing Error Variance as a Function of Loop Bandwidth 

sidered loop bandwidth, the timing error variance is essentially deter- 
mined by (and proportional to) BLT, irrespective of the specific shape 
of IWJN 

. As &(O;O) = 0, var( 2,1) and var(2,2) are essentially proportional to 
the square and the third power of BLT, respectively, when BLT is small. 
It is seen from Figure 2-25 that this approximation is very accurate for 
BLT < 0 .O 1. For small BLT, the additional pole of H2( s) yields a 
considerable reduction of the timing error variance. 

2.3.6 Discrete-Time Hybrid Synchronizers 
Until now we have restricted our attention to continuous-time synchronizers: 

the timing error detector output signal and the locally generated reference signal 
are continuous-time waveforms, and the loop filter and VCO operate in continuous 
time. 

There exist many synchronizers which operate in discrete time. The general 
structure of a discrete-time synchronizer is shown in Figure 2-26. The input signal 
y(t ; E), given by (2-29), is cyclostationary with period T. The timing error detector 
involves nonlinear operations and sampling at instants tk, which are determined 
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Figure 2-26 Discrete-Time Error-Tracking Synchronizer Structure 

by a voltage-controlled clock (VCC). These sampling instants are estimates of the 
instants IcT + ET. At the output of the timing error detector appears a sequence 
{zk} of real numbers, produced at the channel symbol rate l/T. This sequence 
enters a discrete-time loop filter, whose frequency response in the z-domain is 
denoted by F(z). The corresponding frequency response in the frequency domain 
is F(exp (0)). The sequence {uk} at the loop filter output enters the VCC, 
which generates sampling instants t, according to 

tk+l = tk + TO + &uk 

When ?.& is identically zero, the interval between sampling instants is constant and 
equal to TO; hence, l/To is the quiescent frequency of the VCC. 

Note on Terminology 

If the error detector output is used to control the sampling instant by means of 
a VCC we speak of a hybrid synchronizer. The term digital synchronizer is used 
for a device which operates entirely in the discrete-time domain. Such devices 
are discussed in Part D. 

As for the continuous-time synchronizer, the key to the equivalent model for 
the discrete-time synchronizer is the investigation of some statistical properties 
of the timing error detector output sequence under open-loop conditions. These 
open-loop conditions are: 

. The fractional delay ET of the input signal is constant, 

. The instants tl, are given by i!k = kT + &T, where E^ is constant. 

The timing error detector output at the instant tk = kT+ZT is denoted by Zk(&, EI), 
in order to indicate explicitly the dependence on the constant parameters E and e. 

Under open-loop conditions, the following can be verified: 

. An input signal y(t + mT; E) and a sampling instant sequence {tk } = 
{ kT + CT} give rise to a timing error detector output sequence { Xk+m (&, 2)). 
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As y(t + m 5”; E) and y(t; E) have identical statistical properties, the se- 
quences {~k+~(~,t)) and {~k(~,i)} also have identical statistics. In other 
words, {x~(E, El)} is a stationary sequence. 
As x~+,&, f) = x~(E,$ + m) and {z~(E,EI)} is a stationary sequence, 
{&, 2)) and {Q(E, i + m)) h ave identical statistical properties. 
An input signal y(t - E^ T; E - 2) and a sampling instant sequence 
{tk} = (IcT + EIT) give rise to a timing error detector output sequence 
{~&4;0)). As y(t4T;~-- g) and y(t; 6) have identical statistical 
properties, the sequences (21~ (E - .$ 0)) and {x~(E, E”)} also have identical 
statistics. 

Hence, {z~(E, 6)) is a stationary sequence; its statistical properties depend on E 
and E^ only through the timing error e = e - & and are periodic in e with period 1. 

The timing error detector output {z~(E, 6)) is decomposed as the sum of its 
statistical expectation and a zero-mean disturbance Nk (E, El), which is called the 
loop noise: 

Zk(&, if) = E[xk(&, E^)] + Nk(6 c) (2-70) 

Taking into account the statistical properties of the 
sequence under open-loop conditions, one obtains 

timing error detector output 

E[xk(&, t)] = J?+& - t, o)l = I(D dE - g, (2-71) 

E[h(&, e) h+m(E, E”)] = E[No(e -e,O) N&-&O)] = R,(e--2) (2-72) 

The timing error detector characteristic g(e) and the autocorrelation sequence 
{R,(e)} of the loop noise are periodic functions, with period 1, of the timing 
error e = E - t. The loop noise spectrum S(w ; e) is defined as the discrete Fourier 
transform of the autocorrelation sequence {R, (e) > : 

SN (ehwT; e> = E R,(e) exp(-jwmT) 
na=-00 

(2-73) 

Note that S(w; e) is periodic in w with period 2n/T. 

Assuming that the statistical properties of the timing error detector output 
sequence do not change when the loop is closed (this approximation is valid when 
the loop bandwidth is small with respect to the channel symbol rate l/T), the 
equivalent model of Figure 2-27 is obtained. This model takes into account that 

T - To 
&k+l = ik - - 

T 
+ I6l uk (2-74) 

which follows from substituting t, = mT + &T and KA = KoT in (2-69). 
Because of the close similarity between the equivalent models for discrete-time 
and continuous-time synchronizers, the discussion pertaining to continuous-time 
synchronizers is also valid for discrete-time synchronizers. 
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Figure 2-27 Equivalent Model of Discrete-Time Error-Tracking Synchronizer 

The linearized model for discrete-time synchronizers is shown in Figure 2-28, 
where e, denotes the steady-state timing error, which corresponds to a positive zero 
crossing of g(e) - (T - Tc)/(TKeK~F(l)). An equivalent structure is shown 
in Figure 2-29, where the closed-loop frequency response H(z) is given (in the 
z-domain) by 

H(z) = ~~0kd(e,) F(z) 
2 - 1+ KoJhg'(e,) F(z) 

(2-75) 

The closed loop frequency response in the frequency domain is obtained by 
replacing z by exp (jwT). The one-sided loop bandwidth BL (in hertz) is given by 

r/T 
BL = 

J 
(2-76) 

0 

Figure 2-28 Linear Equivalent Model of Discrete-Time Error-Tracking Synchro- 
nizer 
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Figure 2-29 Contributions to the Timing Error ek 

while the timing error variance due to the loop noise equals 

+n/T 

JH(exp (uT))12 SN (e6wT; e,) g (2-77) 

The discussion about the influence of the closed-loop frequency response on the 
timing error variance of continuous-time synchronizers, is also valid for discrete- 
time synchronizers (see section 2.3.10). 

2.3.7 Simulation of Error-‘Cacking Synchronizers 
In Sections 2.3.2, 2.3.5, and 2.3.6 we have pointed out that the timing error 

detector characteristic, the loop noise power spectral density, and the linearized 
timing error variance can be evaluated analytically from the appropriate moments of 
the timing error detector output signal. However, depending on the baseband pulse 
of the received signal and the type of timing error detector, these computations 
might be quite involved; in this case, obtaining numerical results by means of 
computer simulation is much more appropriate than performing an analytical 
evaluation. 

In the following, we indicate how the timing error detector characteristic (and 
its slope), the loop noise power spectral density, and the linearized timing error 
variance can be obtained from computer simulation. When using a computer simu- 
lation, continuous-time signals are replaced by sequences of samples; the sampling 
frequency in the simulation should be taken large enough so that frequency alias- 
ing is negligibly small. Also, when simulating continuous-time filters by means of 
discrete-time finite impulse response (FIR) filters, the impulse response of the FIR 
filter should be taken long enough so that the continuous-time impulse response 
is closely approximated. 
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Figure 2-30 Configuration for Simulation of Timing Error Detector Characteristic 

Figure 2-31 Configuration for Simulation of Timing Error Detector Slope 

The configuration to be simulated for obtaining estimates of the timing error 
detector characteristic and its slope, corresponding to a particular value e, of the 
timing error, are shown in Figures 2-30 and 2-31. The “arithmetical average” 
module measures the DC component of its input signal. Assuming that the loop 
noise power spectral density SN(W; e,) is essentially flat in the vicinity of w = 0, 
the variance of the estimates is inversely proportional to the duration over which 
the arithmetical average is taken. In Figure 2-3 1, the expectation of the slope 
estimate is given by 

& 9(% + 6) - de, - S) w KD 
2s - [ 

s’(e 6 ) + 62 
-g- !J 

(3) 
(4 1 (2-78) 

where gc3)(e,) denotes the third derivative of g(e), evaluated at e = e,. Hence, 
S should be taken small enough in order to limit the bias of the slope estimate, 
caused by the nonlinearity of the timing error detector characteristic. On the other 
hand, S should not be taken too small, otherwise the difference of the timing error 
detector outputs is affected by the limited numerical precision of the computer 
(rounding errors). 

An estimate of the loop noise power spectral density is obtained from the 
configuration shown in Figure 2-32. Subtracting the DC component I(D g(e8) 
from the timing error detector output is not strictly necessary, but avoids the 
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Figure 2-32 Configuration for Simulation of Loop Noise Power Spectral Density 

occurrence of a spectral line at w = 0 in the spectrum estimate. Basically, 
the “spectrum estimation” module takes windowed segments of the input signal 
and computes the arithmetical average of the squared magnitude of their Fourier 
transforms. The variance of the spectrum estimate is inversely proportional to the 
number of segments. The expectation of the spectrum estimate is not the loop 
noise power spectral density itself, but rather the convolution of the loop noise 
power spectral density with the squared magnitude of the Fourier transform of the 
window. Hence, the spectrum estimate is biased because of the finite duration of 
the window; this bias can be reduced by increasing the window length. For more 
information about spectrum estimation, the reader is referred to [l-3]. 

The timing error variance var[e] can be estimated by simulating the configu- 
ration from Figure 2-33. The DC component ICD g (e, ) is removed from the timing 
error detector output; the result is scaled by the slope Icog’ and then passed 
through a filter with frequency response H(U), i.e., the closed-loop frequency re- 
sponse of the synchronizer. The signal at the output of this filter is the fluctuation 
e - e, of the linearized timing error with respect to the steady-state error e,. The 
“variance estimation” module computes the arithmetical average of the square of 
its input signal. Because of the small value of BLT, the signal at the output of the 
filter H(U) has a long correlation time, of about l/ BLT symbol intervals. Hence, 
in order to obtain an estimate of var[e] which has a small variance, the averaging 
interval in the variance estimation module should be several orders of magnitude 
larger than ~/(BLT) symbol intervals. 

The simulations described above pertain to the error-tracking synchronizer 
operating under open-loop conditions and are well-suited for obtaining the tim- 
ing error detector characteristic, the loop noise power spectral density, and the 
linearized timing error variance. However, when investigating phenomena such 
as acquisition, hang-ups, and cycle slips, a simulation of the synchronizer operat- 
ing in closed loop must be performed, in order to obtain the proper timing error 

Y(b) 
*Timing Error 

Detector 
Variance Estimate 

Wd - Estimation of vartel 
. 

t 

r(t;ae,) 
K, g(e,) 

Figure 2-33 Configuration for Simulation of Timing Error Variance 
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Figure 2- 34 Configuration for Closed-Loop Synchronizer Simulation 

trajectories. The configuration for the closed-loop simulation is shown in Fig- 
ure 2-34. Although this closed-loop configuration has the same bandwidth as the 
open-loop configuration of Figure 2-33, the closed-loop simulation might be more 
time-consuming than the open-loop simulation. Indeed, because of the feedback 
in the closed-loop configuration, each module inside the loop necessarily oper- 
ates sample-by-sample: after each input sample, the module produces one output 
sample. In the open-loop simulation, the different modules can operate on blocks 
of input samples, and produce a block of output samples for each block of input 
samples. In the latter case, the size of the blocks can be selected to minimize the 
computational load; such an optimization is not possible when a feedback loop 
is present. 

2.3.8 Main Points 
. 

. 

Both continuous-time and discrete-time hybrid synchronizers can be repre- 
sented by an equivalent model in which the timing error detector output is 
replaced by the sum of two terms: the first term is the useful term KD g(e), 
where the timing error detector characteristic g(e) is a periodic function of 
the timing error e = E - E. The second term is wide-sense stationary zero- 
mean loop noise, whose power spectral density SN(W; e) is a periodic function 
of the timing error e. For a specific synchronizer, KDg( e) and 5’~ (w ; e) can 
be obtained from an open-loop analysis of the timing error detector output, 
where both E and E^ are considered as constant parameters; as only the differ- 
ence e = E - i matters, E can be set equal to zero without loss of generality, 
when calculating KDg(e) and SN (w; e). 
Because of the periodicity of the timing error detector characteristic g(e), 
error tracking synchronizers have an infinite number of stable and unstable 
equilibrium points. Under normal operating conditions, the loop noise causes 
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. 

. 

the error e(t) to exhibit small random fluctuations about a stable equilibrium 
point. These small fluctuations are called jitter. Occasionally, the loop noise 
is strong enough during a sufficiently long time interval to push the error 
e from the close vicinity of a stable equilibrium point into the domain of 
attraction of a neighboring equilibrium point. This phenomenon is called a 
cycEe slip. Cycle slips are very harmful to the reliability of the receiver’s 
decisions, because a slip of the receiver clock corresponds to the repetition 
or omission of a channel symbol. When the initial value of the timing error 
is close to an unstable equilibrium point, hang-ups can occur: because the 
restoring force is very small near the unstable equilibrium point, the timing 
error spends a prolonged time in the vicinity of its initial value. Hang-ups 
give rise to long acquisition times. 
In most applications, the timing error variance caused by the loop noise is very 
small, so that it can be evaluated by means of the linearized equivalent model. 
When the loop noise spectrum variation within the loop bandwidth BL is 
small, the timing error variance is essentially proportional to BLT. However, 
in many cases of practical interest, the loop noise spectrum variation cannot 
be neglected. In this case, the timing error variance contains an extra term, 
which is proportional either to ( BLZ”)~, when the magnitude of the closed- 
loop frequency response behaves asymptotically like l/w, or to ( BLT)~, when 
the magnitude of the closed-loop frequency response decays faster than l/w 
for large w. 
Obtaining the timing error detector characteristic and the loop noise power 
spectral density by analytical means might be quite complicated. In this case, 
a simulation of the synchronizer under open-loop conditions is a valid alter- 
native for obtaining numerical results about the timing error detector charac- 
teristic, the loop noise power spectral density, and the linearized timing error 
variance. For studying acquisition, hang-ups, and cycle slips, a simulation of 
the synchronizer in closed loop is needed. 

2.3.9 Bibliographical Notes 

The open-loop analysis in Section 2.3.2 of a general error-tracking synchro- 
nizer is an extension of [4] where the open-loop statistics have been derived for a 
conventional PLL operating on a periodic waveform, corrupted by cyclostationary 
additive noise (as is the case for a spectral line generating synchronizer). 

In [5] hang-ups in a conventional PLL with sinusoidal phase error detector 
characteristic have been investigated, and an anti-hang-up circuit has been pro- 
posed. The theoretical analysis of this anti-hang-up circuit has been carried out in 
[6], and can also be found in Section 5.1 of Volume 1. For a sinusoidal (or any 
other continuous) characteristic, it is clear that hang-ups are caused by the small 
restoring force near the unstable equilibrium point. For a sequential logic phase 
error detector whose characteristic (in the absence of additive noise at the input 
of the PLL !) has a sawtooth shape (or, stated more generally, has a discontinuity 
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at the unstable equilibrium point), the restoring force is largest near the unstable 
equilibrium point; in this case, it has been found in [7] that hang-ups still occur, 
because additive noise causes equivocation of the zero crossings of the signal at the 
input of the PLL. Using the general method outlined in Section 3.2.2 of Volume 1, 
it follows that this equivocation yields an average restoring force (averaging over 
noise at PLL input) which is continuous at the unstable equilibrium point for a 
finite signal-to-noise ratio. Hence, hang-up is again caused by the small average 
restoring force near the unstable equilibrium point. 

An extension of the result from Section 2.3.5 has been obtained in [8]: when 
the magnitude of the closed-loop frequency response decays like w+” for large ~3, 
and the variation SN(W; e,) - SN(O; e,) of the loop noise spectrum about w = 0 
behaves like ti2k, its contribution to the timing error variance is proportional either 
to (.BLT’)~~ when m 5 k, or to (BLT)~~+’ when m > k. For k = 1, this general 
result reduces to the case considered in Section 2.3.5. 

2.3.10 Appendix 
Continuous-Time Synchronizers 

Using a Taylor series expansion of h2(0) - hz(t) about t = 0, the second 
term in (2-57) can be transformed into 

where 

t=o 

In order to investigate the dependence of (2-79) on BLT, we put 

(2-79) 

(2-80) 

(2-81) 

where a(w) is a frequency response with a one-sided bandwidth equal to l/T; 
the closed-loop frequency response H(w) is obtained by scaling the frequency, as 
indicated in (2-81). Inverse Fourier transforming (2-81) yields 

h2(t) = BLT 6 (BLT t) (2-82) 

where i(t) is the inverse Fourier transform of la(w) 1 2. Using (2-82) in (2-80), 
we obtain 

him)(O) = (BLT)“+’ &tm)(0) (2-83) 
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where 
ji;m)(o) = g -2 

m h (t) ( (2-84) 
t=o 

It follows that the mth term of the summation in (2-79) is proportional to 
(BLT)m+‘. Hence, for BLT < 1, the summation in (2-79) is dominated by 
the nonzero term with the smallest value of m. 

Case of m=l 
Using (2-56) yields 

+oO 

h(2m)(0) = 
J 

h(u) hem)(u) du 

0 

(2-85) 

where 
h(“)(O) = -f& h(t) 1 (2-86) 

t=o 

For m = 1, we obtain from (2-85) 

+oO 

h?‘(O) = 
J 

h(u) h(‘)(u) du = -1/2h2(0) 

0 

(2-87) 

Hence, when h(0) # 0, the summation in (2-79) is dominated by the term with 
m= 1, which is proportional to ( BLT)~ : 

2 T(hl(O) - hs(t)) (-RN(t; e,)) dt % h2(0) 7(-t &(t; e,)) dt (2-88) 

According to the final value theorem, 

h(0) = J+mM s H(s) (2-89) 

We obtain h(0) # 0 when IH( decays like l/w for large w, and h(0) = 0 when 
IH( decays faster than l/w for large w. 

Case of m=2 
Now we assune that IH( decays faster than l/w for large w, so that the 

term with m = 1 in (2-79) is identically zero. Let us consider the term with 
m= 2. Taking into account that h(0) = 0, we obtain from (2-85) 

+oO 

hf)(O) = 
J 

h(u) hc2)(u) du = - jm[h’1)(u)]2 du (2-90) 
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Hence, the summation in (2-79) is for small BLT dominated by the term with 
7ll= 2, which is proportional to ( BLT)~: 

h2(Q) (-RN(~; e,)) dt li r [h(‘)(u)]2dU j-,_P 
0 0 

Taking into account that 

j- [h(lq2du = j-,2 lH(w)V g 
0 -00 

and 

with 

+CQ 

I 
(-t2 RN(~; e,)) dt = k S$)(O; e,) 

0 

S$)(O; e,) = 
d2 

p wwd I w = o 

&v(t; e,)) dj 

(2-91) 

(2-92) 

(2-93) 

we obtain 

+oO 

2 T@.(o) - h(t)) (-RN@; e,)) dt E i sg)(O; e,) 1 w2 IH( g 
0 -CO 

(2-95) 

Discrete-Time Synchronizers 

Denoting the inverse z-transform of the closed-loop frequency response H(z) 
by {hk}, the linearized timing error ek satisfies the following equation: 

(2-96) 

where N,(e,) is a short-hand notation for N,(e, E - e,), and e, denotes the 
steady-state timing error. When H(Z) is a rational function of Z, it is possible to 
define a frequency response IYeq(s) in the Laplace domain, which is rational in S, 
and such that its inverse Laplace transform heq(t) satisfies 

h,,(kT - MT) = 4 hrc (2-97) 

where M is a suitable nonnegative integer. This is illustrated in the following 
example 
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Example 
For H(z) = (1 - a)/(~ - u) with 0 5 a < 1, hk is given by 

(1- u) ak-l k>O 
hk = 

0 ks0 
(2-98) 

Now defining 

he&) = 
J-$f exp [-+ In ($)I tyo 

(2-99) 

0 t=o 
so that (2-97) holds with M = 1, we obtain 

a 
(2-100) 

which is a rational function of s. Because of (2-97), the Fourier transforms 
H(exp (UT)) and Heq(W) are related by 

ff(exp (UT)) = C He, (U + jy) exp (-wMT - j2rMk) (Z-101) 
k 

When the normalized loop bandwidth BLT satisfies BLT < 1, Heq(w) is 
essentially zero for IwI > r/T; hence, it follows from (2-101) that 

H(exp (UT)) for IwI 5 n/T 
Heq(W) exp (-uMT) E (2-102) 

0 for IwI > r/T 

is a very accurate approximation. 

Now the summation in (2-96) can be transformed into 

xhk-rn %&%) = 
J 

heq(t - u, Neq(Uies) du 
I 
t=kT (2-103) 

m -03 

where 
Nq(t; e,) = T C Nna(e,) S(t - mT - MT) 

m 

(2-104) 

Hence, the discrete-time synchronizer with closed-loop frequency response H(Z) 
and loop noise { N,(e,)) yields the same timing error variance as a continuous- 
time synchronizer with closed-loop frequency response Heq( S) and loop noise 
Neq(t ; e,). The corresponding loop noise autocorrelation function Req(u; e,) for 



2.3 Error-Tracking Synchronizers 117 

the continuous-time synchronizer is given by 

= TX R,(e,) S(t - mT) 
(2405) 

m 

where Rm(e8) = E[N,(e,) Nm+n(es)]. Using (2-102) and (2-105) in the timing 
error variance expression for continuous-time synchronizers, the following results 
are obtained for BLT << 1. 

Case 1: For large w, IHeq(w)I decays like l/w; equivalently, hM # 0: 

00 
(2&S”) &v(O; e,) + h& C (-LRk (e,)) 

var[e] Y k=l 

WD g% >I2 
(2406) 

The second term in the numerator is proportional to ( BLZ’)~. 

Case 2: For large w, ]Heq(w)] decays faster than l/w; equivalently, hM = 0: 

(2&T) SN(O; e,) + f S$)(O; e,) 7x2 IH(exp ($))I’ 1/(2n) dx 
var[e] 2 

where 
(2-107) 

d2 
430; 4 = -5 SN(w; e,) 

4-4 
w 

= 
o 

+CO (2-108) 
= c (-k2 Rk(‘%)) 

k=-oo 

The second term in the numerator is proportional to (BLT)~. 

Hence, for BLT < 1, the timing error variance resulting from a discrete- 
time synchronizer with closed-loop frequency response H(z) behaves like the 
timing error variance resulting from a continuous-time synchronizer with closed- 
loop frequency response Hes (s) . 
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2.4 Spectral Line Generating Clock Synchronizers 

This section deals with clock synchronizers which make use of a nonlinear 
operation on the received noisy PAM waveform in order to generate spectral lines 
at the channel symbol rate 1/T and at multiples thereof. The spectral line at the 
channel symbol rate can be isolated by means of a PLL with a multiplying timing 
error detector and a sinusoidal reference signal or by means of a narrowband 
bandpass filter tuned to the channel symbol rate. Both cases yield a nearly 
sinusoidal clock signal at the symbol rate, which is used to control the sampler 
in the decision branch of the receiver. When the local reference signal is not 
sinusoidal (but, for instance, a square wave), then also the harmonics at multiples 
of l/T, present at the output of the nonlinearity, contribute to the clock signal. 

2.4.1 Nonlinearity Followed by a PLL with 
Multiplying Timing Error Detector 
Description of the Synchronizer 
The general structure of a spectral line generating synchronizer making use of a 
PLL is shown in Figure 2-35. The input signal y(T; E) is a noisy PAM signal, 
given by 

y(t; a) = c ana g(t - mT - ET) + n(t) (2-109) 

where {a,} is a stationary sequence of zero-mean channel symbols, g(t) is the 
baseband PAM pulse, l/T is the channel symbol rate, ET is a fractional delay to 
be estimated by the synchronizer, and n(t) is stationary additive noise. The input 
signal enters a time-invariant (not necessarily memoryless) nonlinearity, whose 
output is denoted by v(t; E). When the nonlinearity has memory, it is assumed 
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Nonlinearity 
t 

PLL 

VOX) 

Threshold 

Figure 2-35 General Spectral Line Generating Synchronizer Using a PLL 

that the possibly time-varying delay ET is nearly constant over the memory time 
of the nonlinearity, so that v(t; E) is determined essentially by the instantaneous 
value of E, and not by past values of E. The nonlinearity output signal v(t; E) and 
the local reference signal r(t; e) of the PLL are multiplied. This yields the timing 
error detector output signal z(t), given by 

z(t) = K,v(2; E) r(t; e) (2-110) 

where Km denotes the multiplier gain. The timing error detector output signal is 
filtered by the loop filter and fed back to the VCO. The VCO modifies the estimate 
E^ so as to reduce the timing error e = E - i. The reference signal r(t; e) acts as a 
clock signal which controls the sampler in the decision branch of the receiver. 

In most cases, the sampler in the decision branch of the receiver is activated 
by a narrow clock pulse. Therefore, the local reference signal enters a pulse 
generator, which generates a clock pulse each time the reference signal crosses 
a given threshold level. Ideally, the threshold level should be zero, so that the 
clock pulses coincide with the positive zero crossings of the local reference signal; 
however, due to DC offsets, the actual clock pulses correspond to the positive 
crossings of a nonzero threshold level. 

In general, the nominal zero crossings of the local reference signal are biased 
with respect to the ideal sampling instants in the decision branch; this bias depends 
on characteristics which are known to the receiver (such as the baseband PAM pulse 
and the type of nonlinearity), and not on the unknown delay ET. Therefore, the 
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bias can be compensated for, by passing the reference signal, before entering the 
pulse generator, through a delay circuit which shifts the nominal zero crossings to 
the correct position; in the case of a sinusoidal reference signal, this compensation 
network is a simple phase shifter. Alternatively, 
applied to the pulse generator output signal. 

the delay compensation can be 

Analysis of the Synchronizer 
The nonlinearity plus PLL in Figure 2-35 can be redrawn as an error-tracking 

synchronizer, shown in Figure 2-l 8, whose timing error detector is the cascade 
of the nonlinearity acting on y(t; E), and the multiplier of the PLL. Hence, the 
spectral line generating synchronizer with a PLL can be analyzed by means of the 
equivalent model, shown in Figure 2-19. The useful timing error detector output 
I<D g(e) and the loop noise spectrum SN (~3 ; e) are determined from the statistical 
properties of the timing error detector output signal under open-loop conditions 
(implying that e and t are held constant); more specifically, (2-40) and (2-41) 
must be applied. 

Substituting (2-110) into (2-40) and (2-41) yields the following expressions 
for l<D g( e) and for the loop noise autocorrelation function &(u; e): 

&g(e) = I(, (E[v(t; &)] ‘(t; i)), (2-111) 

RN(u; e) = Ki [(&(t, t + u; E) r(t; t) r(t + U; e))JLp (2-l 12) 

where & (t, t + u; E) is the autocovariance function of v(t; e): 

h:, (t, t + u; E) = l?[w(t; E) w(t + 21; E)] - Jq+; E)I a@ + u; 41 

and e = E - E^ denotes the timing error. In the above, (. . .) t indicates averaging over 
t, and [.,.lLp denotes filtering by means of an ideal lowpass filter with a bandwidth 
(in hertz) of l/(227. Because of the cyclostationarity of y(t; E) and the time 
invariance of the nonlinearity operating on y(t ; E), the nonlinearity output signal 
v(t; e) is also cyclostationary with period T. Hence, the statistical expectation 
E[w(t ; E)] and the autocovariance function KV (t , t + u; E) are both periodic in t 
with period T, and can be expanded into a Fourier series: 

E[w(t;E)] = C mu,n exp 
?a=-CXJ 

(2-l 13) 

K&J + U;E) = E Ic~,~(u) exp (j F (t - ET)) 
?a=-03 

(2- 114) 

It is important to note that the Fourier coefficients mu ,la and Ic, ,n (u) do not 
depend on E; this is because y(t ; E) and y(t - ET; 0), and, hence, also v( t; E) 
and v( t - ET; 0), have identical statistical properties. The periodicity of E[v( t ; E)] 
indicates the presence of spectral lines at the output of the nonlinearity. Under 
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open-loop conditions, ~(t; e) is also periodic in t with period T, and can be 
expanded as 

+oO 
r(t; 2) = c cn exP 

( 
j 7 2m (t - eT) 

n=-00 > 
(2-l 15) 

where c,., does not depend on e, because r(t; EI) = ~(t - eT; 0). Substituting 
(2-113) - (2-115) into (2-111) and (2-112) yields 

KDg(e) = K,,, CC,, m,,,-, exp(j2?rne) (2-116) 
n 

RN(u;e) = K& Ckv,-n(U) cm Cn-m exp exp (j2rne) 
m,n 1 LP 

Taking into account that the loop noise spectrum SN(W; e) is the Fourier transform 
of R~(u;e), we obtain 

SN(w; e) = K,f, (HLP(w)~~ x5’,,,-,, (U - F) cm Cn-m exp (j2rne) 
m,n 

(2-l 17) 
where S, ,n (w ) is the Fourier transform of k, ,n (u), and H~p(w ) is the frequency 
response of an ideal lowpass filter with one-sided bandwidth (in hertz) equal to 
1/(2T) [see (2-36)]. It follows from (2-116) that there is a contribution to the 
useful component KDg(e) of the timing error detector output only from those 
harmonics which are present in both u(t; e) and r(t; EI). This is according to our 
intuition: the multiplication of two sinusoids gives rise to a DC component only 
when both sinusoids have the same frequency. 

Let us consider the special case where the local reference signal r(t; 2) 
is a sinusoid with frequency l/T. Then only the terms from (2- 113) with 
n = 1 and n = -1 contribute to (2-116). Expressing m,,l in polar form, i.e., 
m,,l = (A/I/?) exp (j$), (2-113) reduces to 

E[w(t;~)] = &A cos $ (t - ET) + $ 
> 

+ other terms (2-118) 

where “other terms” consist of a DC component and components at multiples of 
the channel symbol rate l/T, which can all be neglected as far as the operation 
of the synchronizer is concerned. The local reference signal is defined as 

r(t; i) = d K, sin 
( 

$(t--PT)+$) 

Identification of (2-l 19) with (2-l 15) yields 

(2-l 19) 

4% Cl = CT1 = - 2j exP W> 

Cn=O for Inl#l 
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Hence, for a sinusoidal reference signal, (2-l 16) and (2-l 17) reduce to 

ICog = Ii’, IiT,. A sin(2?re) 

SN(W; e) = v IHLP(W) I2 

x [sy.o(w-$) +..,(w+~) 

-s,,-2 w-g 
( > 

exp (2jll) exp (j4re) 

(2-120) 

(2-121) 

-sv,2 w+$ ( > exp (-2j$) exp (-j4ne) 1 
From (2-120), we observe that the timing error detector characteristic has a 
sinusoidal shape, Note that the introduction of the phase 1c) in the definition (2-l 19) 
of the local reference signal guarantees that g (0) = 0. It follows from (2- 12 1) that 
the loop noise spectrum SN(W; e) is periodic in the timing error e with period l/2, 
whereas the general theory from Section 2.3.2 predicts a periodicity with period 
1. The periodicity with period l/2 comes from the specific nature of the local 
reference signal (2-l 19). Indeed, as 

r(t; 2) = -‘(t; E^ + l/2) 

it follows that increasing t by l/2 changes only the sign of the loop noise, so 
that the loop noise spectrum is not affected. In general, this observation holds 
for any local reference signal with period T, containing harmonics only at odd 
multiples of l/T. 

In the case of a sinusoidal reference signal, and assuming a steady-state timing 
error equal to e,, the linearized equivalent model (see Figure 2-23) yields the 
following timing error variance, due to the loop noise: 

+oO 
var[e(t>] = j$ J If+) I2 

X [S,C+ - $9 +S.,++ $3 4,-2(w - $9 exp(2.j$) exp(j4m) 

exp (-WI) exp (+m) 1 dw 
5 

(2-122) 

where 
I<, = 2fi ?r A cos (2?re,) 

and 

H(s) = 
(27rK’,K,.A cos (2?re,)) KoF(s) 

s + (27rK,K,.A cos (2re,)) liToF 
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is the PLL’s closed-loop frequency response in the Laplace domain. Note from 
(2-120) that the timing error detector slope at e = e, equals 27rK,K,A cos (are,). 

It is most instructive to reconsider the special case where the local reference 
signal is a sinusoid with period T, by using complex envelope representation. The 
nonlinearity output signal is decomposed as 

jg (t T))] 

(2- 123) 
--d 

+ other terms 

where “other terms“ are the same as in (2-l 18), and WL (t; E) denotes the complex 
envelope of the zero-mean cyclostationary disturbance ~(t; E) with respect to the 
sinusoid with period T at the output of the nonlinearity [which is the first term of 
(2-123)]. It follows from Section 1.2.2 that ‘LDL(~; E) is also cyclostationary with 
period T. Under open-loop conditions, the loop noise is given by 

Iv@; &, 2) = Km [w(t; e) ?(t; i&J 
= -K,&Im[[wr,(t; E)lLp exp (-j2?re)] 

= -JGra& ([ws(t; &p co9 (27re) 

- [WC@; E)ILp sin @e)) 

(2- 124) 

where [. . .lLp indicates that the signal between brackets is passed through an 
ideal lowpass filter with one-sided bandwidth (in hertz) equal to 1/(2T). The 
signals WC (t; E) and ws(t; E) denote the in-phase and quadrature components of 
the disturbance w(t; e) with respect to the useful periodic component at the output 
of the nonlinearity: 

w(t; E) = wc(t; E) + jw(t; e) 

Note that [wL(~; E)]~~, [wc(t;e)lLp, and [ws(t;&)JLp are wide-sense stution- 
ary processes [because their bandwidth (in hertz) does not exceed l/( 2T)], 
with the same statistical properties as [wL(~ - CT; O)lLP, [wc(~ - ET; O)ILP and 
[ws(t - ET; O)lLp, respectively [because ~(t; E) and v(t - ET; 0) have identical 
statistical properties]. Therefore, the spectra and cross-spectra of the in-phase and 
quadrature disturbances, which are given by 

SC(W) = Fourier transform of (E[wc(t; E) wc(t + u; E)])~ 

S’S(W) = Fourier transform of (E[ws(t; E) ws(t + u; s)]>, 
SC&) = Fourier transform of (E[w&; E) ws(t + u; E)])~ 
&C(W) = Fourier transform of (E[ws(t; e) WC@ + u; E)]), 

= w4 

(2-125) 



124 Baseband Communications 

do not depend on E. The power spectral density SN(W; e) of the loop noise is 
easily derived from (2-124). The result is 

- (SC(W) - SS(W)) cos (47re) (2-126) 

- (&C(W) + &S(W)) sin (4re)) 

When using the linearized equivalent model, SN (w ; e) is replaced by SN(W; e,), 
where e, denotes the steady-state timing error. Let us consider the cases e, = 0 
and e, = l/4: 

(2-127) 

(2-128) 

Let us assume for a moment that the delay eT to be estimated is constant, so 
that only the loop noise gives rise to jitter. Then (2-127) and (2-128) indicate 
that the random fluctuations of the timing error about its steady-state value e, are 
caused by the quadrature disturbance ws(t; E) when e, = 0, or by the in-phase 
disturbance wc(t; E) when e, = l/4. This is consistent with (2-124): 

For arbitrary values of e,, the random fluctuations of the timing error about its 
steady-state value are caused by a linear combination of the in-phase and quadrature 
disturbance, as indicated by (2-124). The corresponding timing error variance in 
terms of the in-phase and quadrature spectra and cross-spectra is obtained from the 
general expression (2-126). When the delay ET is not constant, the timing error e 
contains an extra term, which is obtained by passing g(t) through a highpass filter 
whose frequency response in the Laplace domain equals 1 - H(s), as indicated 
in Figure 2-23. 

Until now, we have considered the timing error e at the PLL. However, what 
really matters are the sampling instants in the decision branch of the receiver. 
Taking DC offsets into account, the sampling instants in the decision branch 
correspond to the positive crossings of a nonzero threshold level by the local 
reference signal. Assuming a sinusoidal reference signal given by (2-119), the 
threshold level is denoted by &$I~,. . The positive level crossing instants are 
determined by 

$ (t,,k - ET) •t 1c) + 2re(t,,k) = exp (jlcl,) (2- 129) 
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where tq,k denotes the kth crossing instant, and 

(2- 130) 

The level crossing instants trl,k satisfying (2- 129) and (2-130) are not a set of 
equidistant points on the time axis, because of the fluctuations of the timing error 
e and, possibly, of E. Let us consider the following decomposition: 

tq,k = Tq,k + AT,,,k 

where TQ,k would be the kth level crossing instant, if c(t) and e(t) were equal 
to their mean values EO and e #, while AT,,, denotes the variation of the actual 
kth crossing instant, caused by the fluctuations AC(~) and Ae(t) of I and e(t) 
about their mean values. It follows from (2-129) and (2-130) that 

T tiT z4jJ’ 
q,k=kT+EOT-e8T-2n+2r (2-131) 

AT,,k = T(A& - Ae) (2-132) 

In (2-132), AE and Ae are evaluated at the actual level crossing instant t,,k, 
which in turn depends on the fluctuation AT,,,, so that (2-132) is only an implicit 
equation for ATq,k. However, when the fluctuations Ae(t) and Ae(t) are small, 
the actual level crossing instant t,,l, is close to the instant Tq,kI Therefore, an 
accurate approximation is obtained by evaluating in (2- 132) the quantities AE and 
Ae at the instant TV,k instead of the actual crossing instant i?r),k ; this yields an 
explicit equation for AT,,, . 

The actual zero crossing instants tq,k can be decomposed as 

t,,k = Tk - &,,k 

where 

Tk w =kT+ET-z 

L&k = -g + eT 

In the above, E(t) and e(t) are evaluated at t = TV ,k , The ideal crossing 
instant Tk corresponds to the kth positive zero crossing of the sinusoidal reference 
signal, when the timing error e(t) is identically zero, while the deviations Ai$,k 
incorporate the effect of the loop noise, of the steady-state error e,, of the nonzero 
threshold parameter q, and of the possibly time-varying delay CT. Assuming that 
the time origin has been chosen such that the ideal sampling instants in the decision 
branch are given by { kT + ET}, it follows that the instants {Tk} contain a bias 
term -+T/27r. This bias can be compensated for by applying a phase shift $ to 
the local reference signal before entering the pulse generator. Taking into account 
(2- 124), and making use of the linearized equivalent model, Figure 2-36 shows 
how the deviations Atrl,k from the ideal crossing instants Tk: are influenced by the 
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W&E) 
27cAcos(2xe,) 
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exp(-j2ne,) 
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Figure 2-36 Identification of Contributions to Deviation At,,k (Spectral Line 
Generating Synchronizer Using a PLL) 

disturbance at the output of the nonlinearity, by the steady-state error ea, by the 
nonzero threshold parameter q, and by the possibly time-varying delay ET. Note 
that the nonzero threshold level gives rise to a bias term but has no effect on the 
random fluctuations of the level crossing instants (this is true also when the local 
reference signal is not sinusoidal). Therefore, var[Ato,k/T] equals var[e(T,,s)]. 
As the lowpass content of w~(t ; e) is wide-sense stationary, its contribution to 
this variance does not depend on the position of the instants {7”,k} and is given 
by (2-122). 

An Erroneous Method of Analysis 

As a warning for the readers, we now outline a method of analysis which 
gives rise to erroneous results but which nevertheless has been used in a number 
of research papers. The method consists of replacing the cyclostationary distur- 
bance w(t; E) = ~(t; E) - E[w(t; E)] at the input of the PLL, whose autocorrelation 
function is the autocovariance function I<,, (t, t + u; e) of v(t; E), by an “equiva- 
lent” stationary disturbance with autocorrelation function (K, (t , t + u; E))~. The 
stationary process is equivalent with the cyclostationary process in the sense that 
both processes have the same power spectral density. [Remember that the power 
spectral density of a cyclostationary process is defined as the Fourier transform 
of the time-average of the autocorrelation function (see Section 1 .1.2)]. Also, a 
spectrum analyzer in the laboratory cannot distinguish between a cyclostationary 
process and the corresponding spectrally equivalent stationary process. Hence, it 
might be tempting to replace the cyclostationary disturbance at the input of the 
PLL by a spectrally equivalent stationary disturbance. 

Let us denote by Req(u; e) and Ses(w; e) the autocorrelation function and the 
power spectral density of the loop noise, which result from applying the method 
of the spectrally equivalent stationary input disturbance. Replacing in (2-l 12) 
the autocovariance function KV (t, t + u; e) by its time-average (K, (t, t + u; E))~ 
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yields the following expression for the loop noise autocorrelation function: 

Req(u; e) = K~[(K,(t, t + u; + (+; 2) r(t + U; Q&p 

Substituting (2-l 14) and (2-l 15) in the above expression yields 

R&u; e) = Kk 
1 
k,,~(u) C lcn12 exp j T 

n ( )I LP 

or, equivalently, 

Seq(w; e) = Kk IH~p(w)l~ x c2 S n n Y,O(w--~) 

It is important to note that the method of the spectrally equivalent disturbance at 
the input of the PLL gives rise to an erroneous loop noise spectrum which does 
not depend on the timing error e, because the terms with n # 0 in the correct 
expression (2-117) are lost. In the case where the local reference signal is a 
sinusoid with frequency l/T, the method of the spectrally equivalent stationary 
input disturbance yields 

Se&; e) = q I.&p(w)12 (SQ (U - F) + SQ (U + p)) 

(2-133) 
Taking into account (2-121), (2-127), and (2-128), one obtains 

Se&; e) = l/2 (S(w; e = 0) + S(W; e = l/4)) 

= fc2 K,” IHLP(4 
2 SC(W) + S(w) 

2 

(2-134) 

The method of the spectrally equivalent stationary input disturbance ignores that 
the actual loop noise (2-124) is a specific linear combination (depending on the 
value e of the timing error) of the in-phase and the quadrature disturbances. This 
erroneous method gives rise to a loop noise spectrum (2-134) which, unlike the 
correct loop noise spectrum (2-126), is independent of the timing error, and which 
is proportional to the arithmetical average of the in-phase and quadrature spectra. 

The error introduced by using the method of the spectrally equivalent sta- 
tionary input disturbance can be considerable. When the steady-state error e, is 
zero, the true timing error variance is determined by the behavior of the quadra- 
ture spectrum S’s(w) within the small loop bandwidth of the synchronizer, whereas 
the method of the spectrally equivalent stationary input disturbance yields an er- 
ror variance which is determined by the behavior of (SC(W) + Ss (~))/2 within 
the loop bandwidth. For well-designed synchronizers, it is very often the case 
that SS (0) << SC(O). Hence, the true error variance is determined by the small 
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quadrature spectrum, whereas the incorrect error variance is dominated by the 
much larger in-phase spectrum. The conclusion is that the method of the spec- 
trally equivalent stationary input disturbance can give rise to a timing error variance 
which is wrong by several orders of magnitude when the in-phase and quadrature 
spectra are substantially different near w = 0. 

2.4.2 Nonlinearity Followed by Narrowband Bandpass Filter 
The general structure of a spectral line generating synchronizer making use of 

a narrowband bandpass filter, tuned to the channel symbol rate l/T, is shown in 
Figure 2-37; this structure is very similar to the one shown in Figure 2-35, the only 
difference being that the PLL is now replaced by a bandpass filter with frequency 
response HBp(w). It is assumed that the unknown delay &T of the noisy PAM 
waveform y(t; E) is essentially constant over the possibly nonzero memory time 
of the nonlinearity (which is in the order of the channel symbol interval T), so 
that the nonlinearity output signal u(t; e) depends only on the instantaneous value 
of E, and not on past values of e. Usually, the memory time of the bandpass filter 
extends over a few hundred channel symbol intervals, so that the fluctuation of ET 
over the bandpass filter memory time must be taken into account when considering 
the bandpass filter output signal vc(t). The sampler in the decision branch of the 
receiver is activated by the threshold level crossing of the (phase shifted) nearly 
sinusoidal signal ~0 (t>. 

The signal v(t; a) at the input of the bandpass filter can be decomposed as 
[see (2-123)] 

v(t; E) =fi A cos $(t-ET)++) 
(2- 135) 

+ 4 Re WO,L(~; E) exp (j$) exp j $ (GET))] 

where we have dropped the “other terms,” which are suppressed by the narrowband 
bandpass filter anyway. The first term in (2-135) is the useful sinusoid at the 
channel symbol rate l/T; the second term represents a zero-mean disturbance, 
having ur~(t; E) as complex envelope with respect to the sinusoid at the channel 
symbol rate. Let us assume that E is slowly time varying: I exhibits small 
fluctuations A&(t) about its mean value ~0. Using the approximation 

exp (--j27r~) = (1 - j27rAe) exp (-j2n~o) 

I- 

YW v(f;d 
) Nonlinearity . Hsp(0) - 

uo(‘) ) Phase ) Pulse To ) 
Shifter Generator Sampler 

Figure 2-37 General Spectral Line Generating Synchronizer Using a Narrowband 
Bandpass Filter 
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and keeping only first-order terms in w~(t ; E) and A&(t), (2-135) can be trans- 
formed into 

v(t; E) = fi A ~0s g (t - &oT) + fk > 
+ fi Re (wL(t; E) - j2?rAA~) exp (j+) exp j $(t )] - COT) 

(2-136) 
The first term in (2- 136) is a sinusoid with constant phase. Note that the fluctuations 
A&(t) give rise to a quadrature component with respect to the first term in (2-136). 

The signal at the output of the bandpass filter is given by 

vo(t) = &A H / BP($)~ +(t-EgT)+$+$H) 

+ fib wo,L(t) exp(j (Ic, + $H)) exp - EOT) )] V-137) 

The first term in (2- 137) is the response of the bandpass filter to the first term 
in (2-136): the bandpass filter introduces a gain 1 HBP(~x/T)I and a phase shift 
$H, which are the magnitude and the argument of the bandpass filter frequency 
response, evaluated at w = 27r/T: 

HBP($) = IHBP($)I exp(hW 

In order to eliminate the phase shift introduced by the bandpass filter, one could 
use a bandpass filter which is symmetric about the channel symbol rate l/T, i.e. 

u($+,> H~p(g+w> =u(g-U) H;Ip($-w) 

where U( .) denotes the unit step function. This yields $H = 0. Due to frequency 
detuning and drift of filter component values, the symmetry of the bandpass filter 
about the channel symbol rate l/T is not perfect, so that one should always take 
into account the possibility of a nonzero phase shift +H. For a given frequency 
detuning, this phase shift increases with decreasing filter bandwidth. 

The second term in (2-l 37) is a zero-mean disturbance, having wo,r;(t) as 
complex envelope with respect to the first term in (2-137). This complex envelope 
is given by 

+w 

wO,L(t) = exp (-j+H) 
J 

h&t - u) (wL(u; E) - j2?rAA~(u)) du (2-138) 
-03 
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where hi is the inverse Fourier transform of HE(W), the equivalent lowpass 
frequency response of the bandpass filter: 

H&)=u w+ ( $) HBP(w+$) 

The sampler in the decision branch of the receiver is activated each time the 
bandpass filter output signal vc(t) crosses the threshold level fiAq)Hsp(2?r/T) 1 
in the positive direction. Ideally, q should be zero, so that the sampler is activated 
by the zero crossings of ~0 (t). However, due to DC offsets, the presence of a 
nonzero value of rl must be taken into account. If the complex envelope ~o,~(t) at 
the bandpass filter output were zero, the level crossing instants would be equidistant 
points on the time axis, with spacing equal to T. The kth such level crossing instant 
is denoted by TV,k and satisfies the following equation: 

$ (%k -EoT)+$‘++H )) =exp(j (5k-~%)) (2-139) 

where 
exp (MA = dl - v2 + jrl (2- 140) 

The solution is given by 

T rl,k = + ; (tiq + +H) 

The complex envelope ruo,~(t) at the output of the bandpass filter gives rise to 
actual level crossing instants tr],k , which exhibit fluctuations ATV,k about the 
nominal level crossing instants Tq,k : 

t,,k = Tv,k + AT’,k 

The actual level Crossing instants t,,k Satisfy the following equation: 

fiA lHBP($>I COS($ (t,,k--oT)+$‘+$‘H) 

+fi Re Wo,db,k) exp (j (Ic, + $13)) exp j F (tr),k - COT))] (2-141) 

Assuming that the disturbance at the output of the bandpass filter is weak, the zero- 
mean fluctuations AT,,, are small, and are well approximated by the solution of 
(2- 14 l), linearized about the nominal level crossing instants TV ,k. This linearization 
procedure is illustrated in Figure 2-38. Taking into account (2- 139) and (2-140), 
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Figure 2-38 Linearization About Nominal Level-Crossing Instant T,,I, 

one obtains 
ATv,k = -Im[~o,&,k) ~XP (MJ 

T 27rA I~~BP(~~/T)I cos(&) 
(2- 142) 

Let us decompose the actual level crossing instants as 

h,k = Tk - At,,l, 

where 
Tk = 

T 
kT+ET-- ($+;) (2- 143) 

denotes the kth positive zero crossing of the first term in (2-135) at the input of 
the bandpass filter. Assuming that the origin of the time axis has been chosen 
such that { kT + ET} are the ideal sampling instants in the decision branch, the 
last term in (2-143) is a bias term, which can be compensated for by introducing 
a phase shift of II) + 7r/2 at the output of the bandpass filter. The deviations Ai?,,k 
from the ideal level crossing instants Tk in (2-143) incorporate the effect of the 
disturbance wL(t ; E) at the nonlinearity output, of the bandpass filter asymmetry, of 
the nonzero threshold level, and of the fluctuations of the delay ET. Making use of 
(2-142), (2-138), and (Hgp(2?r/T)I = IH&O)l, it is easily shown that the random 
deviations At,,k with respect to the ideal level crossing instants Tk are obtained 
by performing the operations shown in Figure 2-39. As the lowpass content of 
WL (t ; E) is wide-sense stationary, its contribution to the variance of At,,k does 
not depend on the position of the instants TV,k. Taking into account (1-144) and 
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Figure 2-39 Identification of Contributions to Deviation Atv,k (Spectral Line 
Generating Synchronizer Using a Narrowband Bandpass Filter) 

(l-145), it follows from (2-142) that this contribution is given by 

At, k 
var ) [ II T E=Eo 

1 =- 
Kf r( IHeq(w>12 sv,O (W + $) + IHeq(-W)12 Sv,-j (w - g) 

-CO (2-144) 

exp (2j (& - ~9) 

exp (45 (II, - w) 
dw 
2n 

where I<, = 21/fZAr cos (&.) and Heq(w) = HE(w)/HE(O). Note that Heq(w) 
does not possess conjugate symmetry about w = 0, unless the bandpass filter is 
symmetric about the channel symbol rate l/T. 

Finally, using the erroneous method of the spectrally equivalent stationary 
disturbance at the input of the bandpass filter yields a variance of At,,, which 
contains only the first two terms of (2-144); this is because SV,s(w) and &,-2(w) 
are identically zero when the disturbance at the output of the nonlinearity [i.e., the 
second term in (2-135)] is stationary. 
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2.4.3 Phase-Locked Loops versus Bandpass Filters 
In Sections 2.4.1 and 2.4.2 it has been shown that spectral line generating 

synchronizers consisting of a nonlinearity followed by a PLL (with multiplying 
timing error detector and sinusoidal reference signal) and those consisting of a 
nonlinearity followed by a narrowband bandpass filter both yield a nearly sinusoidal 
clock signal, which is used to control the sampler in the decision branch of the 
receiver. In this section, a comparison is made between using a PLL and using a 
bandpass filter for extracting the useful sinusoid at the output of the nonlinearity. 

As far as the operation of the PLL or the bandpass filter is concerned, the 
signal at the output of the nonlinearity is represented as 

v(t; E) = fi A cos $(t--ET)+$) 

+ fi Re 
[ 
w~(l;~) exp (J$!J) exp 

( 
j g 0 $1 - e 

= fi A cos 
( 

$‘(t - ET) + @) + fi w&e) cos (g (t - ET) + $) 

- fi ws(t; E) sin $(t--ET)+$) 

where w~(t ; E), wc(t; E), and ws(t; E) are the complex envelope, the in-phase 
component and the quadrature component (with respect to the sinusoid to be 
tracked), of the disturbance at the output of the nonlinearity. When E is time 
varying, its fluctuations should be tracked by the synchronizer. Defining 

or, equivalently, 

B(t; E) exp (jqh (t; E)) = A + w(t; e) 

B(t; E) = &4 + w(t; E))2 + b-u@; &)I2 

$,(t; E) = arctan 
( 

A yJz(:). E)) 
) 

the signal at the output of the nonlinearity can be transformed into 

?I@&) = Ah B(V) cos $ (t --ET)+$+&(t;E)) 

which represents a sinusoid, whose amplitude and phase exhibit unwanted random 
fluctuations, caused by the disturbance at the output of the nonlinearity. It is 
important to note that v(t ; E) would have no unwanted phase fluctuations, if 
the quadrature component ws(t; c) were identically zero. Under weak noise 
conditions, the random amplitude and phase are well approximated by 

B(t; E) = A + wc(t; E) 

q+&&&) = L2i.p (2-145) 
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which indicates that the in-phase component causes amplitude fluctuations and 
the quadrature component gives rise to phase fluctuations at the output of the 
nonlinearity. 

When the nonlinearity is followed by a PLL, Figure 2-36 shows the influence 
of various imperfections on the deviations At,,& from the ideal level crossing 
instants (which are lagging by T/4 behind the positive zero crossings of the 
sinusoidal component at the nonlinearity output). These deviations consist of a 
static timing offset and a random zero-mean timing jitter. The static timing offset 
is caused by the steady-state error e, at the PLL and by the nonzero threshold 
level parameter r) [which yields the nonzero angle $+, determined by (2- 130)]. 
The timing jitter is caused by: 

. The highpass content of E(t), which falls outside the loop bandwidth of the 
PLL and, hence, cannot be tracked; 

. The lowpass content of wL(t ; e), which falls inside the loop bandwidth and, 
hence, disturbs the operation of the PLL. 

Note that the steady-state error e, has an influence on the jitter contribution from 
WL (t ; E). Let us consider this contribution in more detail. When e, = 0, the timing 
jitter is caused only by the quadrature component Im[ulL (t ; e)] = 2os (t ; E) of the 
disturbance at the nonlinearity output. More specifically, the timing jitter consists 
of samples of the lowpass filtered quadrature component at the nonlinearity output, 
which, under weak noise conditions, corresponds to samples of the lowpass filtered 
phase fluctuations at the nonlinearity output [see (2-145)]. The situation becomes 
more complicated when the steady-state error e, is nonzero. In this case, Figure 
2-36 shows that the timing jitter consists of samples of a lowpass filtered version 
of the signal Im[wL(t; E) exp (-j2?re,)]. As 

Im[wL(t; E) exp (-j2re,)] = wc(t; e) cos (2ne,) - ws(t; e) sin (2?re,) 
(2- 146) 

it follows that the timing jitter contains not only a term which is proportional to the 
lowpass filtered phase fluctuations at the nonlinearity output, but also a term which 
is proportional to the lowpass filtered amplitude fluctuations [assuming weak noise 
conditions, so that (2-145) is valid]. Note that (2-146) gives the component of 
the disturbance at the output of the nonlinearity, which is in phase with the local 
reference signal of the PLL, and, therefore, is causing the jitter. The conclusion 
is that a steady-state error at the PLL gives rise to amplitude-to-phase conversion 
(amplitude fluctuations at the input of the PLL are converted into phase fluctuations 
of the local reference signal). Decomposing in Figure 2-36 the disturbance WL (t ; E) 
into its real and imaginary parts wc(t;a) and ws(t;&), the jitter is obtained as 
shown in Figure 2-40. 

When the nonlinearity is followed by a bandpass filter, Figure 2-39 shows 
how the various imperfections give rise to the deviations At,,k from the ideal level 
crossing instants (which coincide with the positive zero crossings of the sinusoid 
at the nonlinearity output). These deviations consist of a static timing offset and a 
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Figure 2-40 Identification of Contributions to Timing Jitter of a Spectral Line 
Generating Synchronizer with PLL 

zero-mean random jitter. The static timing offset is caused by a nonzero threshold 
level parameter q, and by the phase shift $H introduced by the bandpass filter. 
The timing jitter is caused by the lowpass content of wl;(t; e) and the highpass 
content of 5(t). Let us concentrate on the timing jitter. 

When the bandpass filter is symmetric about the channel symbol rate l/T 
[meaning that H;(w) = HE ( -u) , the equivalences indicated in Figure 2-4 1 can 
be applied to the structure in Figure 2-391. Noting further that 

Im 
[ 
-%(C 4 cos &I > exp (Y+, ) 1 = -w&; E) - w&; E) tan ($,) 

Re -4) 
- exp (j$,) 
cos w,> 1 = -E(t) 

H; (a) = H&o) 

Figure 2-41 Equivalences That Hold When the Bandpass Filter Is Symmetric 
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the following observations are valid in the case of a symmetric bandpass filter: 

. The jitter contribution from I and ws(t; E) is not influenced by the threshold 
level parameter Q. 

. The jitter contribution from wc(t; E) is influenced by the threshold level pa- 
rameter: a nonzero threshold level gives rise to amplitude-to-phase conver- 
sion (amplitude fluctuations at the output of the nonlinearity are converted 
into timing jitter). 

This is according to our intuition. Indeed, I and ws(t; e) give rise to phase 
fluctuations at the output of the nonlinearity, while wc(t ; E) gives rise to amplitude 
fluctuations (assuming low noise conditions). Hence, because of the symmetry 
of the bandpass filter, the amplitude fluctuations at the bandpass filter output 
are caused only by wc(t; e). As a nonzero threshold level converts amplitude 
fluctuations at the bandpass filter output into timing jitter (while phase fluctuations 
at the bandpass filter output are converted into timing jitter, irrespective of the 
threshold level value), the threshold level parameter 77 affects only the jitter 
contribution from wc(t; E). It is important to note that the case of a symmetric 
bandpass filter and a nonzero angle $J~ yields the same jitter as the case of a 
PLL with steady-state error e, = -$+, /27r and closed-loop frequency response 
HEW/HE(O)* 

When the bandpass filter is not symmetric about the channel symbol rate 
l/T, it introduces amplitude-to-phase conversion (phase fluctuations at the output 
of the bandpass filter depend not only on ws(t; E) and c(t), but also on wc(t; e)) 
and phase-to-amplitude conversion [amplitude fluctuations at the output of the 
bandpass filter depend not only on wc(t; e), but also on ws(t; e) and I]. If the 
threshold level were zero, then the timing jitter would be proportional with the 
phase fluctuations at the output of the bandpass filter. When the threshold level is 
nonzero, the jitter contains an extra term, proportional to the amplitude fluctuations 
at the bandpass filter output and depending on the threshold level parameter q. This 
situation is illustrated in Figure 2-42, where He(w) and Hs(w) are the even and 
odd conjugate symmetric parts of HE(w)/HE(O): 

1 HE(W) Hjg-w) H&d) = 7 - - 
( 23 HE(O) WO) > 

It is important to note that the case of an asymmetric bandpass filter is not 
equivalent with the case of a PLL; the main reason for this is that the closed- 
loop frequency response H(s) of a PLL satisfies H*(w) = H( -w), while this 
symmetry relation is not fulfilled for the equivalent lowpass frequency response 
HE(W) of an asymmetric bandpass filter. 

In many cases of practical interest, the spectrum SC(W) of the in-phase distur- 
bance WC (t ; E) and the spectrum SS (w) of the quadrature disturbance ws (t ; E) be- 



2.4 Spectral Line Generating Clock Spchronizers 137 

Amplitude 
Fluctuation 

Phase 
Fluctuation 

m - 

Amplitude 
Fluctuation 

Wvq) 

Figure 2-42 Identification of Contributions to Timing Jitter of a Spectral Line 
Generating Synchronizer with Narrowband Bandpass Filter 

have quite differently in the vicinity of w = 0; more specifically, SS (0) << SC (0). 
Therefore, the influence of the in-phase disturbance on the synchronizer perfor- 
mance should be kept as small as possible. When using a PLL, this is accomplished 
when the steady-state error e, is close to zero; when using a bandpass filter, the 
threshold level parameter q should be close to zero, and the bandpass filter should 
be symmetric. Also, in order to reduce the influence of the quadrature component, 
the loop bandwidth of the PLL or the bandwidth of the bandpass filter should be 
small. 

Let us consider a bandpass filter, which is symmetric about a frequency 
f0 = w0/27r, where fo is slightly different from the channel symbol rate l/T. The 
degree of filter asymmetry with respect to the channel symbol rate l/T, due to the 
frequency detuning AF = l/T- fo, is closely related to the filter bandwidth: for a 
given frequency detuning, the degree of asymmetry becomes larger with decreasing 
filter bandwidth. Hence, when a small filter bandwidth has been selected for a 
considerable suppression of the disturbance at the output of the nonlinearity, the 
sensitivity to a frequency detuning is high. In order to keep the phase shift 4~ 
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and the amplitude-to-phase conversion due to bandpass filter asymmetry within 
reasonable limits, the frequency detuning must not exceed a small fraction of the 
bandpass filter bandwidth. For instance, the equivalent lowpass frequency response 
HE(W) of a single tuned resonator with center frequency fa is determined by 

HE(w) = 1 + j ((+a; + (AS&)) 

where As2 = 2~rhF, wa = 2nfa, and fa is the one-sided 3 dB bandwidth (in hertz) 
of the bandpass filter (attenuation of 3 dB at the angular frequencies wc + wa and 
w. - w3). If the phase shift T,~H = arg (HE(O)) is restricted to be less than 12’, 
the frequency detuning AF should not exceed 20 percent of the 3 dB bandwidth 
fa; when fa equals one percent of the symbol rate l/T, this requirement translates 
into AF smaller than 0.2 percent of l/T. The sensitivity to a frequency detuning 
is larger when higher-order bandpass filters are used, because of the steeper slope 
of the bandpass frequency response phase at the center frequency. 

In the case of a (second- or higher-order) PLL, the open-loop gain and the 
loop bandwidth BL can be controlled independently. This means that a small 
loop bandwidth can be selected for considerable rejection of the disturbance at the 
output of the nonlinearity, while simultaneously the open-loop gain is so large that 
a frequency detuning gives rise to a negligible steady-state error e, and, hence, to 
virtually no amplitude-to-phase conversion. This is the main advantage of a PLL 
over a bandpass filter. On the other hand, it should be mentioned that PLLs are 
more complex structures than bandpass filters, as they require additional circuits 
(such as acquisition aids and lock detectors) for proper operation. 

2.4.4 Jitter Accumulation in a Repeater Chain 
When digital information is to be transmitted over a long distance that 

corresponds to a large signal attenuation, a chain of repeaters is often used. The 
operation of a repeater is illustrated in Figure 2-43. Each repeater contains a 
receiver and a transmitter. The receiver recovers the digital data symbols that have 
been sent by the upstream repeater, and the transmitter sends to the downstream 

1 
output 

PAM Signal 
Transmitter h 

1 ) Symbol 
Synchronizer 

Clock Signal 

Figure 2-43 Block Diagram of Repeater 
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repeater a PAM signal containing the recovered data symbols. Each repeater 
extracts a clock signal from the signal received from its upstream repeater. This 
clock signal determines the instants at which the receive filter output signal is 
sampled; from these samples, the digital information is recovered. The same clock 
signal also provides the timing to the PAM transmitter that sends the recovered 
data symbols to the downstream repeater. 

Let us assume that the PAM signal transmitted to the first repeater of the 
chain is generated by means of a jitter-free clock: the consecutively transmitted 
pulses are equidistant in time. Because of additive noise and self-noise, the clock 
signals extracted at the repeaters exhibit zero-mean random jitter, Let us denote 
by am the total jitter at the output of the nth repeater, i.e., the jitter of the clock 
extracted by the nth repeater, measured with respect to a jitter-free clock. The 
corresponding clock signals can be represented as follows: 

jitter - free clock : d2cos (27ri/T + $) 

clock at nth repeater : &OS (2?r(t - &n(t)T)/T + ?+q 
(2- 147) 

The alignment jitter at the nth repeater is given by tn-i (t) - e,(t), and represents 
the random misalignment between the clocks at the nth repeater and its upstream 
repeater. The alignment jitter is caused not only by additive noise and self-noise 
that occurs on the trnsmission path between the (n-l)th and the nth repeater, but 
also by the components of Ed- 1 (t) that cannot be tracked at the nth repeater 
(because they fall outside the synchronizer bandwidth). In order not to degrade 
the bit error rate performance, the alignment jitter should be kept small. 

Assuming small jitter, the system equations describing the operation of the 
synchronizer can be linearized; note that this holds not only for spectral line 
generating synchronizers but for any type of synchronizer. In this case, a linear 
relation between t,,- 1 (t) and e,(t) exists. This results in the Chapman jitter 
model for the nth repeater, shown in Figure 2-44. The quantity H,(w) is the jitter 
frequency response of the nth repeater. The Chapman model indicates that the 
jitter e,(t) at the output of the nth repeater consists of two terms: 

. The first term is a filtered version of the input jitter E+ 1 (t) and represents 
the contribution from the upstream part of the repeater chain. 

. The second term An(t) represents the contribution from the nth repeater: it 
is the jitter that would occur at the output of the nth repeater if the input jitter 
e, _ 1 (t ) were identically zero. 

In the case of a spectral line generating synchronizer, the parameters of the 
Chapman model can be derived from Figure 2-40 (nonlinearity followed by PLL) 
or Figure 2-42 (nonlinearity followed by narrowband bandpass filter). Noting that 
the signal at the output of the block diagrams in Figures 2-40 and 2-42 actually 
represents the alignment jitter, one obtains 

H&) = ;$; _ Hs(w) tan(ll, ) nonltnea!ty ‘lus pLL (2-148) 
T nonhnearlty plus bandpass filter 
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Figure 2-44 Chapman Jitter Model for Repeater 

from which it follows that HE(O) = 1. Note that the threshold value q affects 
the jitter frequency response only when the nonlinearity is followed by a non- 
symmetrical bandpass filter. It follows from Figures 2-40 and 2-42 that the jitter 
term A,(t) is a linear combination of filtered versions of the in-phase and quadra- 
ture components of the complex envelope of the disturbance at the output of the 
nonlinearity. For any error-tracking synchronizer, it can be shown that the jitter 
frequency response HE (w) equals the closed-loop frequency response H (jw). 

In order to investigate the jitter in a chain of N repeaters, we replace each 
repeater by its Chapman model. Assuming identical jitter frequency responses 
for all N repeaters, the repeater chain model of Figure 2-45 is obtained, with 
&o(t) = 0 denoting the zero jitter at the input of the first repeater. When the jitter 
frequency response exhibits peaking [i.e., IHE > 1 for some frequency range], 
the jitter components within that frequency range are amplified by the jitter fre- 
quency response. Denoting the maximum value of 1 H,(w) 1 by Hmax, the situation 
H,,, > 1 results in a total jitter variance var[EN(t)] and an alignment jitter vari- 
ance var[aN-l(t) - EN(t)] that both are essentially proportional to Hizx: when 
the jitter frequency response exhibits peaking, both variances increase exponen- 
tially with the number N of repeaters. Hence, by means of careful circuit design, 
peaking of the jitter frequency response should be avoided, or at least the amount 
of peaking, defined as 20 log H,,,, (in decibels), should be kept very small (in 
the order of 0.1 dB). 

Examples 
Figures 2-46 and 2-47 show the magnitudes of the frequency responses He(w) 

and Hs(w), corresponding to a single tuned resonator. Note that Hs(w) = 0 for 
zero detuning. When the detuning AG?/wa exceeds l/a (which yields a phase 
shift $H of about 35’) or, equivalently, a normalized static timing error of about 10 
percent), IHc(w) I exhibits peaking. This peaking gives rise to exponential jitter 
accumulation along a repeater chain. For large w, both IHc(w)l and lH~(u)l 
decay at a rate of 20 dB per decade of w. 

Figure 2-45 Jitter Model for Repeater Chain 
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Figure 2-46 Magnitude IHc(w)l for: (a) Ail/w3 = 0, (b) AG?/wa = a/2, (c) 
Ail/w3 = 1 

Figure 2-47 Magnitude IHs(w)l for: (a) AsZ/ws = 0.2, (b) AQ/ws = a/2, 
(c) An/w3 = 1 
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Figure 2-48 Magnitude IH( for: (a) C = 00, (b) C = 3 
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For a perfect second order PLL, the closed-loop frequency response in the 
Laplace domain is given by 

H(s) = 
2s’w,s + w; 

s2 + 2cw,s + w; 

Keeping Cw, fixed, the corresponding magnitude IH( is shown in Figure 
2-48, for c = 3 and < = 00; in the latter case, H(s) converges to the frequency 
response of a first-order loop. For any finite value of C, IH( exhibits peaking, 
which increases with decreasing <. Hence, exponential jitter accumulation along 
a repeater chain cannot be avoided. As the jitter accumulation rate decreases with 
decreasing peak value, large values of c are selected in practice (C > 3). 

2.4.5 Simulation of Spectral Line Generating Synchronizers 
In Sections 2.4.1 and 2.4.2 we have evaluated the timing error variance caused 

by the cyclostationary disturbance zo(t; E) = v(t; E) - E[v(t; E)] at the output of 
the nonlinearity. Depending on the baseband PAM pulse g(t) at the input of the 
nonlinearity and on the specific type of nonlinearity, the in-phase and quadrature 
spectra of w(t; E), which are needed for the timing error variance computation, 
might be very hard to obtain analytically; in fact, only a quadratic nonlinearity is 
mathematically tractable for narrowband transmission, and even that case is quite 
complicated. A faster way to obtain numerical results is by means of computer 
simulations. 
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Figure 2-49 Estimation of Quantity A exp (J’$) 

Figures 2-40 and 2-42 show how the timing jitter depends on the in-phase 
and quadrature components WC (t ; a) and ws (t ; e) and on the normalized delay 
I, in the cases where the nonlinearity is followed by a PLL or a bandpass filter, 
respectively. In order to obtain the timing jitter, the computer simulation must 
generate wc(t; 6)/A, ws(t; E)/A and I, and process them according to Figures 
2-40 or 2-42. In the following we concentrate on the generation of wc(t; E)/A 
and ws(t; &)/A. 

As far as the synchronizer operation is concerned, the nonlinearity output 
v(t;e) can be represented as [see (2-135)] 

[A+wL(~;E)] exp(j$) exp j $ --E ) (t T) ] 

where 
w(t; e) = wc(t; a) + jws(t; a) 

has zero mean. Hence, the quantity A exp (j$) can be estimated by means of the 
configuration shown in Figure 2-49. The “arithmetical average’* module measures 
the DC component of its input signal; Hr,p(w) is the frequency response of a 
lowpass filter, with HLP(W) = 1 for ]w] within the synchronizer bandwidth and 
HLP(W) = 0 for ]W 1 1 r/T. The variance of the measured DC component is 
inversely proportional to the duration over which the arithmetical average is taken. 
Once (an estimate of) A exp (j+) is available, it can be used in the configuration 
of Figure 2-50 to generate wc(t; &)/A and ws(t; e)/A. 

=3 Re[. 1 

‘““jzt=j-fa H&) T ’ 

* IN -1 . . 
+exp(-j a (t - ET)) 1 

T A 

w C(W) 
A 

ws 0x4 
A 

Figure 2-50 Generation of wc(t;c)/A and ws(t;E)/A 
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2.4.6 Main Points 

Spectral line generating clock synchronizers perform a nonlinear operation 
on the received noisy PAM waveform. The resulting signal at the output of 
the nonlinearity is the sum of a periodic signal with period equal to the channel 
symbol interval T (this signal contains timing information about the PAM signal), 
and a zero-mean disturbance. This periodic signal can be decomposed as the 
sum of sinusoidal components, with frequencies l/T and multiples thereof; this 
corresponds to spectral lines at the same frequencies. The signal at the output of 
the nonlinearity enters either a PLL, or a narrowband bandpass filter. In the case 
of a PLL, a local reference signal is generated, which tracks the periodic signal; 
when using a PLL with multiplying timing error detector and sinusoidal reference 
signal with period T, the periodic signal’s sinusoidal component at frequency l/T 
is tracked. In the case of a narrowband bandpass filter, tuned to the channel symbol 
rate l/T, the sinusoidal component at frequency l/T, present at the output of the 
nonlinearity, is isolated. The sampler in the decision branch of the receiver is 
activated each time the reference signal of the PLL or the signal at the output of 
the bandpass filter crosses a threshold level; because of DC offsets, this threshold 
level can be different from zero. The resulting sampling instants do not coincide 
with the optimum sampling instants; the timing error consists of a static timing 
offset and a random zero-mean timing jitter. 

When using a PLL with zero steady-state error, the timing jitter is caused 
by the phase fluctuations (or, equivalently, by the quadrature component) of the 
signal at the output of the nonlinearity. A nonzero threshold level gives rise to a 
static timing offset only, because the reference signal of the PLC does not exhibit 
amplitude fluctuations. When the steady-state error is nonzero, it introduces an 
additional timing offset and gives rise to amplitude-to-phase conversion: the timing 
jitter is caused not only by the phase fluctuations at the nonlinearity output, but 
also by the amplitude fluctuations (or, equivalently, by the in-phase component). 

In the case of a symmetric bandpass filter and zero threshold level, the timing 
jitter is caused by the phase fluctuations at the output of the nonlinearity, and 
there is no static timing offset. When the bandpass filter is still symmetric, but 
the threshold level is nonzero, both a static timing offset and amplitude-to-phase 
conversion occur: the timing jitter is caused not only by the phase fluctuations, but 
also by the amplitude fluctuations, at the output of the nonlinearity. The situation 
becomes even more complicated when the bandpass filter is not symmetric: this 
situation gives rise to amplitude-to-phase and phase-to-amplitude conversions from 
the input to the output of the bandpass filter, so that even with a zero threshold 
level, the timing jitter is influenced by both the phase fluctuations and amplitude 
fluctuations at the output of the nonlinearity. Also, an asymmetric bandpass filter 
gives rise to an additional static timing offset. 

For a symmetric bandpass filter with equivalent lowpass frequency response 
HE(W), and a threshold level yielding an angle $,, , the timing jitter is the same 
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as for a PLL with closed loop frequency response HE @)/b(O) and steady-state 
error e, = -&/27r, When the bandpass filter is not symmetric, there exists no 
equivalent structure with a PLL, giving rise to the same timing jitter. 

In many cases, the disturbance at the output of the nonlinearity has an in- 
phase spectrum which is much larger than the quadrature spectrum, in the vicinity 
of w = 0. Therefore, it is advantageous to combine a small bandwidth of the PLL 
or the bandpass filter with a design which avoids amplitude-to-phase conversion. 
A bandpass filter should be symmetric about the channel symbol rate l/T in order 
to eliminate amplitude-to-phase conversion. The degree of asymmetry caused by 
frequency detuning is closely related to the bandpass filter bandwidth: for a given 
frequency detuning, the asymmetry and, hence, the amplitude-to-phase conversion, 
increases with decreasing filter bandwidth. Therefore, when using a narrowband 
bandpass filter, the jitter variance is very sensitive to frequency detuning. In the 
case of a PLL, amplitude-to-phase conversion is eliminated when the steady-state 
error is zero. The steady-state error (due to frequency detuning) can be kept very 
small by selecting a large open-loop gain. As the open-loop gain and the loop 
bandwidth can be controlled independently, it is possible to realize simultaneously 
a small amplitude-to-phase conversion and a small loop bandwidth. From this 
point of view, a PLL is more attractive than a bandpass filter. 

The disturbance at the output of the nonlinearity is a cyclostationary process 
with period T. It might be tempting to replace this cyclostationary disturbance by 
a spectrally equivalent stationary process and evaluate the resulting jitter variance, 
This method yields an erroneous result, because it does not take into account that 
the true in-phase and quadrature disturbances usually have drastically different 
spectra near w = 0. In many cases, the method of the spectrally equivalent 
stationary disturbance overestimates the true timing jitter variance by several orders 
of magnitude. 

A repeater chain is used when data is to be transmitted over long distances. 
The linearized timing jitter at the output of a repeater equals the sum of two terms: 

. The first term is a filtered version of the jitter at the input of the repeater; the 
frequency response of the filter is called the jitter frequency response. 

. The second term is a contribution from the repeater itself. 

When the jitter frequency response exhibits peaking, the jitter variance at the end 
of the chain increases exponentially with the number of repeaters. For keeping 
the jitter accumulation rate within reasonable limits, the amount of peaking should 
be small. 

In most cases the analytical evaluation of the timing error variance resulting 
from a spectral line generating synchronizer is extremely complicated. In these 
cases, it is advantageous to use computer simulations for obtaining numerical 
performance results. 
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2.4.7 Bibliographical Notes 

Spectral line generating synchronizers have been used in a large variety of 
applications, ranging from the early PCM telephone network to present-day fiber 
optical networks; as a result, there exists a vast literature on the subject. In this 
section, we consider a few papers which have contributed to a better understanding 
of the operation of the broad category of spectral line generating synchronizers as 
a whole. Papers dealing with synchronizers employing specific nonlinearities are 
covered in Section 6. 

The general analysis of spectral line generating synchronizers consisting of a 
nonlinearity followed by a PLL (Section 2.4.1) is inspired by [ 11, which investigates 
the tracking performance of a PLL operating on a periodic signal corrupted by 
cyclostationary additive noise. The general analysis of Section 2.4.2 follows the 
same lines as [2, 31, which evaluates the tracking performance of spectral line 
generating synchronizers consisting of a nonlinearity followed by a bandpass filter. 

Both [4] and [S] point out that replacing the cyclostationary disturbance at 
the output of the nonlinearity by a “spectrally equivalent“ stationary disturbance 
obliterates the distinction between the in-phase and quadrature components of the 
cyclostationary disturbance. In [5], several practical cases are mentioned where 
this erroneous approach may overestimate the true timing error variance by orders 
of magnitude. 

The computer simulation approach, outlined in Section 2.4.5, is an extension 
of [6], where only the quadrature component ws (t ; E) was needed to determine the 
timing error variance resulting from various spectral line generating synchronizers 
with a symmetrical bandpass filter and zero threshold level. 

The use of a surface-acoustic-wave (SAW) bandpass filter for extracting 
the spectral line at the symbol rate is investigated in [7-lo], for high-speed 
(0.1 to 2 Gbit/s) fiber-optic transmission systems. Both resonator SAW filters 
and transversal SAW filters are considered. Single-resonator and maximally 
flat (Butterworth) double-resonator SAW filters have no passband ripple, so that 
exponential jitter growth along a repeater chain is avoided. Transversal SAW 
filters exhibit passband ripple, caused by reflections between the transducers; this 
ripple must be limited by careful circuit design in order to avoid a too rapid jitter 
increase along the repeater chain. 

In Section 2.4.4, the problem of jitter accumulation in a repeater chain has 
been considered very briefly, although a vast literature exists on that topic. The 
interested reader is referred to the textbook [l l] and the reference list therein 
(which includes [3, 7, 81). Cycle slipping in a chain of repeaters with error- 
tracking symbol synchronizers has been investigated in [12, 131: it is shown that 
the bandwidth of the loop noise at the end of a long repeater chain is much 
smaller than the loop bandwidth; this yields a cycle slip rate that can be orders of 
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magnitude larger than in the usual case where the bandwidth of the loop noise is 
much larger than the loop bandwidth. 
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2.5 Examples 

2.5.1 Example I: The Squaring Synchronizer 
The squaring synchronizer is a spectral line generating clock synchronizer. Its 

block diagram is shown in Figure 2-10, the nonlinearity being a squarer. In Section 
2.4, the tracking performance of spectral line generating clock synchronizers with 
arbitrary nonlinearity has been derived from the statistical properties of the signal 
at the output of the nonlinearity. In this section, we determine these statistical 
properties in the case of a squarer operating on a noisy PAM signal, and derive 
conditions on the baseband pulse at the squarer input for reducing the self-noise. In 
addition, we present an alternative version of the squaring synchronizer, where the 
squarer is followed by Fourier transform computation; this version is well suited 
for fully digital implementation. 

Throughout this section, it will be assumed that the spectral line at the symbol 
rate is to be extracted; when this is accomplished by means of a PLL, we restrict our 
attention to a PLL with multiplying timing error detector and sinusoidal reference 
signal. 

Statistical Properties of the Squarer Output 

The noisy PAM signal y(t; e) at the squarer input is given by 

y(t; E) = c a, g(t - n-d - ET) + n(t) 
m 

where {am} is a stationary sequence of independent (not necessarily binary) 
data symbols, g(t) is the baseband pulse, and n(t) is stationary Gaussian noise. 
Squaring the noisy PAM signal yields 

= c a, am+ g(t - mT -ET) g(t - mT - nT - ET) 
m,n (2- 149) 

+ 2 n(t) C amg(t - mT - ET) + n2(t> 
m 

The three terms in (2-149) are uncorrelated. The first term in (2-149) is a signal 
x signal (S x S) term; this term contains not only spectral lines (at DC and 
multiples of the symbol rate), but also self-noise, which is caused by the random 
nature of the data sequence. The second term in (2-149) is a zero-mean signal x 
noise (S x N) term which acts as a disturbance. The third term in (2-149) is a 
noise x noise (N x N) term; it contains a spectral line at DC (which does not 
influence the synchronizer operation) and a zero-mean random fluctuation which 
acts as a disturbance. 

Let us consider the useful sinusoid at the symbol rate, appearing at the 
squarer output. Suppose the Fourier transform G(w) of the baseband pulse g(t) 
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is zero for ]w] > 7rW. In this case, the (S x S) term in (2-149) is band- 
limited to ]U 1 < 2xW. Consequently, irrespective of the statistical properties 
of the stationary data sequence, the (S x S) term can contain spectral lines at 
W = 2rk/T only for k < WT. Hence, the bandwidth (in hertz) of the baseband 
pulse g(t) should exceed 1/(2T), otherwise the squarer output contains a spectral 
line at DC only, which of course, carries no timing information. Indeed, when 
G(w) = 0 for IwI > n/T, the PAM signal y(t; E) is wide-sense stationary (see 
Section 1 .l), so that the statistical average of its square does not depend on time; 
a nonlinearity of higher order would be needed to generate spectral lines. In most 
cases of practical interest, the transmission bandwidth (in hertz) is larger than 
1/(2T) in order to avoid large IS1 at the decision instants; in these cases a squarer 
can be used for generating spectral lines. For narrowband communication, the 
bandwidth of g(t) is between 1/(2T) and l/T; in this case the squarer contains 
spectral lines only at DC and at the symbol rate. For independent data symbols, 
the average squarer output signal is given by 

E[v(t; e)] =(A2 - A:) c g2(t - mT - ET) 
m 

1 
2 (2-150) 

+ A: cg(i - mT - 0) + h(O) 
m 

where Ai = E [ai] denotes the ith order moment of the data symbols, and 
&a(u) = E[n(t) n(t + u)] is th e autocorrelation function of the additive noise 
n(t) at the squarer input. Noting that A2 - AT equals the variance of the data 
symbols, the first term in (2-150) is caused by the data symbol transitions; this 
term would be zero if any given symbol were transmitted continuously. The second 
term in (2- 150) is simply the square of the average E[y( t ; E)] of the squarer input 
signal; this term is zero for zero-mean data symbols (i.e., Al = 0). When the data 
symbols are not zero-mean, E[y(t; a)] is periodic in T with period T, because of 
the cyclostationarity of the noisy PAM signal y(t ; E) : 

E[y(t; E)] = Al c g(t - mT - CT) 

= * bG($) exp [j T (t -CT)] 
m 

When G(m/T) = 0 for m # 0 (this condition is fulfilled, for example, in the 
case of narrowband communication), E[y(t; Q] reduces to a constant A1 G(O)/T, 
independent of time. The third term in (2-150) is independent of time, and equals 
the additive noise power at the squarer input. Hence, in the case of narrowband 
communication, only the first term in (2-150) gives rise to a spectral line at the 
symbol rate; as this term is caused by the transitions of the data symbols, the 
transmission of long strings of identical symbols should be avoided, for instance, 
by using a scrambler at the transmitter. Assuming narrowband transmission and/or 
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zero-mean data symbols, the squarer output contains a sinusoid at the symbol rate, 
given by 

fi A cos $(t-ET)+@] =2R(em,,l exp[j $(t-ET)]} (2-151) 

k (A~ -AT) j,sl(t) ~XP (-j F) dt mv,1 = - 

T (A2 - A;)-+TG(+) G(w)g 
1 

=- 

-03 

(2- 152) 

Hence, the phase 1c) of the sinusoid at the symbol rate is given by II, = arg (m, ,I). 
The magnitude of the sinusoid at the symbol rate decreases with decreasing overlap 
between G(27r/T - w) and G(w); h ence, this magnitude is very small when the 
bandwidth in excess of 1/(2T) is small. 

It has been shown in Section 2.4 that the random part of the timing error 
resulting from a spectral line generating synchronizer can be viewed as a linear 
combination of the narrowband lowpass filtered in-phase and quadrature compo- 
nents wc(t ; E) and ws(t ; E) with respect to the useful sinusoid at the output of the 
nonlinearity. When using a PLL for extracting the useful sinusoid, the coefficients 
of the linear combination are a function of the steady-state error es, while the 
filtering depends on the closed-loop frequency response (see Figure 2-36). When 
using a narrowband bandpass filter for extracting the useful sinusoid, the coef- 
ficients of the linear combination are a function of the threshold level 7, while 
the filtering depends on the frequency response of the bandpass filter (see Figure 
2-39). In either case (PLL or bandpass filter), the random part of the timing error 
can be expressed as 

e(t) = 
J 

[h(t - u) WC+; E) + b(t - u) ws(u; E)] du 
-CKl 

where hi(t) and /is(t) are the impulse responses depending on the synchronizer 
properties. This yields 

var[e] = 
Jr IW4l” Sc(4 + p2(w)/2 Ss(w) 

-CO 

+ b(w) H;(W) Ssc(w> + Hz(w) H,‘(w) SC&W)] g 

where HI(W) and H 2 w ( ) are the Fourier transforms of hi(t) and h2(t), SC(W) and 
Ss (w) are the spectra of wc(t ; e) and ws(t ; E), and &S(W) is the cross-spectrum 
between w&;~) and ws(t; E). 
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Analytical expressions for the spectra SC(W), S’S(W) and SCS(W) at the 
squarer output are derived in the appendix at the end of this section, based upon 
the method described in Section 2.4.1. These computations are straightforward 
but quite tedious, and the resulting expressions provide only limited insight. The 
simulation method from Section 2.4.4 is a valid alternative to obtain numerical 
results. 

Self-Noise Reduction 

In the following, we derive a condition on the baseband pulse g(t) at the 
squarer input, such that, in the absence of noise, the quadrature spectrum SS(U) 
and the in-phase/quadrature cross-spectrum &S(W) at the squarer output are both 
identically zero within the synchronizer bandwidth, irrespective of the data symbol 
statistics. Also, less restrictive conditions on g(t) will be presented, for which, 
in the absence of additive noise, these spectra are zero at w = 0 , irrespective 
of the data symbol statistics. When the squarer is followed either by a PLL 
with zero steady-state error, or by a symmetrical bandpass filter centered at the 
symbol rate and the zero crossings of the bandpass filter output signal are used 
for timing, then the former condition on g(t) eliminates the self-noise, whereas 
the less restrictive conditions on g(t) yield a self-noise contribition to the timing 
error variance which is proportional to the square (or even a higher power) of the 
normalized synchronizer bandwidth BLT. 

Condition yielding Ss (u ) = Scs(w) = Ofor Iwl < 27rB 
Let us first deal with the condition on g(t) such that, in the absence of noise, 

S(w) and S c w are zero within the synchronizer bandwidth. We denote by S( ) 
s(t; E) the useful signal component of the noisy PAM signal at the squarer input: 

s(t; E) = c urn g(t - mT - ET) (2- 153) 
m 

Now suppose we are able to select the baseband pulse g(t) in such a way 
that s(t; E) is a bandpass signal, centered at w = n/T, whose complex envelope 
s~(t; E) happens to be real-valued: 

s(t; E) = Jz s&; E) cos $ (t - ET)] (2-154) 

Note that s(t; E) has no quadrature component with respect to cos [?r(t - &T)/T]; 
equivalently, s(t; E) is a purely amplitude-modulated signal. In addition, we 
assume that s~(t; e) is band-limited to the interval IwI 5 r/T - nB, with 
0 < B < l/T. When additive noise is absent, the squarer output is given by 

s2(t; e) = sZ.(t;c) + s;(t;&) cos [$,,_,,,I (2- 155) 

The first term in (2-155) is a lowpass signal band-limited to the interval IwI 5 
2n/T - 27rB. The second term in (2-155) is a bandpass signal, centered at w = 
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Figure 2-51 (a) Spectrum of si(t;&), 

(b) Spectrum of s:(t; E) cos (27r(t - &T)/T) 

27r/T, and having no quadrature component with respect to cos (27r(t - 0)/T); 
the frequency content of this second term is restricted to the interval 27rB 5 1~1 < 
4n/T - 27rB. The spectra of the first and second term in (2-155) are sketched 
in Figure 2-51; because of the band-limited nature of these terms, spectral lines 
appear only at w = 0 and w = &27r/T. When the squarer is followed either by a 
PLL whose closed-loop frequency response is zero for Iw 1 > 2n B or by a bandpass 
filter whose equivalent lowpass frequency response is zero for 1~1 > 27rB, then 
only the frequency content of s2(t; e) in the interval 11~1 - 2n/TI < 2wB affects 
the synchronizer operation. As the spectrum of the first term in (2-155) is zero 
within this interval, this term can be ignored. As the second term has no quadrature 
component with respect to cos (27r(t - &T)/T), it follows that: 

. The useful sinusoid at the squarer output is, within a multiplicative constant, 
equal to cos (2?r(t - 0)/T). 

. There is no quadrature component with respect to the useful sinusoid at the 
squarer output that affects the synchronizer operation. 

Hence, S’S(W) and &S(W) are both zero for IwI < 27rB. 

Our remaining task is to find a baseband pulse g(t) for which (2-153) reduces 
to (2-154), with s~(t; E) band-limited as specified above. We select a pulse g(t) 
whose complex envelope gL(t) with respect to cos (?rt/T) is real-valued and band- 
limited: 

g(t) = dig&) cos $ [ 1 (2-156) 

where gl;(t) is a real-valued pulse whose Fourier transform Gh (w) is zero for 



2.5 Examples 153 

IwI > n/T-rB. Substituting (2-156) in (2-153) yields 

~(t; E) = fi c a,gL(t - mT - ET) cos [ $ (t - mT - ET)] 

= fis;(t;~) cos [f (~-ET)] 

with 
sL(t; E) = c (-1)” una gL(t - mT - ET) 

m 

As gL(t) is real-valued and band-limited to 1~1 5 n/T - rB, the same is true 
for SL(~;&); consequently, SS(W) = &S(W) = 0 for IwI < 27rB. Denoting the 
Fourier transform of g(t) by G(w), it follows from Section 1.2.2 that GL(w) and 
G(w) are related by 

G&)=fiu(w+;) G(w+;) 

where U(S) denotes the unit step function. Expressing that gL (t) is real-valued and 
band-limited yields the following conditions on G(w): 

u(w++(w+G)=u(-w++JG*(-~+G) (2- 157) 

u(w+;) G(w+;) =0 for (WI>;-aB (2-158) 

The condition (2-157) indicates that u(w) G(w) exhibits complex conjugate sym- 
metry with respect to w = 2n/T, while condition (2-158) imposes the bandwith 
limitation on g(t). 

Conditions yielding SS(W) = &S(W) = 0 for w = 0 
Now we derive less restrictive conditions on g(t), such that, in the absence 

of noise, SC(W) and &S(W) are zero for w = 0. Suppose we are able to select 
the baseband pulse g(t) such that 

+oO 

J s2(t;&) sin [$(t -ET)] dt = 0 

-03 

(2- 159) 

irrespective of the data sequence {uk}. When (2-159) is true, the following can 
be derived. 

(i) The spectral lines contained in s2(t; e) are orthogonal with respect to 
sin (2?r(t - .cT)/T). Consequently, the component at the symbol rate is, 
within a multiplicative constant, equal to cos (2?r(t - ET)/T). 
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(ii) 

(iii) 

Baseband Communications 

Let us denote the in-phase and quadrature components of s2 (t ; E) with respect 
to the useful sinusoidal component by WC (t ; E) and ws(t ; e>, respectively: 

s2(t; e) = & Re [wc(~; E) + jws(t; E)] exp j $ (t T)]] - E (2-160) 

According to Section 1.2, substituting (2-160) into (2-159) yields 

+oO 
o= 

J 
s2(t;-s) sin [$(t --ET)] dt 

-W 

fi +O” =-- 
2 J 

W&E) dt 

-W 

Hence, the integral of the quadrature component is zero. 

Because of (ii), both the quadrature spectrum SS(W) and the cross-spectrum 
SCS (w) between the in-phase component WC (t ; E) and the quadrature com- 
ponent ws(t ; E) are zero at w = 0. Indeed, 

Ss(O) = 
J 

(Jqws(t; e) w(t + u; E)l)i c-h 
-W 

ws(t + u; E) du I) t 
=o 

Similarly, 

Scs(O) = 
J 

(E[wc(t; E) w(t + u; &)])t du 

-W 

ws(t + U;E) du 

I) t 
=o 

Substituting (2- 153) into (2- 159) yields 

+w 

J 
-W 

s2(t;&) sin [g(t -ET)] dt = Eu,,,a,,,+,,I,, 
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where 
4-w 

In = 
J 

g(t) g(t - nT) sin F C-B 
( > 

(2-161) 

-CO 

In the following, we look for pulses g(t) which make In = 0 for all TZ. For these 
pulses, (2-159) is fulfilled; consequently, S’s(O) = Ssc(O) = 0. 

Substituting in (2-161) t by nT/2+ u, we obtain 

In = (-1)” Tg($+u) g(-$+u) sin(g) du (2-162) 

For even symmetrical or odd symmetrical pulses g(t), it is easily verified that 
the product g(nT/2 + U) g(-nT/2 + u is an even function of u. Hence, I, = 0 ) 
because the integrand in (2-162) is odd. We conclude that (2-159) is fulfilled when 
the baseband pulse g(t) at the squarer input exhibits even or odd symmetry. 

Now we consider the case where (2-157) is fulfilled; hence, the complex 
envelope gl;(t) of g(t) is real, so that (2-156) holds. Substituting (2-156) into 
(2-161) yields 

4-m 

In =2 
J 

gL@) gL(t - q cos($-) eos(:(t-nT))sin(F) dt 

-CO 

= (-1y jlmsL(t) gL(t - n3.)[sin (F) + f sin(F)] dt 

-03 

(2463) 
Noting that (2-157) implies that GL (w) = 0 for IwI > r/T, it follows that 
the Fourier transform of gL(t) gL(t - nT) is zero for 1~ 1 2 27r/T. As In in 
(2-163) can be interpreted as a linear combination of Fourier transform values of 
7 (t) gL(t - nT), evaluated at w = f27r/T and w = &47r/T, it follows that 

n = 0. We conclude that (2-159) is fulfilled when (2-157) holds, i.e., when 
U(W) G(w) exhibits complex conjugate symmetry with respect to w = 27r/T, or 
equivalently, when the complex envelope of the baseband pulse g(t) is real-valued, 

Let us summarize our results on self-noise reduction. 

(i) In the absence of additive noise, the spectra S’S(W) and SCS(W) are zero for 
iw I < 27rB when the complex envelope of g(t) with respect to cos (nt /T) is 
real-valued and band-limited to 1~1 < r/T - rB, or equivalently, when 
U(W) G(w) exhibits complex conjugate symmetry about w = r/T and 
G(w) = 0 for llwl- ?r/TI > n/T - rB. 

(ii) In the absence of additive noise, the spectra S’S(W) and SCS(W) are zero for 
= 0, when either g(t) exhibits even or odd symmetry, or the complex 

rnvelope of g(t) with respect to cos (nt/T) ’ is real-valued, or equivalently, 
U(U) G(w) exhibits complex conjugate symmetry about w = r/T. 
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Suppose the timing error is caused only by the quadrature component ws(t ; e) 
at the squarer output; this happens for a zero steady-state error at the PLL or for a 
symmetrical bandpass filter and a zero threshold level. When the condition under 
(i) is fulfilled, then self-noise does not contribute to the tracking error variance 
(provided that the closed-loop frequency response of the PLL or the equivalent 
lowpass frequency response of the bandpass filter are zero for IwI > 2nB); 
when one of the conditions under (ii) is fulfilled, the self-noise contribution to 
the timing error variance is proportional to the square (or even a higher power) 
of the normalized synchronizer bandwidth BLT. However, when the steady-state 
error of the PLL is nonzero, or when the bandpass filter is not symmetrical and/or 
the threshold level is nonzero, also the in-phase component ‘LUC(~; E) contributes to 
the timing error; when in this case one of the conditions under (i) or (ii) is fulfilled, 
the self-noise contribution to the timing error variance is essentially proportional to 
BLT, because the spectrum SC(W) of the in-phase component wc(t; E) is nonzero 
at w = 0. This illustrates the importance of keeping small either the steady-state 
error at the PLL or both the bandpass filter asymmetry and the threshold level. 

In most cases, the baseband pulse at the receive filter output is (very close 
to) an even symmetrical pulse satisfying the first Nyquist criterion, because of the 
equalization involved (see Section 2.1.2). Hence, because of the even symmetry 
of the baseband pulse, the receive filter output signal is well conditioned to 
be applied directly to the squaring synchronizer. However, if one prefers the 
squaring synchronizer to operate on a PAM signal with a baseband pulse satisfying 
one of the other conditions under (i) or (ii), the receive filter output should be 
prefiltered before entering the squaring synchronizer. The need for prefiltering is 
obvious when we compare in Figure 2-52, in the case of narrowband transmission, 

@T/2 n 

Figure 2-52 (a) lG(w)l f or E venSymmetrica1 Nyquist-I Pulse, 
(b) lG(w)l for Odd Symmetrical Pulse, (c) [G(w)1 Having 
Complex Conjugate Symmetry about w = r/T 
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the magnitudes jG(w)l f or an even symmetrical Nyquist-I pulse, for an odd 
symmetrical baseband pulse and for a baseband pulse for which ~(w)G(w) exhibits 
complex conjugate symmetry with respect to w = r/T (see Figure 2-52). 

Alternative Squaring Synchronizer Implementation 

Let us reconsider the case where the useful sinusidal component 
&i A cos (27r(t - ET)/T + $J), at the output of the squarer operating on 
the baseband PAM signal y(t ; E), is extracted by means of a narrowband bandpass 
filter, centered at w = 2n/T. The bandpass filter output signal va(t) is a 
sinusoidal signal exhibiting small fluctuations in amplitude and phase, and can 
be represented as: 

vo(t) = fiAo(t) cos $(t - El(t)T) + 11) 

where E(t) is the estimate of &, the normalized time delay of y(t; E). Denoting 
the equivalent Iowpass frequency response of the bandpass filter by HE(W) and 
the corresponding impulse response by hE (t), the bandpass filter output signal is 
given by 

Q(t) = 2Re [@) exp (j?)] (2-165) 

z(t) = J hE(t - u) v(u; E) exp 
(2-166) 

-00 

(2- 167) 

and V(w ; e) denotes the Fourier transform of v(t ; e). Comparing (2- 164) and 
(2-165), it follows that the timing estimate satisfies the following equation: 

w = -& arg [z(t)] + $ (2-168) 

The resulting tracking error variance E [(i(t) - E(t))2] is given by (2-144), with 

lc’rl = 0 (i.e., for a zero threshold level). 
An alternative squaring synchronizer version, inspired by (2-166) and (2- 168), 

is shown in Figure 2-53 (compare also with Section 5.4 where we take a different 
point-of-view). The synchronizer operates on (quantized) samples of the PAM 
signal y(t ; c), taken by a fixed clock operating at rate l/5$, and is well suited for 
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r-l Fixed Clock 

Figure 2-53 Alternative Implementation of Squaring Synchronizer 

a fully digital implementation [ 11. The timing estimate at instant kT, is given by 

Pd(kT,) = -& 
ti 

arg [%(k%)] + 5 (2-169) 

where 

z&T,) = E hd(k - m) u(mT,; e) exp (-j2nmy) 
m-00 

+a/T, 
= 

J 
ffd[exp(“% )I vd exp [ (u+$;&)] exp(MT,) 2 

-r/T. 
(2-170) 

with l/Td = 7/TS, and 

In WW, {hd(m)} is the impulse response of a digital lowpass filter with 
frequency response Hd(wT,) whose bandwidth B is much smaller than the symbol 
rate: 

Hd[exp(juT,)] = 0 for 21rB < IwI < r/T8 

In order that (2-170) be the discrete-time version of (2-166), we need 7 = 
Ts /T, or equivalently l/Td = l/T. However, as l/T and l/T8 are the frequencies 
of independently running transmitter and receiver clocks, the value of the ratio 
T,/T is not known exactly at the receiver. Hence, in practice we rather have 

2n 27r 
-= 
Td 

T + flaAf, with (2-171) 

where Af,T represents an inevitable relative frequency offset between the receiver 
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and the transmitter. We call l/Z’d the nominal symbol rate, l/T the actual symbol 
rate, and l/y the nominal number of samples per symbol. 

For the sake of implementation, it is useful to select y = Li /L2, where Lr and 
L2 are (small) integers with no common divisor: in this case, exp (j2lrmr) takes 
on values from a set of size Ls only. 

Let us assume that the sampling at rate l/T3 causes no frequency aliasing of 
the signal v(t) exp (-jZnt/Td) within the lowpass filter bandwidth, i.e., 

Hd(ev(jwZ)) V 1 =O for m#O and Iwl<R/TS 

(2-172) 
Denoting the bandwidth of the squarer output signal ~(t; e) by W, i.e., V(w; E) = 0 
for Iw 1 > 2nW, (2-172) is fulfilled when the sampling rate l/T8 satisfies 

+W+B+$ 
3 

Making use of (2-170), (2-171), and (2-172), (2-169) becomes 

ilkT, 
b(K) = El(kT,) + 2n- 

(2-173) 

(2-174) 

where E^(kT,) is given by (2-168), with 

+r/T, 
z(t) = J Hdexp[j(wT, - 27WJi>l V (u+$c)exp(jwt)g 

-n/T, 

The first term in (2-174) is the estimate E^ which would result from a squarer 
followed by a bandpass filter with an equivalent lowpass frequency response 
HE(W), given by 

b(w - 27Wc) Z Iwl < +2 
h3(W) = (2- 175) 

0 otherwise 

The second term in (2-174) increases (for Aft > 0) or decreases (for Afe < 0) 
linearly with time. The presence of this second term is easily explained when 
we notice that the synchronizer measures phase with respect to a frequency equal 
to the nominal symbol rate l/Td instead of the actual symbol rate l/T, because 
the multiplication of the squarer output samples by exp (- j2nmy) translates to 
DC the frequency l/Td. Indeed, the useful sinusoidal component at the squarer 
output can be written as 

&i A cos [ $ p _ +> T + $11 = fi A cOS $f [ $ it - @) Td + ‘I] 
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where 
(2-176) 

2xAf,t 
Ed(t) = e(t) + -yjy 

is the normalized time delay of the useful sinusoid represented with respect to the 
frequency l/Td. Hence, it is the normalized delay Ed(t) rather than e(t) that is 
estimated by the synchronizer. As both &d in (2-176) and id in (2-174) contain 
the same term which is linear in time, we obtain id - &d = 2 - E. Hence, the 
squaring synchronizer from Figure 2-53 yields the same timing error variance as 
the synchronizer consisting of a squarer, followed by a bandpass filter with an 
equivalent lowpass frequency response given by (2-175). 

In order to reduce the computational complexity of the narrowband digital 
lowpass filter, we might compute an estimate &j only once per M samples instead 
of once per sample. Also, for even M, we can select 

1 -M/297l<M/2-1 
hd(m) = 

0 otherwise 

yielding 
pdp) 1 

= 
Isin WuW2)l 
lsin (UT, /2) 1 

The resulting estimates are given by 

&d(kMT,) = -& arg [@MT,)] - $ 

where 

z(kMT,) = Mx1 vk(mT,; e) exp (-j27rmy) 
m=O 

(2- 177) 

V&&) = .(t+ (k-a) MT.;E) 

Note that z(kMT,) is the Fourier transform, evaluated at the frequency y/T, = 
l/Td, of a block of A4 consecutive samples of the sequence { V( mT, ; E)}, centered 
at the instant kMT,. The computational complexity of the Fourier transform 
(2-177) can be considerably reduced by taking y = l/4 (corresponding to a 
nominal sampling rate of four times the symbol rate), in which case we obtain 

(M/2)-1 
Re[z( kMT8)] = c (-l)mvk(2mT,; 6) 

m=O 

(Mm-1 
Im[z(kMT,)] = C (-l)m+‘vk((2m + l)T,; &) 

m=O 

so that the Fourier transform computation consists only of additions and subtrac- 
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tions of squarer output samples, which can be performed efficiently by means of 
pipelining. 

Now let us investigate under which conditions y = l/4 is a valid choice. 
From (2-173) it follows that in order to avoid frequency aliasing, y = l/4 
requires (W + B) Td < 3, where W and B equal the bandwidth of the squarer 
output signal v(t; E) and of the digital lowpass filter, respectively. In the case of 
narrowband communication, the bandwidth of the PAM signal y(t; E) is between 
1/(2T) and l/T, hence the bandwidth W of the squarer output signal v(~;E) 
satisfies l/T < W < 2/T; for the digital lowpass filter, we can conservatively take 
B < 1/(2T). Using T Z Td [see (2-171)], we obtain (W + B) Td < 5/2 < 3, 
so that y = l/4 is valid choice. When the bandwidth of the PAM signal y(t; e) 
exceeds l/T and/or a nonlinearity different from the squarer is used, the bandwidth 
W of the signal v(t ; E) at the output of the nonlinearity might be so large that the 
condition (2-173) is violated for y = l/4. In this case, a smaller value of y must 
be selected (which corresponds to a nominal sampling rate higher than four times 
the symbol rate) in order to avoid frequency aliasing, at the expense of a more 
complicated computation of the Fourier transform (2-177). 

Numerical Example 

In order to illustrate the results from the previous sections, we now evaluate 
the loop noise power spectral density and the timing error variance, in the absence 
of additive noise, for a squarer followed by a PLL. The squarer operates on a 
PAM signal with independent binary (f 1) equiprobable data symbols and an odd- 
symmetrical baseband pulse g(t), given by 

g(t) = 
1 

- sin $$ It I < T 

0 otherwise 
and shown in Figure 2-54. This is the case illustrated in Figures 2-12 and 2- 13 

g(t) 

Figure 2-54 Odd-Symmetrical Pulse g(t) 
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[where the PAM signal at the squarer input has been denoted G(t ; E), being the 
derivative of the PAM signal y(t ; E) at the receive filter output]. Although g(t) 
is not a band-limited pulse, the results we will obtain are representative also for 
narrowband transmission. The advantage of considering a PAM pulse g(t) whose 
duration is limited to two symbol intervals is that the computations become very 
simple. For a narrowband pulse which lasts for many symbol intervals, we have to 
resort either to the much more complicated expressions from the Appendix at the 
end of this section or to computer simulations; at the end of this section, simulated 
in-phase and quadrature spectra, resulting from a narrowband pulse g(t) at the 
squarer input, are presented. 

As can be seen from Figure 2-l 3, the squarer output is nonzero only when a 
data transition occurs. Hence, the squared PAM signal ~(t; E) can be written as 

where 

v(t;E)=xdmql 
T 

t-mT--Z-ET 
m > 

a(t) = 

2[1+cosF] ItI < g 

0 otherwise 

Note that dm and dm+k are statistically independent for k # 0. The squared PAM 
signal is multiplied with the VCO signal of the PLL; this yields the following 
error signal: 

where 
qz(t; 4 = qz,c(t) sin (2re) + qs,S(t) co9 (2?re) 

qz,c(t) = f&(t) cos F 
( ) 

qz,s(t) = ql(t) sin g 
( > 

and e = E - 2 denotes the normalized timing error. The pulses q2,c (t) and qZ,S(t) 
are shown in Figure 2-55. 

The timing error detector characteristic is given by 

+oO 

(Jw; E, a, = -+ Wkl J &; e)dt 
-CXJ 

= - f sin (27~) 
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4.0 

2.0 

0.0 

-2.0 

-4.0 

Figure 2-55 (a) The Pulse qz,&), (b) The Pulse q&t) 

from which it follows that the timing error detector slope at e = 0 equals -7r. 
The loop noise is given by 

where bm = -2 (dm - E[dm]) . Noting that (bm } is a sequence of independent 
equiprobable binary (311) random variables, the loop noise power spectral density 
SN (w ; e) is simply given by 

SN(w; e) = &lo,cw; e>12 

where &2(w; e) is the Fourier transform of q2 (t ; e). Taking into account the even 
and odd symmetry of qs,c(t) and qz,s(t), respectively, SJJ(W; e) becomes 

SIV(~; e) = SC(~) sin2 (27re) + Ss(w) cos2 (27re) 

where SC(w) and S’s(w) are the in-phase and quadrature spectra at the squarer 
output, which are given by 

In the above, Qz,c(w) ad Qs,s( w ) are the Fourier transforms of q2,c (t ) and 
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wT/2n 

Figure 2-56 (a) In-Phase Spectrum SC (w)/T, (b) Quadrature Spectrum Ss (w)/T 

!?z,s@>, while &l(w) is the Fourier transform of (I&): 

Qdw) = 2&,,(w) + Q o(w-$)+Q~(w+$) 

with 

&o(w) = T 
sin (G/2) 

wT/2 

The in-phase and quadrature spectra SC(W) and Ss (w) are shown in Figure 2-56. 
The in-phase spectrum SC(W) has a lowpass shape [because qz,c(t) is a lowpass 
pulse], which can be approximated within the loop bandwidth by the constant value 
SC(O); consequently, its contribution to the tracking error variance is essentially 
proportional to the normalized loop bandwidth BLT. The quadrature spectrum 
SS(W) is zero for w = 0 [because as,c(t) exhibits odd symmetry]; consequently, 
its contribution to the tracking variance is essentially proportional to the square 
(or even a higher power) of BLT. 

For a small steady-state error e,, the timing error detector slope is close to 
-7r, and the timing error variance is well approximated by 

+=J 
2%(o) BL var[e] = .1r2 sin2 (27re,) + 

cos2 (27re,) 
r2 

J 

dw 
lH(w>l2 Ww) - 27r 

where H(w) is the closed-loop frequency response of the PLL. For a perfect 
second-order loop with large damping and small bandwidth, numerical integration 
yields 

var[e] = 0.05 (BLT) sin2 (2?re,) + 0.045 (BLT)~ cos2 (2?re,) 
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Table 2-2 Timing Error Variance 

var [e] 

BLT = 1O-2 

es =o 

e, = 0.03 

BLT = 1O-3 

es =o 

es = 0.03 

4.5 x 1o-6 

22.0x 1o-6 

4.5 x 1o-s 

179.5 x 1o-8 

Numerical values for var[e] have been obtained in Table 2-2. Note that a small 
steady-state error can have a large effect on the timing error variance, especially 
when the normalized loop bandwidth BLT is very small. 

Finally, we present in Figure 2-57 the simulated in-phase and quadrature 
spectra SC (w ) and Ss (w) at the squarer output, in the case where the Fourier 
transform G(w) of the baseband pulse g(t) at the squarer input has a cosine rolloff 

Figure 2-57 (a) In-Phase Spectrum Sc(w)/T for Narrowband Transmission 
(50% Excess Bandwidth), (b) Quadrature Spectrum Ss(w)/T for Narrowband 
Transmission (50% Excess Bandwidth) 
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amplitude shaping with a 50 percent excess bandwidth and no delay distortion, i.e., 

G(w) = f [I -sin (%)I 

/wTI < 7r( 1 - CY) 

7r( 1 - a) < ]wT] < 7r( 1 + CY) 

0 otherwise 

with a = 0.5. As in the previous example, we observe that SC (w ) has a lowpass 
shape, whereas S’s(w) is zero at w = 0 [because of the even symmetry of g(t)]. 

Main Points 

. The squaring synchronizer is a spectral line generating clock synchronizer. 
Squaring a noisy PAM signal yields spectral lines at DC and at multiples of 
the symbol rate. The spectral line at the symbol rate can be extracted by 
means of a PLL or a narrowband bandpass filter. 

l When the bandwidth of the PAM signal to be squared does not exceed l/( 2T), 
the squarer output contains a spectral line at DC only, which evidently carries 
no timing information. A spectral line at the symbol rate (and at multiples 
thereof) can be obtained by using a higher-order nonlinearity. 

. For narrowband transmission, the bandwidth of the PAM signal is between 
l/(273 and l/T. In this case the squarer output can contain spectral lines 
only at DC and at the symbol rate. The spectral line at the symbol rate is 
caused by the data transitions and disappears in the absence of transitions; 
therefore, the transmission of long strings of identical symbols should be 
avoided. The spectral line at the symbol rate becomes stronger when the 
bandwidth in excess of l/(22’) increases. 

. When the Fourier transform G(w) of the baseband pulse g(t) satisfies 

and 
u(w+f) G(w+;) =0 for ]wl> ;-aB 

then, in the absence of noise, the quadrature spectrum S’s(w) and in- 
phase/quadrature cross-spectrum S&(w) at the squarer output are both zero 
for Iw I < 27rB. Hence, S’s(w) and SCS(W) do not affect the synchronizer 
operation when the synchronizer bandwidth does not exceed B. 

. When the baseband pulse g(t) exhibits even or odd symmetry, or its Fourier 
transform G(w) satisfies 

++;) G(w+;) =u(-w+$) G*(-w+;) 

then, in the absence of additive noise, Ss (w) = &S(W) = 0 for w = 0. 
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. 

. 

When the squarer is followed either by a PLL with zero steady-state error or 
by a symmetrical bandpass filter, and timing is derived from the zero crossings 
of the bandpass filter output signal, then only the quadrature component at 
the squarer output contributes to the timing error. In this case, when in the 
absence of noise Ss(w) = SCS(W) = 0 within the synchronizer bandwidth, 
self-noise is zero; when in the absence of noise Ss(w) = &S(W) = 0 for 
w = 0, the self-noise contribution to the timing error variance is essentially 
proportional to the square (or even a higher power) of the normalized loop 
bandwidth BLT. On the other hand, when either the steady-state error of the 
PLL is nonzero or the bandpass filter is not symmetrical and/or the threshold 
level at the bandpass filter output is nonzero, then also the in-phase component 
at the squarer output contributes to the timing error. In this case, the self-noise 
contribution to the timing error variance is essentially proportional to BLT. 
An alternative version of the squaring synchronizer consists of a squarer, 
operating on samples of the noisy PAM signal, followed by Fourier transform 
computation. This version is well-suited for digital implementation. For 
narrowband transmission, a nominal sampling rate of four samples per symbol 
is sufficient, in which case the Fourier transform computation reduces to the 
addition and subtraction of squarer output samples. This digital version of 
the squaring synchronizer is also studied in Section 5.4 in a different context. 

Bibliographical Notes 

These bibliographical notes consider not only spectral line generating syn- 
chronizers using a squaring nonlinearity, but also synchronizers with other non- 
linearities. 

Squaring Nonlinearity 
The conditions (2-157X2-158) for zero self-noise have first been derived 

in [ 11, which investigates the tracking performance resulting from a squarer plus 
bandpass filter, operating on a prefilterd PAM signal. Also, the paper considers 
the effect of prefilter bandwidth bandpass filter bandwidth, and bandpass filter 
detuning on the tracking error variance. 

The squarer plus bandpass filter has also been dealt with in [2]. The effects 
of bandpass filter bandwidth and detuning, along with a nonzero threshold, are 
studied. It is shown that a baseband PAM pulse with linear delay characteristic 
(i.e., a pulse with even or odd symmetry with respect to an arbitrary time instant) 
yields a self-noise power spectral density which is zero for w = 0 (assuming a 
bandpass filter which is symmetrical about the symbol rate, and zero threshold 
level). 

Prefiltering the received PAM signal before it enters the squarer has also 
been examined in [3]. For a given received baseband pulse, the optimum pre- 
filter frequency response has been derived, which eliminates the self-noise and 
simultaneously minimizes the tracking error variance caused by additive noise. 

Expressions for the in-phase and quadrature spectra and the in- 
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phase/quadrature cross-spectrum of the squared baseband PAM signal have 
been presented in [4], and several interesting properties of these spectra have been 
derived. Spectra are shown in the case of cosine rolloff baseband PAM pulses; 
the in-phase spectra have a lowpass shape, whereas the quadrature spectra are 
zero for w = 0 (because of the even symmetry of the baseband pulse). 

Whereas most papers analyzing the squaring synchronizer consider statisti- 
cally independent data symbols, the effect of line coding on the tracking perfor- 
mance has been investigated in [S]. It is shown that the considered codes (AMI, 
4B3T, MS43, and HDB3) yield a similar tracking error variance, which is upper 
bounded by the tracking error variance for independent ternary symbols. 

The alternative squaring synchronizer implementation from Section 3 has been 
introduced in [6]. 

Other Nonlinearities 
The tracking error variances for squaring, absolute value, and fourth-power 

nonlinearities have been compared in [7] by means of computer simulations. It 
depends on the excess bandwidth and the pulse shape which nonlinearity performs 
best. 

In [8], the tracking performance resulting from the delay-and-multiply non- 
linearity is investigated. It is shown that the tracking error variance is only weakly 
dependent on the value of the delay when the excess bandwidth is small, in which 
case the performance is nearly the same as for a squaring nonlinearity. Neglecting 
additive noise, it has been reported in [9] that for several spectral line generating 
synchronizers the in-phase spectrum at the output of the nonlinearity has a lowpass 
shape, whereas the quadrature spectrum is (close to) zero at w = 0. In order to 
avoid large tracking errors due to self-noise, it is recommended to keep small the 
steady-state timing error of the PLL following the nonlinearity. For zero steady- 
state timing error, the tracking error variance is found to be proportional 
square (or even a larger power) of the normalized loop bandwidth BLT. 

to the 

The in-phase and quadrature spectra and the in-phase/quadrature cross- 
spectrum, at the output of a fourth-power nonlinearity operating on a noise-free 
PAM signal, have been evaluated in [lo]. These spectra are shown for cosine 
rolloff pulses, and their shape is according to the general observations made in [9]. 
Also, it is proved that self-noise is absent in the case of 2Nth order nonlinearity, 
provided that the Fourier transform G(w) of the baseband PAM pulse at the input 
of the nonlinearity satisfies the following conditions: 

u(w+;) G(w+;) =u(-w+;) G*(-u+;) 

u(u+$) G(u+$) =0 for ]wl >$ [$-7rB] 

which are a generalization of (2-157) and (2-158). 
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It has been shown in [l l] that for an arbitrary memoryless spectral line 
generating nonlinearity, the self-noise contribution to the tracking error variance 
can be made very small when the baseband PAM pulse g(t) is “locally symmetric”, 
i.e., 

g(kT + u) = g(kT - u) 
T 

I4 < - 2, k=O,fl,f2 ,... 

However, a band-limited finite-energy pulse g(t) cannot be locally symmetric. For 
a given excess bandwidth, g(t) can be selected to minimize the “local asymmetry”. 
For small excess bandwidths, these optimized pulses approximately satisfy the 
conditions (2-157)-(2-l%), which yield zero self-noise in the case of a squaring 
nonlinearity. 

A quite general analytical method for evaluating the power spectral density 
of the timing error has been presented in [12], for correlated data symbols (such 
as resulting from coding), an arbitrary time-limited baseband PAM pulse, and an 
arbitrary memoryless nonlinearity. However, the computational complexity rapidly 
increases with increasing PAM pulse duration; hence, the proposed method is less 
convenient for band-limited transmission. 

The “wave difference” symbol synchronizer, resembling a spectral line gener- 
ating synchronizer, has been introduced in [ 131. The timing error detector operates 
on samples of the received PAM signal, taken at twice the baud rate; its output 
during the kth transmitted symbol is given by 

x&, 2) = NL[y(kT+7+E”T+T/4;&)]-NL 
T 

kT+T+iT- 4;~ 

(2-178) 

where T is a time shift such that E[x~(&, e)] = 0 for e = &, and NL( a) is a 
nonlinear function. A spectral line generating synchronizer, using the nonlinearity 
NL(.) followed by a PLL, would produce an error signal given by 

x(t; e, 6) = NL[y(t)] sin $(t-s-mT)] (2- 179) 

where sin (2n(t - ? - iT)/T) denotes the VCO output signal. The timing error 
detector outputs (2-178) and (2-179) are related by 

Xk(E, 2) 
T T 

=x kT+Y++T- ;?-;~,i kT+Y+iT+ --;&,t 
4 > 

from which it can be derived that the wave difference symbol synchronizer 
has essentially the same tracking performance as the spectral line generating 
synchronizer, provided that the error signal (2-179) of the former is sampled 
at twice the baud rate (halfway between the zero crossings of the VCO output 
signal) before entering the loop filter of the PLL. As the wave difference symbol 
synchronizer operates on samples of the received PAM signal, it is well-suited for 
digital implementation. 
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Appendix: Calculation of the Spectra SC(W), 5’s (w ) and Scs (w) 

Denoting by fi A cos (27r(t - ET)/T + $) the useful sinusoid at the squarer 
output, we introduce a signal w(t; p), which is defined as 

w(W) = 
1 
{?I@; e) - E[v(t; E)]} a cm 

[ 
$(t--ET)+++@ II (2-180) 

LP 

where v(t ; E) denotes the squarer output, and [. . .lLp indicates that the signal 
between square brackets is passed through an ideal lowpass filter with frequency 
response HLP(w), given by 

l 1 I4 L X/T 
HLP(W) = 

otherwise 

Substituting in (2-180) the values p = 0 and @ = 7r/2, we obtain 

w(t; 0) = [%(C 41LP 

w(t; r/2) = [w(c E)lLP 

As w(t; ,0) is cyclostationary with period T and band-limited to ]w ] < r/T, w(t; p) 
is wide-sense stationary (see Section 1.1.2). Consequently, the cross-correlation 
function E[w(t; pr) w(t + u; &)I d oes not depend on t and will be denoted as 
R, ( U; ,&, ,&). The cross-spectrum S, (w ; /?I, pZ) between w(t ; pr ) and w(t; pZ) 
is the Fourier transform of R, (u; /3r, pZ). The lowpass content of the spectra 
SC(W), G(w), and S SC w ( ) is easily obtained from SW (w ; &, pz): 

IHLP(W) I2 SC(W) = SW (w; (40) (2-181) 

IHLP(W) I2 ss (w> = SW (w; +,+) (2-182) 

IHLP(W) I2 scs (w) = SW (w; 0,7$4 (2-183) 

As the one-sided synchronizer bandwidth (in hertz) does not exceed 1/(2T), the 
lowpass content of these spectra is sufficient for determining the timing error 
variance. 

The cross-correlation function the cross-spectrum 
SW (w ; , pZ) can be determined from the autocovariance function IS,, (t , t + U; E) 
of the squarer output ~(t ; E), which is defined as 

K&t + uy) = JT[w(t; E) w(t + u; E)] - E[u(t; &>I Jqv(t + u; 41 

As w(t; E) is cyclostationary with period T, K,, (t, t + u; E) is periodic in t with 
period T, and can be expanded into the following Fourier series: 

K&t + w) = Ch,,(u) exp 
m 

F (t - ET)] (2-184) 
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with tT/2 
h&m(U) = ; J I<, (t , t + u; E) exp -j T (t - ET)] & 

-T/2 

A similar reasoning as in Section 2.5.2 yields 

&&Pl,P,) = (Ky(tJ+u;E) 2 cos [$cT)+$+P,] 
1 

x co9 $(t + 
[ 

u-ET)+Jb+Pz 111 t LP 

= f [h,o(u) exp [-j(F+P2 -PI)] 

+ h,0(u) exp j 
[C 

T + P2 - Pl )I 
+ &2(u) exp j 

[( 
~+zll+/%+pz I 

+ h,2(4 exp -j 
[ ( 

~+2d+P1+/32 >I1 LP 

where ( ...)t denotes time-averaging with respect to the variable t. Hence, the 
cross-spectrum SW (w ; ,& , pZ) is given by 

SW (4 A, P2) = IHLP(W)I 2 f bv,o(u+ g) exPW&-P2)) 

+ sv,o u - $ 
( > exP (-3 (Pl - P2)) 

+s,,4 w- $ 
( > 

exP (j (2$ + P1+ P2)) 

+ sv,2 (u + $) exP c--j (210 + Pl + pz))] 

(2-185) 
where S v,m(w) is the Fourier transform of k,,,,,(u). 

In the following we compute $J, k, ,m( u), and SV ,,,, (w) in the case where the 
nonlinearity is a squarer, and the input to the squarer is a noisy PAM signal. Using 
(2-181), (2-182), (2-183), and (2-185), the spectra SC(W), Ss(w), and &S(W) for 
IwI < R/T can be obtained from 4, $,0(w) and S,,~Z(W). 

Now we will derive an expression for the N x N, S x N, and S x S 
contributions to the coefficients k tr ,m(u) in the expansion (2-184) and their Fourier 
transform s V ,m (w), under the assumption of independent data symbols. 
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The N x N Contribution 
Making use of the Gaussian nature of the additive noise n(t) at the squarer 

input, the contribution of the N x N term to the autocovariance function of the 
squarer output is 

KJW + w) lNxN = E[n2(t) n2(t + u)] - E[n2(t)] E[n2(t + u)] 

= R;(O) + 2 R;(u) - R;(O) 

= 2 RX(u) 

As n(t) is stationary, the N x N term is also stationary, so its contribution to 
the autocovariance function Ii’, (t , t + u; e) of the squarer output does not depend 
on t. Hence, 

+oO 
Sv,o(4 JNxN= 2 J (2-186) 

sJ,m(w) ,,,,zo for m#O (2-187) 

where S, (w ), the Fourier transform of R,(u), is the spectrum of the noise n(t). 

The S x N Contribution 

The contribution of the S x N term to the autocovariance function of the 
squarer output is given by 

ri;(t, t + u; E) ISxN= 4&(u) A2 c g(t - mT - ET) g(t + u - mT - ET) 
m 

which is periodic in t with period T. Hence, 

+oO 
ICv,mCU) (sx~= f 4&(u) A2 1 g(t) g(t + u) exp [ 1 -j ?$ & -CO 

Sq,,m(w) ISxN= $ 4 A2 J S~(W - v) G(v) G( F - v) g (2-188) 

-CO 

For narrowband transmission, G(w) = 0 for jwj > 2r/T, yielding 
G(w)G(f4n/T - w) = 0; in this case, &,&2(w) (sxN= 0, so that only 

Sd4 ISxN contributes to the low-frequency content of S’s(w), SC(W), and 

&s(w). 
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The S x S Contribution 
Introducing the function p,,(t) = g(t) g(t - nT), the S x S term can be 

written as 

S x S term = x urn am+n pn(t - mT - ET) 
m,n 

For an arbitrary data symbol distribution, the evaluation of the contribution of the 
S x S term to the autocovariance function of the squarer output is straightforward 
but tedious. Therefore, we make the simplifying assumption that the data symbols 
are zero-mean (i.e., Al = 0), which is valid in many cases of practical interest. 
Under this assumption, we obtain 

lcU(t~ t + u; E) (sxs = C [E[Um am+n Ui Ui+j] - E[um um+n] E[ Qi G+j]] 

m,n,i,j 

XJI~(~-~T-ET)~~(~+‘ZL-~T-ET) 

= (Aa - 3Ai) xpo(t - mT - ET) po(t + ‘1~ - mT - ET) 

+ 2Ai xln(t - mT - ET) pn(t + u - mT - ET) 
m,n 

where we have taken into account that 

E[um urn+ ui R+J *I= As 

I 

Aa i=mandj=n=O 

(j=n = 0 and i # m) or (i = m and j = n # 0) 
or (i= m+nandj= -n and i # m) 

0 otherwise 

A2 n=O 
E[um um+n] = 

0 otherwise 

This yields 

ICu,mCU) 1~~s~ + (4 - 34) rpo(t) po(t + u) exp [-j y] dt 

-00 

+ $2~4;) jmp.(t) pn(t + u) exp [-jy] dt 
n -CCl 

(A - 3A;) PO(W) PO 

+$A: C Pn(u)Pn(F-U) 

(2-189) 

n 
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where Pn (w), given by 

Pn(w) = TG(u - v) G(v) exp (-jvnT) g 

--oo 

(2-190) 

is the Fourier transform of p,,(t). The infinite summation over n in the second 
term of (2-189) can be avoided by substituting (2-190) for Pn(w): 

where 

F(w,v,p,m)=G(w--v)G(v)G -P G(P) 
> 

Making use of the identity 

c e-jwnT 

n 

where S(w) denotes a Dirac impulse at w = 0, we obtain 

~w h(+u) = ; gy+p,p,m) g (2-191) 
--oo 

In the case of narrowband transmission, G(w) = 0 for 1~1 > 2n/T; hence, 

> 
=0 for Ikl>l or I&ml>1 

so that the summation over k in (2-19 1) contains three nonzero 
and only one nonzero term when m = -2 or m = 2. 

terms when m = 0 

In summary, the following results have been obtained: 

(0 SC(W), SS(W), and S cs o in ( ) t erms of S,(w; ,&, ,&): (2-181), (2-182), and 
(2-183) 

(ii) S,(w; ,L$, p2) in terms of &,c(w) and S,,fa(w): (2-185) 
(iii) Contributions to S, ,0(w) and SV ,&a(w): 

N x N contribution: 

S x N contribution: 

S x S contribution: 

(2-186) and (2-187) 

(2-188) 

(2-189), (2-190) and (2-191) 
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2.5.2 Example 2: The Synchronizer with Zero-Crossing 
Timing Error Detector (ZCTED) 

The synchronizer with ZCTED is an error-tracking synchronizer, whose block 
diagram is shown in Figure 2-14, and whose principle of operation is illustrated in 
Figure 2-15. The synchronizer adjusts the phase of the square-wave VCO signal 
such that its negative zero crossings nearly coincide with the zero crossings of the 
PAM signal y(t; E) at the input of the timing error detector. As the nominal zero- 
crossing instants of the PAM signal in general do not coincide with the decision 
instants at the receive filter output, the VCO signal must be delayed appropriately 
before activating the sampler in the decision branch. 

The Zero Crossings of the PAM Signal y(t; E) 

The PAM signal y(t; e) at the input of the synchronizer is given by 

y(t; e) = c urn g(t - mT - ET) + n(t) 
m 

where {am} is a stationary sequence of binary antipodal (f 1) data symbols, g(t) 
is the baseband pulse, and n(t) is stationary noise. We have chosen the origin of 
time such that g(t) takes on its maximum value at t = 0. 

A zero crossing of y(t; &) occurs in the interval (kT + ET, (k + l)T + ET) 
only when the data symbols al, and ak+i are different, i.e., akak+l = -1. This 
zero-crossing instant, which we denote by tl,, is a random variable, depending on 
the data symbols (am ) and on the additive noise n(t). We decompose tl, as 

tk = kT+&T+rk 

where 7k is the shift of the zero-crossing instant i!k with respect to the instant 
kT + ET, corresponding to the maximum value of the kth transmitted pulse. 
Expressing that y(tk; E) = 0 when aka)+i = -1, we obtain 

0 = Uk[g(Tk) - g(rk - T)] + C ak-m g(rk - mT) + n(kT + eT + ‘k) 

m#O,mfl 
(2-192) 

Assuming a large signal-to-noise ratio and rapidly decreasing values of lg(t)l for 
ItI > T, the second and third term in (2-192) are much smaller than g(Tk) and 
g( 7k - T). Therefore, rk is in the vicinity of the value 7, which makes zero the 
first term of (2-192): 

gp) = g(T - T) (2-193) 

The relation (2-193) is illustrated in Figure 2-58. It follows from (2-193) that an 
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Figure 2-58 Determination of ‘5 

even symmetric puke g(t) yields T = T/2. Decomposing Tk as 

where wk denotes the random deviation, normalized to the symbol duration T, of 
rk with respect to 5, it foIIows from Figure 2-59 that wk is well approximated by 

1 
wk = - b al, y(kT+d’+7;&) 

c ak-m Sm -I- ak nk 

m#O,m#l 1 
(2-194) 

which relates the fluctuation of the zero-crossing instants of y(t; a) to the data 
sequence, the baseband pulse, and the noise. In (2-194), gm and nk are short-hand 

ak y(kT + ET + U; E) 

Figure 2-59 Linearization of T 
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notations for g(mT + P) and n( LT + ET + ?;), respectively, while 

b = T[g’(7 - T) - g’(T)] 

is the normalized slope at the instant kT + ET + 7, and g’(t) is the derivative of 
g(t). In the case where the data symbols are statistically independent, we obtain 

E[Wk 1 akak+l = -11 = f (E[Wk ]Uk = 1, ak+l = -11 + E[Wk 1 Uk = -1, a+1 = 11) 

= f (l!?[wk 1 al, = l] + E[wk 1 ak = -11) 

=o 

This indicates that averaging the zero-crossing instant tk over the noise and the 
data symbols yields the instant kT + ET + 9. For correlated data symbols, we 
might have E[?& I akak+i = -11 # 0, in which case the average zero-crossing 
instant is different from kT + ET + ?. 

Tk-acking Performance 

The ZCTED can be built with sequential logic circuits and is mostly used 
in combination with charge-pump phase-locked loops. A detailed discussion of 
charge-pump PLLs is presented in Section 2.7 of Volume 1. As the exact analysis 
of charge-pump PLLs is rather complicated, we resort to the quasi-continuous 
approximation (see Section 2.7.2 of Volume 1). It should be noted that the quasi- 
continuous analysis gives no indication about the frequency ripple introduced by 
the charge-pumps. Fortunately, the results from the quasi-continuous analysis are 
very close to the exact results, when the normalized loop bandwidth BLT is in the 
order of 0.01 or less (which are the BLT values of practical interest). 

The synchronizer is analyzed under open-loop conditions: the loop is opened 
(say, at the loop filter input), and to the timing error detector we apply the PAM 
signal y(t; E) and a square-wave VCO signal with negative zero crossings at the 
instants kT + iT + 7, with I& - $1 < l/2. The statistical properties of the timing 
error detector output signal are determined under the assumption of statistically 
independent equiprobable binary (f 1) data symbols; results for nonequiprobable 
data symbols are presented in Section 2.5.2. 

As shown in Figure 2- 15, the signal ~(t ; &, 2) at the output of the ZCTED 
consists of pulses with constant magnitude Ki, occurring when the input signal 
y(t; E) crosses the zero level. The pulse width equals the time difference between 
the actual zero crossing of y(t ; e) and the negative zero crossing of the VCO signal; 
the polarity of the pulses is positive (negative) when the zero crossing of y(t; E) 
comes earlier (later) than the negative zero crossing of the VCO signal. Assuming 
that akak+i = - 1, a pulse occurs in the interval (kT + ET, kT + T + ET); its 
width equals T(?& + e), where e = E - i and ?.& is given by (2-194). 
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The exact analysis of the synchronizer is very difficult, because it is the width 
rather than the magnitude of the pulses at the ZCTED output which depends on 
wk and e. For loop bandwidths which are much smaller than the symbol rate, 
the synchronizer operation is essentially determined by the frequency content of 
the timing error detector output signal near w = 0. Therefore, we will replace 
the actual timing error detector output signal by a fictitious signal with the same 
frequency content near w = 0, for which the analysis becomes much simpler. This 
approximation is as follows: 

z(t; E, 8) = c Zk(E, e> p(t - Kf - ET - 7) 
k 

where 

kT+T+rT 

Zk(&, 2) = 
J 

x(t; c, i) dt = h’l T(wk + e) dk 

kT+.cT 

and p(t) is a unit area lowpass pulse [equivalently, its Fourier transform P(w) 
equals 1 at w = 01. As long as P(w) is essentially flat within the loop bandwith, 
the shape of the pulse will turn out not to be important; for example, one could 
think of p(t) as a rectangular pulse of width T, because in practice BLT << 1. 
The switching variable dk = (1 - akak+1)/2 takes the value 1 when there is a 
data transition (i.e., ak # ak+l) and the value 0 otherwise. 

The timing error detector characteristic is the average DC component of the 
timing error detector output signal, for a given value of the normalized timing 
error. For independent, not necessarily equiprobable symbols, it follows from 
(z-194) that E[Wkdk] = 0. Indeed, 

E[Wkdk] = c ak-m gm + nk 

m#O,m#l 11 
= $ C (E[ak] E[ak-m] - E[ak+l] E[ak-m]) gm 

m#O,m#l 

+ ; (Ebk] - E[ak+l]) E[nk] 

=o 

because of the stationarity of the data symbol sequence. Hence, the timing error 
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detector characteristic is given by 

T/2 

= KlE[dk] e p(t - kT) dt 
(2- 195) 

+oO 

= KlE[dk] e 
J 

PV) dt 
-CO 

= KlE[dk] e 

where (. . .)t denotes averaging over time, and we have taken into account that 
the area of p(t) equals 1. We recall that the above expression is valid only for 
lej < l/2; for other values of e, the timing error detector characteristic is obtained 
by periodic extension. Hence, the characteristic has a sawtooth shape with slope 
Kr E[dk]. For independent equiprobable data symbols, we obtain 

E[dk] = ; E[l - akak+l] 

= f (1 - Ebb] ‘f$k+l]) 

1 =- 
2 

because the data symbols have zero mean; consequently, the slope equals Kr /2. 
The loop noise N(t ; e, e> represents the statistical fluctuation of the timing 

error detector output, and is given by 

N(t;Q) = z(t; e, 6) - Jqlqt; e, i)] 

=x&(~,E*)p(t-kT-ET-T) (2- 196) 
k 

Nk(G EI) = Z&, i) - Jf+k(&, e)] 
= KIT [Wkdk + (d/c - E[&]) e] (2-197) 

It follows from (2- 196) and (2- 197) that the loop noise consists of two components. 

(i) The first component is caused by the random fluctuations {UQ} of the zero- 
crossing instants of the PAM signal y(t ; E) at the synchronizer input. From 
(2- 194) it follows that this component consists of a self-noise contribution (due 
to the tails of the pulse g(t) causing ISI) and an additive noise contribution. 
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(ii) The second component is caused by the random occurence of data transitions, 
which makes dk # E[&] This component is proportional to the normalized 
timing error e. 

In all practical situations, the synchronizer bandwidth is much smaller than the 
symbol rate. Hence, the timing error is caused only by the lowpass components 
of the loop noise, which we denote as NLP (t ; E, e) . The subscript LP denotes 
lowpass filtering by means of an ideal lowpass filter with a bandwidth of l/( 2T). 
This lowpass filtering yields 

NLP(t; 6, e> = c &(E, i) p~p(t - kT - 0 - 7) 
k 

where pip is the output of an ideal lowpass filter with bandwidth 1/(2T), when 
driven by p(t). As its bandwidth does not exceed 1/(2T), &,p(t;&,&) is wide- 
sense stationary (see Section 1.1.2); consequently, the autocorrelation function 
E[NLP (t ; e, E) A$,p (t + u; E, e)] does not depend on t , and will be denoted as 
RN(u; e). This autocorrelation function is given by 

RN(u; e) = c R,(e) F(t - ET - 7, u - mT) 
m 

where 
R,(e) = E[Nk(&, t) Nk+rn(&, S)] 

J'(v,w)= ~PLP(~ - ~T)PLP(~+~- nT) 
n 

The function F(v, W) is periodic in v with period T and can be expanded into a 
Fourier series. However, as the bandwidth of pLp(t ) does not exceed 1/(2T), this 
Fourier series consists only of its DC term, which depends on w but not on V: 

T/2 

DC term = k PLP@ - nT) p~p( v + w - nT) dv 

Hence, the autocorrelation function becomes 

.a. J 

-T/2 n 

too 
1 =- 
T s 

PLP('u) PLP(V -t 

--oo 

w) dv 

&(u; e) = - i CL(e) KELP pLp(~+ U- mT)dv 
m --oo 

which does not depend on t. The power spectral density SN(W; E) of the lowpass 
content of the loop noise is the Fourier transform of the autocorrelation function 
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RN(u; e): 

SN(W; e) = 
J 

&(u; e) exp (-jw~) du 

-03 

= + x R,(e) exp (-jtimT) TALK exp (jwv) dv 
m -00 

+oO 
J PLP(U + II- mT) exp (-jw(u + w - mT)) du 

-00 

= $ pLP(W)12 ~&a(e) exP(-Mq 
m 

P(w) Iw I < dT 
PLP(W) = 

0 otherwise 
For w = 0, the loop noise power spectral density is given by 

S&e) = f CRm(e) 
m 

where we have taken into account that Pip = P(0) = 1. When P(u) is 
essentially flat within the loop bandwidth, the specific shape of the pulse p(t) does 
not affect SN(W; e,) for 101 < 27rB~, which is the range of frequencies to which 
the loop responds. 

In order to compute 
following decomposition: 

the autocorrelation sequence {Rm(f?)}, we use the 

N&i) = y [a(k) + z2(h) + z3(k; e)] (2- 198) 

where, according to (2-197) and (2-194), 

dk ak nk = f (ak - ak+l) nk (2- 199) 

%2(k) = f dk ak c ak-n ih = 5 (ak - ak+l) c ak-n gn 
n#O,n#- 1 n#O,n#-1 

(2-200) 

z3(k; e) = ‘2 (6 - E[dk]) e (2-201) 

The components z1 (k) and 22(k) are caused by the additive noise and the tails 
of the pulse g(t) at the input of the timing error detector, respectively, whereas 
the component za(k; e) is caused by the random occurrence of the data transitions. 
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The sequence (~1 (k)} is not correlated with (za(k)} or {za(k;e)}, but {22(k)} 
and {a@; e>} are correlated. It follows that 

2 

(Rl(m) + R2(m) + R3(m; e) + R2,3(m; e) + R2,3(-m; e)) 

where (RI(~)}, {&(m>), and {&(m;e)) are the autocorrelation sequences of 
{zr(k)}, (I}, and (zs(k; e)}, respectively, while {R2,s(m; e)} is the cross- 
correlation sequence of {I} and (zs(k;e)): 

R&-n; e> = JJ~[Q(E) a@ + m; e)] 

For statistically 
obtained: 

independent equiprobable symbols, the following results 

RI(o) = $ h(O); Rl(=tl) = -$ Rn(T); RI(m) = 0 for Iml > 1 

R2(0) = ; c s: ; Rz(fl) = -; Q-2 91+ c ha-1 Sn 

n#O,n#-1 Inbl 1 
R2(*m) = $j (ha - h-1) (g-772 - gmm-l) for m > 1 

R3(0; e) = e2; Ra(m; e) = 0 for m # 0 

R2,3(0; e) = 0; Rs,a(l; e) = f g-2 e; Rz,s(-1; e) = -$ gr e; 

R2,3(m; e) = 0 for jrnl > 1 
(2-202) 

where Rn (u) is the autocorrelation function of the additive noise at the input of 
the timing error detector. 

The timing error variance is determined by the loop noise power spectral 
density, evaluated at the stable equilibrium point e, of the synchronizer. Due to 
hardware imperfections (such as delay differences of the logic circuits the timing 
error detector is composed of), a nonzero steady-state error e, may arise, even in a 
second-order loop with perfect integrator. Taking into account that for equiprobable 
symbols the timing error detector slope equals K1/2 irrespective of the value of 
e,, the timing error variance is given by - . 

(2-203) 

where H(w) denotes the closed-loop frequency response of the synchronizer. For 
small synchronizer bandwidths, the behavior of SN(W; e,) near w = 0 is important. 

When e, = 0, only { ~1 (H)} and { z2( k)}, which are caused by the additive 
noise and the tails of the baseband pulse g(t) at the timing error detector input, 
contribute to the loop noise, because {zs(k; 0)}, which is caused by the random 
occurrence of data transitions, is identically zero. The corresponding loop noise 
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power spectral density SN(W; 0) is given by 

I&T 2 1 
$+;O) = - ( > 2 ?; IPLPW I2 (Sl (w) + S2(w)) 

where Sl(w) and S 2 w ( ) are the power spectral densities of the sequences {xl (k)} 
and (4k)) 

Sl(W) = h(0) + 2 2 h(m) cos (m&T) 

m=l 

= ; [R?.&(O) - Rn(T) cos(wT)] 

Sz(w) = &(O) + 2 2 R&-n) cos(muT) 
m=l 

In most cases of practical interest, the autocorrelation of the additive noise is 
such that ]R, (T) [ << Rn( 0). Hence, S1 (w) is essentially flat within the loop 
bandwidth when BLT < 1, and can be approximated by Si (0), as far as the 
operation of the synchronizer is concerned; the contribution of ,!?I (w) to the timing 
error variance is essentially proportional to the normalized loop bandwidth BLT. 
When the fluctuations of So within the loop bandwidth are small with respect 
to L&(O), also the self-noise contribution [caused by the tails of g(t)] to the timing 
error variance is essentially proportional to the normalized loop bandwidth. In 
the following section we will show that there exist conditions on g(t) such that 
i&(O) = 0 (in which case the fluctuation of Sz(w) within the loop bandwidth cannot 
be ignored); for small loop bandwidths, this leads to a substantial reduction of the 
self-noise contribution to the timing error variance, which then is proportional to 
the square (or even a higher power) of the normalized loop bandwidth BLT. 

When e, # 0, the loop noise has an additional component, due to { za(k; e,)}. 
Its contribution to the loop noise autocorrelation function consists not only of its 
autocorrelation sequence { Ra( m; e,)}, but also of the cross-correlation sequence 
{&,a(m;e,)) between (I] and {za(k; e,)}. The power spectral density 
SN(W; e,) is given by 

’ (sl(w) + s2(W) -k S~(W; e,) + 2 F?,e[S2,3(w; e,)]) 
(2-204) 

where Sa(w; e,) and S 2,3 ( w; e,) are the power spectral density of {~a(k; e,)) and 
the cross-power spectral density of { ~2 (k)} and{ za( k; e, )) : 

&(w; e) = R3(0; e) + 2 2 R3(m; e) cos (wT) 
m=l 

= e2 

s2,3@; e> = E R&-n; 4 exp (-jwT) 

m=-cm 

= i [g-2 exp (- jwT) - gl exp (jwT)] 
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Note that Ss(w; e) is flat, while 2 Re[Ss,a(w; e)], given by 

2 Re[&,&; e>] = $ (9-2 - Sl) cos (UT) 

is essentially flat within the loop bandwidth when BLT < 1. Hence, their 
contributions to the timing error variance are proportional to the normalized loop 
bandwidth BL T. 

Finally, we would like to point out that a small steady-state error e, can have 
a large effect on the timing error variance, in the case where additive noise is 
negligible and the tails of g(t) do not contribute to the loop noise power spectral 
density at w = 0. Indeed, when e, = 0, the timing error variance is proportional 
to the square (or a higher power) of BLT, whereas for e, # 0, the timing error 
variance is proportional to BLT. Hence, for small BLT, the timing error variance 
for e, # 0 can be considerably larger than for e, = 0, even when the power &( 0) 
of Q( JT) is much larger than Rs(0) = ef , the power of za(lc; e,). This will be 
shown in the numerical example discussed below. 

Self-Noise Reduction 

In this section we show that the baseband pulse g(t) can be selected such that 
its tails cause no self-noise. Also, we derive a less restrictive condition on g(t), 
which yields a self-noise spectrum that becomes zero at w = 0; in this case the 
contribution of the tails of g(t) to the tracking error variance is proportional to the 
square (or even a higher power) of the normalized loop bandwidth BLT. 

In the absence of additive noise, rk = 15 is a solution of (2-192) only when 

g(T) = g(T - T); g(mT+7)=0 for m#O,m#-1 (2-205) 

In this case, a zero crossing of y(t; e) occurs at IcT + ET + 7, when ckck+l = -1. 
As this zero-crossing instant is not influenced by the data sequence, the tails of 
g(t) do not give rise to any self-noise. Note that the condition (2-205) completely 
eliminates self-noise, irrespective of the statistics of the binary (f 1) data sequence, 

The condition (2-205) is closely related to the second Nyquist criterion: a 
pulse gs(t) satisfies the second Nyquist criterion when 

gs($) =gs(-g) = f; gs(mT+S> =0 for m#O, m#tiio6j 

Comparing (2-205) and (2-206), it follows that g(t) satisfying (2-205) is a time- 
shifted Nyquist-II pulse, the shift being such that g(t) takes on its maximum 
value at t = 0. Denoting the Fourier transform of ga(t) by Go, the frequency 
domain equivalent of (2-206) is 

~(-1,-G[u-~] =T COS[?] 

Figure 2-60 shows a band-limited Nyquist-II pulse gg(t) with 50 percent excess 
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uT/Pn 

Figure 2-60 (a) Nyquist-II Pulse gs(t), (b) Fourier Transform G2 (w), (c) Eye 
Diagram for Binary PAM 
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bandwidth, its Fourier transform Go, and the eye diagram for binary PAM. 
Note from the eye diagram that the zero-crossing instants are independent of the 
binary data sequence. 

In most cases, the baseband pulse at the output of the receive filter (ap- 
proximately) satisfies the first Nyquist criterion, in order to eliminate (or at least 
considerably reduce) the IS1 at the decision instants. A pulse gl(t) satisfies the 
first Nyquist criterion when 

g1(0) = 1; g1(mT) = 0 for m # 0 (2-207) 

Denoting by Gl(w) the Fourier transform of gl(t), the frequency domain version 
of (2-207) is 

2Tm -- =T 
T 1 

In general, a Nyquist-I pulse does not satisfy the second Nyquist criterion. This 
implies that only appropriate filtering of the receive filter output before entering 
the synchronizer can eliminate the self-noise, Assuming that gl(t) is a Nyquist-I 
pulse, it is easily verified that gs(t), given by 

g2(t) = ;[ih(t+;) +,,(t-g)] 

satisfies the second Nyquist criterion. Hence, passing the receive filter output 
through a filter with frequency response cos (wT/2) yields a PAM signal with a 
Nyquist-II baseband pulse. 

Now we will derive a condition on g(t), which does not eliminate the self- 
noise, but yields a self-noise spectrum which becomes zero at w = 0. More 
specifically, we will select g(t) such that 

(2-208) 
k=-co 

irrespective of the data sequence, where zz(k), given by (2-200), denotes the 
contribution of the tails of the pulse g(t) to the timing error detector output. When 
(2-208) holds, then 

(i) Irrespective of the data symbol statistics, zz(k) is zero-mean. Indeed, taking 
the expectation of both sides of (2-208) and using the stationarity of zg(k) 
yields E[zz(lc)] = 0. 

(ii) Irrespective of the data symbol statistics, the spectrum S2 (w) of {z2( k)} is 
zero at w = 0. Indeed, 

Sz(O) = E J&t(m) = E E[zz(k) z2(k + m)] 
m=-03 m=-co 

r 
= E %2(k) 

I 
c 22(m) 

I 
= 0 

m=--oO 
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(iii) Irrespective of the data symbol statistics, the cross-spectrum Ss,a(w; e,> of 
{a@)) ad {a), g iven by (2-201), is zero at c3 = 0. Indeed, 

%3(0; 4 = E R2,3(m; e,) = fJ E[z2(k - m) z3(h; 4] 
m=-ca m=-ccl 

= E a(k;e,) E 
I 

4772) = 0 
m=-cc3 1 

Hence, when (2-208) holds, the tails of g(t) contribute to the loop noise 
power spectral density but not to the average timing error detector output; this 
contribution to the loop noise power spectral density is zero at w = 0. Hence, 
only the additive noise and a nonzero steady-state error e, contribute to the loop 
noise power spectral density at w = 0. 

Using (2-200) in (2-208) yields 

k=-tXl m#O,m#-1 

where 
+oO 

CYm = c Qak-m 

k=-co 

Noting that ay, = Q-m, we obtain 

h=-co 
22(k) = 5 C (am - am+l) (Sm - gm-1) 

m>O 

Hence, (2-208) holds, irrespective of the data sequence, when 

g(mT+T) =g(-mT-T+7) m = 0, 1,2, . . . (2-209) 

Note that (2-209) must be fulfilled also for m = 0, because of (2-193) which 
defines 7. The condition (2-209) holds automatically when g(t) is an even 
symmetric pulse: in this case, ?; = T/2, so that (2-209) reduces to g(mT + T/2) = 
g(-mT - T/2) for m = 0, 1,2 ,.... As an identically zero self-noise spectrum 
is a special case of a self-noise spectrum which is zero at w = 0, the condition 
(2-205) is a special case of the condition (2-209). 

Nonequiprobable Data Symbols 

Now we will assume that the binary data symbols are statistically independent, 
with Prob(ak = l] = p and Prob[ak = -11 = 1 - p. The effect of additive noise 
is neglected. 
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K1 

P 

Figure 2-61 Effect of Nonequiprobable Symbols on Timing Error Detector Slope 

We have that E[w~&] = 0 for independent data symbols. Hence, the timing 
error detector output is given by (2- 195): 

(~(t; E, S)), = &l+lk] e 
1 

= l--1- (1 - E[Qk] Jq@+11) e 

= 2 Ktp(l -p) e 

because E[ak] = 2p - 1, irrespective of k. The dependence of the timing error 
detector slope 2Klp( 1 - p) on p is shown in Figure 2-61: the slope is zero for 
P = 0 (i.e., al, = -1 for all k) and for p = 1 (i.e., a& = 1 for all k), and takes 
on its largest value K1/2 for p = l/2. 

For an arbitrary pulse g(t), the computation of the loop noise power spectral 
density SN(W; e,) is straightforward but quite tedious when p # l/2. Instead, we 
restrict our attention to the case where g(t) satisfies (2-209). According to the 
previous section, this implies that the contribution of the tails of g(t) to the loop 
noise power spectral density is zero at u = 0. Hence, using the decomposition 
(2-198), only za(k; e,), given by (2-201), contributes to the loop noise power 
spectral density at w = 0. In order to evaluate this contribution, we need the 
autocorrelation sequence {&( m; e, )) of ~3 (k; e,). We obtain 

R3(0; es> = 4 [E[d:] - (E[&])2] ef 

R3(fl; es> = 4 [E[ds &+I] - (JQ&])~] et 

R3(m; e,) = 0 for Irnl > 1 
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P 

Figure 2-62 Effect of Nonequiprobable Symbols on Tracking Error Detector Slope 

The resulting loop noise power spectral density at w = 0 is given by 

S&e,) = T [R3(0; e,) + 2R3( 1; e,)] 

= T [ 1 - (E[Q])~] [l + ~(.E[Q])~] ez 

= 4Kf T p (1 - P) (1 - 3p + 3p2) ei 

where we have taken into account that 

J?@;] = E[dk] = 2E[& &+I] = f [l - (a?+k])‘] 

The resulting timing error variance, caused by the nonzero steady-state error e, 
is given by 

var[e] = (ZBLT) 
l-3p+3p2 e2 

Pw-PI 8 
The dependence on p of the timing error variance is shown in Figure 2-62. This 
variance reaches its minimum value of (2B,5T) et at p = l/2, and becomes 
infinitely large for p = 0 and p = 1. This clearly illustrates that long sequences of 
identical data symbols are detrimental to symbol synchronization; the occurrence 
of such sequences should be avoided, for instance, by using a scrambler. 

Numerical Example 

In order to illustrate the results from previous sections, we now compute the 
loop noise power spectral density and the timing error variance resulting from a 
zero-crossing timing error detector, operating on a typical received PAM signal. 
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System Description 

. Pulse shape g(t): 
Cosine rolloff amplitude shaping with linear delay distortion: 

I 
T IwTl < ?r(l - a) 

IGWI = 5 [l-sin(*)] T( 1 - a) < IwTl < r( 1 + a) 

otherwise 

arg [G(w)] = p $ [ 1 
2 

w(w) 

Numerical values: 
= 0.5 

F = 0 (no delay distortion) and p = 3n/4 
. Additive noise n(t): wideband noise 

Rn(0) = CT; R,(mT) =0 for m#O 

The noise is specified with respect to the signal by the peak-to-noise ratio 
ppeak, defined as 

Smax 
Speak =- 

09-a 

where gmax is the maximum value of g(t); as we have chosen the origin of 
time such that g(t) is maximum at t = 0, we have gm, = g(0). As a typical 
value we take /.$e& = 26 dB. 

. Independent equiprobable data symbols. This yields E[d&] = l/2. 

. Symbol synchronizer: 

. Zero-crossing timing error detector. 

. Second-order loop with perfect integrator, determined by a damping 
factor C = 5 and a normalized loop bandwidth BL T = 0 .Ol . 

. Steady-state timing error: assuming a symbol rate of 15 Mbit/s and a 
delay difference of 1 ns in the logic circuits of the timing error detector, 
we obtain e, = 0.015. 

Properties of the PAM Signal 
We have numerically obtained the average zero-crossing point T and the 

normalized slope b = (g’(-T + T) - g’(Y)) T at this zero-crossing point; the 
results are given in Table 2-3. The dominating pulse samples gn = g(nT + ?>, 
describing the amount of interference at the average zero-crossing instants, are 
given in Table 2-4. Note that g(t) is an even symmetrical pulse when ,8 = 0. 
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Table 2-3 Parameters of Baseband Pulse g(t) 

p=o p = 3a/4 

?/T 0.5 0.541 

b 2.687 2.322 

gmax 1. 0.92 

Loop Noise Power Spectral Density 

We first calculate the auto- and cross-correlation functions of the components 
zr (k), ~2 (k) and zs(k; e,) of the loop noise [see the decomposition (2- 198)]. The 
results are given in Table 2-5. Recalling that zr (k), ~2 (k), and zs( k; e,) are 
caused by the additive noise, by the IS1 at the average zero-crossing instants and 
by the nonzero steady-state error, respectively, a comparison of Rr (0)) Rz (0)) and 
Ra(0; e,> reveals that the contribution of IS1 to the loop noise power is at least 
one order of magnitude larger than the contributions due to the additive noise and 
the nonzero steady-state timing error. 

Table 2-4 Dominating Baseband Pulse Samples 

p=o a = 37rl4 

g-4 

g-3 

9-2 

9-l 

90 

g1 

92 

g3 

5.7 x 1o-3 

1.72 x 1O-2 

-0.12 

0.6 

0.6 

-0.12 

1.72 x 1O-2 

5.7 x 1o-3 

2.1 x 1o-2 

9.6 x 1O-2 

-0.343 

0.592 

0.592 

5.7 x 1o-2 

1.6 x 1O-2 

9.9 x 1o-3 
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Table 2-5 Components of Loop Noise Autocorrelation Function 

p=o p = 3n/4 

Rl(O) 
RdO) 

W) 

R&4 

R2(3) 

R2(4) 

R3(0; es> 
R2,3(1; es> + &?,3( 1; e,) 

6.96 x 1O-4 

8.16 x 1O-3 

-1.45 x 1o-3 

-2.61 x 1O-3 

-1.83 x lO-!j 

-4.50 x 1o-6 

2.25 x 1o-4 

0 

8.22 x 1o-4 

48.50 x 1O-s 

9.91 x 1o-3 

3.34 x 1o-3 

-1.52 x 1O-4 

3.5 x 1o-5 

2.25 x 1O-4 

-2.58 x 1O-3 

Table 2-6 shows the contributions of zr (k), z2 (E), and za( k; e,) to the loop 
noise power spectral density [see the decomposition (2-204)]. The spectra SI (w) 
and Ss(w; e,) are flat, while 2 Re[S2,s(w)] can be considered as flat within the loop 
bandwidth, because cos (27rB~T) = cos (7r/50) = 0.998 Z 1. As shown in Figure 
2-63, the case p = 0 yields S&(O) = 0; this is because the even symmetrical pulse 
g(t) satisfies the condition (2-209) for a self-noise spectrum vanishing at w = 0. 
Hence, So cannot be considered as flat within the loop bandwidth. Figure 2-64 
shows So for p = 37r/4. The pulse g(t) is no longer even symmetrical, so 
that S2 (0) # 0. Within the loop bandwidth, S2 (w) can be approximated by S2 (0), 
which equals 74.77 x 10e3. 

Table 2-6 Components of Loop Noise Power Spectral Density 

p=o a = 37r/4 

6.96 x 1O-4 8.22 x 1o-4 

Figure 2-62 Figure 2-63 

S3((3; 4 2.25 x 1O-4 2.25 x 1O-4 

2 Re[Sz&; es>] 0 -5.16 x 1O-3 cos (UT) 
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Figure 2-63 Spectrum S2 (w) for p = 0 
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Figure 2-64 Spectrum &(w) for ,B = 3n/4 

sliming Error Variance 

The timing error variance var[e] is given by (2-203). The contributions from 
S(w), S&4, S&;e,) and 21% e [S , ( 2 a w ; e, )] are denoted by vaq , var2, vara , and 
vaqa, respectively, and are presented in Table 2-7. With the exception of var2 for 
/? = 0, all contributions are proportional to the normalized loop bandwidth BLT, 
because the corresponding spectra are essentially flat within the loop bandwidth. 
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var 

Figure 2-65 Dependence on Loop Bandwidth of var2, vars 

For p = 0, the dependence of var2 on BLT is shown in Figure 2-65. As 
the corresponding spectrum Sz(w) is zero at w = 0 (see Figure 2-63), and the 
closed-loop frequency response of a second-order loop is inversely proportional to 
w for large w, var2 is essentially proportional to the square of BLT. Also shown in 
Figure 2-65 is the contribution vars, which is proportional to BLT. Although the 
power &( 0) of the component z2( k), due to ISI, is about 36 times as large as the 
power Rs(0; e,) of the component .zs(k; e,), due to a nonzero steady-state timing 
error e,, var2 is only 2.3 times as large as vara when BLT = 0.01. Moreover, 
when the loop bandwidth is reduced to BLT = 0.001, vara even exceeds var2 
by a factor of about 4.4. The contribution of IS1 to the timing error variance is 
negligible as compared to the contribution due to the nonzero e,. This example 
shows that the contribution to the timing error variance, caused by a small nonzero 
steady-state error e,, can be much larger than the contribution from ISI, when the 
loop bandwidth is small and the baseband pulse g(t) exhibits even symmetry. 

Table 2-7 Contributions to Timing Error Variance 

p=o p= 3lr/4 

vari 13.92 x 1o-6 16.44 x lo+ 

var2 10.30 x 1o-6 1495.4 x 1o-6 

vars 4.5 x 1o-6 4.5 x 1o-6 

var2,3 0 -103.2 x 1O-6 

var [e] 28.72 x 1O-6 1413.1 x 1o-6 
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For p = 37r/4, the loop noise power spectral density near w = 0 is dominated 
by the contribution from ISI. Therefore, the effect of the additive noise and a 
nonzero e, can be neglected, when compared to the influence of ISI. 

Main Points 

. The synchronizer with zero-crossing timing error detector tracks the average 
zero-crossing instants of the PAM signal. The timing error detector generates 
an error signal only when a data transition occurs. Therefore, the transmission 
of long strings of identical symbols should be avoided. 

. The loop noise consists of three components: 

. A component due to additive noise 

. A self-noise component due to IS1 caused by the tails of the baseband 
Pulse g(f) 

. A component due to the random occurrence of data transitions; this 
component is proportional to the steady-state timing error e,. 

. The component due to IS1 is eliminated when g(t) is a (time-shifted) Nyquist- 
II pulse, satisfying 

g(mT+‘i;) = 0 for m# 0, 1 

where 7 is defined by 

g(T) = g(? - T) 

When this condition is fulfilled, only additive noise and a nonzero steady- 
state error contribute to the timing error variance; their contributions are 
proportional to the normalized loop bandwidth BLT. 

. A less restrictive condition, which does not eliminate the loop noise com- 
ponent due to IS1 but makes zero its contribution to the loop noise power 
spectral density at w = 0 is 

g(mT+T)=g(-mT-T+‘5) 

which holds for an even symmetrical pulse (in which case 7 = T/2). When 
this condition is fulfilled, the contribution to the timing error variance due 
to IS1 is proportional to the square (or even a larger power) of BLT. For 
BLT < 1, this contribution may be considerably smaller than the contribution 
from a small nonzero steady-state error e,, the latter being proportional to 
BLT. 

Bibliographical Notes 

tor 
The tracking performance resulting from the zero-crossing timing error detec- 

has also been considered in [ 14, 151. Whereas we obtained the tracking error 
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variance using an “open-loop” approach, the analysis in [14, 151 starts from the 
closed-loop system equation. Although being linear in the timing error, this system 
equation is not time-invariant because the timing error detector provides a useful 
output only when a data transition occurs. The computations in [14] are quite 
tedious. For small values of the normalized loop bandwidth BLT, the results from 
[ 141 reduce to the results given in the discussion of tracking performance above; 
this validates our open loop approach for realistic values of BLT. In [15], the 
closed-loop system equation is approximated by a linear time-invariant equation, 
from which the tracking error variance is easily obtained by applying conventional 
linear filter theory. The results from [ 151 coincide with the open-loop results given 
in the discussion of tracking performance above. 

It is shown in [16] that the closed-loop system equation of the synchronizer 
with zero-crossing timing error detector also applies to a broader class of timing 
error detectors. A set of conditions is presented under which the tracking error 
variance reduces to the results obtained from the open-loop approach; basically, 
these conditions are fulfilled when the normalized loop noise bandwidth BLT is 
small. 

2.5.3 Example 3: The Mueller and Miiller Synchronizer 
The Mueller and MUller (M&M) synchronizer is a hybrid discrete-time error- 

tracking synchronizer using decision feedback, whose block diagram is shown 
in Figure 2- 16, and whose principle of operation is illustrated in Figure 2- 17. 
The PAM signal at the input of the synchronizer is sampled by an adjustable 
clock operating at the symbol rate. The M&M timing error detector combines 
the PAM signal samples with the receiver’s decisions about the data symbols to 
form the timing error detector output samples. These error samples are used to 
bring the sampling clock in synchronism with the PAM signal at the input of the 
synchronizer. 

Tracking Performance 

The PAM signal y(t; e) at the input of the synchronizer is given by 

y(t; 6) = c a, g(t - mT - 0) + n(t) (2-211) 
??a 

where {a,} is a stationary sequence of not necessarily binary data symbols, g(t) 
is the baseband pulse, and n(t) is stationary noise. We have chosen the origin of 
time such that g(t) takes on its maximum value at t = 0. 

The adjustable clock samples the signal y(t; E) at the instants th, given by 

tl, = kT+iT+‘iS (2-212) 

where ?; is a time shift to be defined soon. The resulting samples are denoted 
by y& i), with 

yk(&, i) = y(kT + c!T + 7; e) (2-213) 
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These samples are combined with the receiver’s 
following timing error detector output samples: 

decisions { tib}, to form the 

Zk(6, e) = &k-l Yk(E, 6) - h Yk-l(G q (2-214) 

In the following, it will be assumed that the receiver’s decisions are correct, 
i.e., tik = ak for all Ic. As far as the synchronizer operation is concerned, this 
assumption is reasonable when the decision error probability is smaller than about 
10a2; the actual error probability on most terrestrial baseband links is smaller than 
10B2 by several orders of magnitude, because the signal-to-noise ratios are large. 

The M&M synchronizer is analyzed under open-loop conditions: the loop is 
opened (say, at the loop filter input), and the properties of the timing error detector 
output are determined for sampling instants tk corresponding to a fured value of 
the timing estimate &. 

Substituting (2-211) and (2-213) into (2-214), one obtains 

2&, 2) = %1(k) + %2(k; e) (2-215) 

where e = e - & denotes the timing error, and 

4q = ak-1 nk - ak nk-1 (2-216) 

%2(k; e) = ak-1 c ak-m h(e) - ak c ak-l-m grn(e) (2-217) 

with 

7n m 

n, = n(rnTf?.+iT) 

g,(e) = g(mT+T+ eT) 

The term z@) in (2-215) is zero-mean and caused by additive noise; this 
term contributes to the loop noise. The term zs(lc; e) in (2-215) contains a 
useful component E[z2 (Ic; e)] , and a zero-mean self-noise component ~2( Ic; e) - 
E[zz(k; e)], contributing to the loop noise. 

For statistically independent data symbols, the timing error detector charac- 
teristic is given by 

‘f+k(E, S)] = Jqzz(lc; e)] 

= (A2 - 4) [sde) - s-l(e)] 

= v4akl [n(e) - s-l(e)] 

where A, = E[az] denotes the nth order moment of the data symbols. For a 
sequence of identical data symbols, var[ak] = 0. This indicates that the useful 
timing error detector output becomes small when the data sequence contains long 
strings of identical symbols; the occurrence of such strings must be avoided, for 
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instance by using a scrambler. Now we define the time shift 1 from (2-212) such 
that e = 0 is a stable tracking point; this requires that the timing error detector 
characteristic becomes zero for e = 0, or equivalently, 

g(T + 5;) = g(-T + 7) 

Note that 5r = 0 when g(t) is an even symmetrical pulse. Figure 2-66 shows how 
T;i can be obtained graphically. The timing error detector slope at e = 0 is given by 

b = var[uk] [g’(-ZY + 7) - g’(T + ‘i;)] T 

where g’(t) is the derivative of g(t). 
The loop noise power spectral density will be evaluated under the assumption 

of statistically independent data symbols having an even symmetric distribution; 
as a result, all odd-order moments of the data symbols are zero. The loop noise 
power spectral density SN(W; e) can be decomposed as 

SN(W; e) = S(w) + S2(q e) 

where Sr (w) and S~(W; e) are due to the additive noise term ~1 (k) and self-noise 
term 4k; e) - E[zz(E; e)] at the timing error detector output. Note that S1 (w) 
does not depend on the timing error e, because the noise n(t) at the synchronizer 
input is stationary. 

The power spectral density Sr(w) is given by 

S&d) = RI(O) + 2 2 l&(m) cos(mwT) 
m=l 

where 
w-4 = E[G(lc) Q(lc + m)] 
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From (2-216) we easily obtain 

RI(O) = 2 A2 &JO) 

RI(~) = --A2 Rn(2 T) 

RI(m) = 0 for m>l 

where R,(u) = E[n(t) n(t + u)] denotes the autocorrelation function of the 
additive noise n(t) at the synchronizer input. This yields 

Sl(w) = 2A2 [R,,(O) - R,(2T) cos(wT)] 

In most cases of practical interest, Rn(0) >> ] R,(2T) 1, so that S1 (w) is essentially 
flat within the loop bandwidth. 

The self-noise power spectral density Sz(w; e) is given by 

S2(w; e) = R2(0; e) + 2 2 Rz(m; e) ~0s (wT) 
m=l 

where 
Rz(m; e) = E[z& e) z~(k + m; e)] - {J$&; e)]}2 

After some algebra we obtain from (2-217): 

~~(0; e) = Ah[gf(e) + &l(e)] + 2Ai c g%e) 

Imbl 
Rz(l; e) = -44 a(e) s-l(e) - 4 C h-l(e)ih+l(e> 

lml>l 
R2(mi e, = AZkll-m(e) !ll+m(e) + g-l-m(e) g--l+m(e) - 2&n(e) gBm(e)] 

for m > 1 

Whether S~(W; e) can be considered as flat within the loop bandwidth depends 
on the pulse g(t). 

For a given steady-state timing error e,, the timing 
given by 

*IT 
var[e] = f T 

J 

do 
1+)12 sN(w; e,) - 2Tr 

-r/T 

where H(w) denotes the closed-loop frequency response of the discrete-time 

variance var[e] is 

(2-218) 

synchronizer. Assuming that both Sl(w) and S~(W; e,) are essentially flat within 
the loop bandwidth, var[e] is proportional to the normalized loop bandwidth BLT: 

var[e] = (~BLT) S(O) + S2(0; e,) 
b2 

(2-219) 

Otherwise, var[e] must be evaluated by means of the general formula (2-218). 



Baseband Communications 

Self-Noise Reduction 

In this section we show that the baseband pulse g(t) can be selected such that 
self-noise is completely eliminated when the steady-state error e, is zero. Also, 
we derive a less restrictive condition on g(t), which yields a self-noise spectrum 
that becomes zero at w = 0; in this case, the tracking error variance due to self- 
noise is proportional to the square (or even a higher power) of the normalized 
loop bandwidth BLT. 

It is easily seen from eq. (2-217) that zs(H; e,) = 0 for e, = 0 provided that 

g(mT+T) = 0 for m # 0 (2-220) 

In this case, there is no self-noise at the timing error detector output, irrespective 
of the statistics of the data sequence: only the additive noise at the input of the 
synchronizer contributes to the timing error variance. Condition (2-220) requires 
that g(t) is a Nyquist-I pulse (which is shifted in time such that its maximum value 
occurs at t = 0). In most cases, the baseband pulse at the output of the receive 
filter (approximately) satisfies the first Nyquist criterion, in order to eliminate or at 
least substantially reduce the ISI at the decision instants (see Section 1.1.2). In this 
case, the receive filter output can be applied directly to the M&M synchronizer 
without additional prefiltering. 

Now we will derive a condition on g(l), which does not eliminate the self- 
noise, but yields a self-noise spectrum which becomes zero at c3 = 0. More 
specifically we will select g(t) such that 

E z&e,) = 0 for e, = 0 (2-221) 
k=-00 

Using a similar reasoning as in the discussion above on self-noise reduction, the 
following holds when (2-221) is fulfilled: 

(i) Irrespective of the data symbol statistics, zs(k; e,) is zero-mean for e, = 0. 
(ii) Irrespective of the data symbol statistics, the spectrum S~(W; e,) is zero at 

w = 0 for e, = 0. 

Hence, when (2-221) holds, z2( k; 0) contributes to the loop noise power spectral 
density but not to the average timing error detector output. This contribution to 
the loop noise power spectral density is zero at LJ = 0. 

Using (2-217) we obtain 

k=-co ??a=--oo 

= E %I bm+l(O> - sm-l(O)] 
m=-00 
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where 

am = c ak ak-m 

k=-co 

Noting that om = o-m, we obtain 

E 4W) =%I [Sl(O> - s-1(0)1 
kc-00 

+c am [sm+l(O) - gm-l(0) + g-m+l(O) - gBm-l(0)] 

m>O 

Hence, (2-221) is fulfilled when 

g(T + 7) = g(-T + 5) 

g(mT+T+q+g(- mT+T+?)=g(mT-T+7)+g(-mT--T+?) 
m>O 

The above set of equations is equivalent with 

g(mT + 7) = g(-mT + 7) for m = 1,2, . . . (2-222) 

When the condition (2-222) is fulfilled, the self-noise power spectral density 
S2 (w ; 0) becomes zero at w = 0, irrespective of the data symbol statistics. The 
condition (2-222) holds when the baseband pulse g(t) exhibits even symmetry, in 
which case 7 = 0. 

It is important to note that the condition (2-220) or (2-222) eliminates or 
substantially reduces the self-noise only when the steady-state timing error e, is 
zero. When (2-220) or (2-222) holds but e, # 0, then &(O; e,) # 0 so that the 
self-noise contribution to the timing error variance is proportional to BLT instead 
of being zero [when (2-220) holds and e, = 0] or being proportional to the square 
(or a higher power) of BLT [when (2-222) holds and e, = 01. Hence, the steady- 
state timing error e, should be kept small in order not to increase considerably the 
self-noise contribution to the tracking error variance. 

Numerical Example 

In order to illustrate the results from the previous sections, we now compute 
the loop noise power spectral density and the timing error variance resulting from 
the M&M synchronizer, operating on a properly equalized noisy PAM signal; 
this equalization results in an even symmetrical Nyquist-I baseband pulse [i.e., 
g(t) = g(-t) and g(mT) = 0 for m # 01. 

System Description 

. Pulse shape g(t): 
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Cosine rolloff amplitude shaping with zero delay distortion: 

;[I -sin[q]] 

IwTl < 7r(l- CX) 

7r(l - a) < IwTl < ?r(l + o) 

otherwise 
Numerical value: cy = 0.5. 

. Additive noise n(t): wideband noise 

Rn(0) = a; R,(mT)=O for m#O 

the noise is specified with respect to the signal by the peak-to-noise ratio 
ppe&, defined as 

Speak 
Smax 

=- 
on 

where gmax is the maximum value of g(t); for the considered g(t), we have 
Smax = S(O) = 1. AS a typical value we take Ppeak = 30 dB. 

. Independent equiprobable binary (fl) data symbols, This yields A2 = Aa = 

. Symbol synchronizer: 
Normalized loop bandwidth BLT = 0 .O 1. 
Small steady-state timing error e,. 

Properties of the PAM Signal 

The even symmetry of the PAM pulse g(t) yields ? = 0. The timing error 
detector slope, evaluated at e = 0, is given by 

b = STg’(-T) = 1.57 

The self-noise is determined by the PAM pulse samples gm (e,) = g( mT - e,T) 
for m # 0. When the steady-state timing error e, is zero, we obtain g,,.,(e,) = 0 
for m # 0, because g(t) is an even symmetrical Nyquist-I pulse; in this case, 
self-noise is absent. For small nonzero e,, we use the approximation 

sm(e,> s -g’(mT) T e, for m#O (2-223) 

where g’(t) is the time-derivative of g(t). The dominating values g’(mT) T are 
shown in Table 2-8 for m > 0; for m < 0, use g’(-mT) = -g’(mT). 

Loop Noise Power Spectral Density and nacking Error Variance 

Using the results from Section 2.5.3, the loop noise power spectral density 
S1 (w), caused by the additive noise, is given by - 

S&d) = 24 
2 =- 

2 
Ppeak 

The spectrum &(w) is flat, because the noise samples n(mT) are uncorrelated. 
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Table 2-8 Dominating Pulse Parameters 

-g’( mT) T w4 

m=O 1.346 

m =l 0.758 0.622 

m=2 -0.167 0.055 

m=3 0.0 0.005 

m=4 0.017 

m=5 0.0 

m=6 -0.005 

The self-noise power spectral density S~(W; e,) is defined as the Fourier trans- 
form of the autocorrelation sequence { &(m; e,)} of the self-noise contribution 
to the loop noise. This autocorrelation sequence can be computed using the re- 
sults from Section 2.5.3. According to the approximation (2-223), Ra(m; e,) is 
proportional to e,2, and can therefore be written as 

&(m; es> = h(m) ef 

The dominating values of Rz(m) are shown in Table 2-8 for m 2 0; for m < 0, use 
Rz(-m) = Rs(m). H ence, the corresponding self-noise power spectral density 
sZ(w; e,> can be written as 

sZ(w; es > = S2(4 4 

where 5’2 (w) is the Fourier transform of the sequence { R2( m)}. Figure 2-67 

0 -1 I I I 
0.0 0.2 

wT/2n 

Figure 2-67 Spectrum S2 (w ) 
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shows how &(w) depends on o. Within the loop bandwidth, So is essentially 
flat, and can be approximated by S2 (0). 

As both Si(w) and S 2 ( w; e,) are flat within the loop bandwidth, the tracking 
error variance is well approximated by (2-219). This yields 

var[e] = (2&T) [A &Yak + B e:] 

with A = 0.81 and B = 1.10. When e, = 0, the values BLT = 0.01 and 
Speak = 30dB yield var[e] = 16.2 x 10w6; for e, = 0.03, the tracking error 
variance increases to var [e] = 36 .O x 10 -6. This illustrates that a small steady- 
state error can have a large effect on the tracking error variance. 

Main Points 

. The M&M synchronizer uses decision feedback to produce a timing error 
detector output. In the absence of data transitions, the useful timing error 
detector output equals zero; therefore, the transmission of long strings of 
identical symbols must be avoided. 

. The loop noise consists of two components: 

l A component due to additive noise 
l A self-noise component due to the tails of the baseband pulse g(t) 

l The self-noise component is eliminated for a zero steady-state timing error e, 
when g(t) is a (time-shifted) Nyquist-I pulse, satisfying 

g(mT +T) = 0 for m # 0 

where 7 is defined by 

g(T + 7) = g(-T + 7) 

When this condition is fulfilled and e, = 0, only additive noise contributes 
to the timing error detector. When this condition is fulfilled but e, # 0, self- 
noise is present at the timing error detector output, and its contribution to the 
timing error variance is proportional to the normalized loop bandwidth BLT. 

. A less restrictive condition, which does not eliminate self-noise 
es = 0, a self-noise spectrum with a null at w = 0, is 

g(mT + Y) = g(-mT + 7) for m > 0 

but yields for 

which holds for an even symmetrical pulse (in which case F = 0). When 
this condition is fulfilled and e, = 0, the self-noise contribution to the timing 
error variance is proportional to the square (or even a larger power) of the 
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normalized loop bandwidth BLT. When this condition is fulfilled but e, # 0, 
the self-noise contribution to the timing error variance is proportional to BLT, 
and, when BLT < 1, may be much larger than in the case e, = 0. 

Bibliographical Notes 

In their seminal paper [ 171 Mueller and Mtiller introduced a class of timing 
error detectors, which operate on samples of a PAM signal, taken at the baud rate. 
The timing error detector output is given by 

Zk(&, i) = h, b-1, *** , b4f+1) Y&Y&~) (2-224) 
rn=o 

where yn (&, e) and &, denote the nth baud-rate sample [see (2-213)] and the 
decision about the nth transmitted symbol, respectively, and hm(. ..), m = 
0, . . . ) M - 1, are M arbitrary functions, to be selected by the designer. For 
example, the timing error detector (2-214) is obtained for M = 2, and 

Assuming correct decisions, the timing error detector characteristic E[z~(&, e)], 
resulting from (2-224), is a linear combination of PAM pulse samples 
g(nT+T+&- &), where T is determined by the condition that the timing 
error detector characteristic is zero for E^ = E. Once a particular linear combination 
of T-spaced PAM pulse samples has been specified as the desired timing error 
detector characteristic, there are several sets of M functions hm(. . .) that give rise 
to this characteristic. Examples with M = 2 and M = 3 are given, where this 
freedom is exploited to select a set of M functions yielding a small variance at 
the timing error detector output. However, from a tracking performance point of 
view, it is the power spectral density near w = 0, rather than the variance, of the 
timing error detector output that should be kept small. 

Symbol synchronization in digital subscriber loops, using a baud-rate timing 
error detector from [ 171, has been investigated in [ 181. The received signal consists 
of a useful PAM signal from the far-end transmitter and a disturbing echo signal 
from the near-end transmitter. First, the received signal enters an echo canceler, 
which subtracts (an estimate of) the echo signal. The echo canceler output signal 
then enters a decision-feedback equalizer, which reduces the postcursor IS1 of 
the far-end signal. The timing error detector operates on the decision-feedback 
equalizer output and is designed such that g(-T + V) = 0, which keeps small the 
precursor IS1 of the far-end signal. The advantages of using a baud-rate (instead 
of higher-rate) timing error detector are as follow: 

. Echo cancellation must be performed only at the 
implementation complexity of the echo canceler. 

baud rate; this reduces the 
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. The decision-feedback equalizer (which operates at the baud rate) can precede 
the timing error detector. Consequently, the IS1 at the timing error detector 
output can be kept small; this enhances the symbol synchronizer performance. 

In [17], the timing error detector output (2-224) is evaluated at the baud 
rate, and the timing estimate is updated accordingly. In the absence of noise, the 
timing error detector output and the resulting timing estimate exhibit statistical 
fluctuations due to the random nature of the data sequence. As the magnitude of 
these fluctuations depends heavily on the transmitted data pattern, it is proposed 
in [ 191 to update the timing estimate only at the occurrence of “favorable” data 
patterns, which yield a very small statistical fluctuation at the timing error detector 
output, and hence a very small tracking error variance. An example is presented 
with M = 3. However, for such small values of M there are very few favorable 
patterns, so that the random interval between timing estimate updates can assume 
large values. 

A similar idea as in [ 191 has been used in [20]. The receiver reads a block 
of M samples from the PAM signal, taken at the baud rate. Depending on the 
received data symbol sequence, all pairs of signal samples are selected whose 
sum or difference y,,., (6, 2) f yn (E, e) can be used as a low variance timing error 
detector output. The contributions from several pairs within a single block of 
signal samples are averaged, and used to update the timing estimate; when no 
such pairs are found, the timing estimate is not updated. Considering M = 20, 
the probability of no estimate updating is negligibly small, so that the updating 
occurs effectively at a fraction l/M of the baud rate. 
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Chapter 3 Passband Transmission 

In this chapter we briefly review the fundamentals of passband transmission 
over a time-invariant channel. In Section 3.1 we describe the transmission methods. 
In Section 3.2 we introduce channel and transceiver models. In the last section of 
this chapter we are concerned with the fundamental bounds of the outer receiver 
(see chapter on introduction and preview), the channel capacity. This bound defines 
the ultimate transmission rate for error-free transmission. We gain considerable 
insight by comparing this bound with the performance of any communication 
system. Furthermore, studying the fundamental bounds on the outer receiver 
performance (channel capacity) and that of the inner receiver (variance of the 
parameter estimates) provides a deep understanding of the interdependence between 
the two parts. 

3.1 Transmission Methods 

Passband transmission of digital information can be roughly separated into two 
main classes: noncoherent and coherent. The first class uses so-called noncoherent 
modulation techniques, which do not require an estimate of the carrier frequency 
and phase. 

Noncoherent modulation techniques have significant disadvantages, in partic- 
ular a power penalty and spectral inefficiency when compared to the second class 
of techniques employing coherent transmission. 

The most commonly used member of the class of coherent transmission tech- 
niques is pulse-amplitude modulation (PAM). Special cases of passband PAM are 
phase-shift keying (PSK), amplitude and phase modulation (AM-PM), and quadra- 
ture amplitude modulation (QAM). In a pulse-amplitude-modulated passband sig- 
nal the information is encoded into the complex amplitude values ura for a single 
pulse and then modulated onto sinusoidal carriers with the same frequency but a 
90’ phase difference. PAM is a linear technique which has various advantages 
to be discussed later. 

Another class of coherent modulation techniques discussed is continuous- 
phase modulation (CPM). Since the information is encoded into the phase, the 
signal maintains a constant envelope which allows a band-limited signal’s amplifi- 
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cation without serious spectral spreading of the signal, because the main nonlinear 
effects of bandpass high-performance amplifiers, namely amplitude-to-amplitude 
(AM/AM) and amplitude-to-phase (AM/PM) conversion, are avoided. 

3.2 Channel and Transceiver Models 

3.2.1 Linear Channel Model 
The general linear model of a carrier-modulated digital communication system 

is shown in Figure 3-l. This model adequately describes a number of important 
channels such as telephone channels and microwave radio transmission. 

In Figure 3-1, u(t) represents any type of linearly modulated signal in 
baseband: 

u(t) = c a,gT(t - nT - EOT) (3-l) 
n 

The channel symbols (an) are chosen from an arbitrary signal set over the 
complex plane and gT(t) is the impulse response of the pulse-shaping filter. T 
is referred to as the channel symbol duration or period. The pulse gT(t) contains 
a (possibly slowly time varying) time shift EO with respect to the time reference 
of a hypothetical observer. 

In the quaternary PSK modulator, a sign change in both in-phase and quadra- 
ture components causes a phase shift of 180’. If only one of the components, 
either the Z or Q component, changes its sign, a phase shift of &n/2 occurs. This 
reduces the envelope fluctuations [l , p. 239ffl which is useful when the signal 
undergoes nonlinear amplification, 

Bits 

-I cepb4 
we+‘) 

-B, + 

!p-+$=+~~, 
Amplitude 
Control 

q=PH@p, O))l 

Figure 3-1 Linear Model of Passband Transmission: Linear Modulation 
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Figure 3-2 Linear Model of Passband Transmission: CPM 

When the quadrature component is delayed with respect to the in-phase 
component by T/2 only phase changes of &n/2 occur. This modulation is called 
offset QPSK (OQPSK) or staggered QPSK. The signal u(t) in (3-l) for OQPSK 
reads 

u(t> = (p%J4 - z,(T) -4) 

+@Tc%+ [Zn-l@ -@)) (3-2) 

(0 (9) where the channel symbols a, , a, take values in the set { - 1, 1). 
For nonlinear modulation schemes, the dashed block in Figure 3-l must be 

replaced by that of Figure 3-2. For a CPM signal, the signal u(t) is 

(3-3) 

The phase is given by 

4(t) = 2nh zakq(t - IcT - E&!“) + 0 
k 

(3-3a) 

where a = {a, } is the data sequence of A4-ary information symbols selected from 
the alphabet fl, f3, . . . . f (M - l), h is the modulation index, and q(t) is some 
normalized waveform. The waveform q(t) may be represented as the integral of 
some frequency pulse v(t) 

t 

q(t) = J V(T) dr 

0 

(3-4) 
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If v(t) = 0 for t 2 T the CPM signal is called full response, otherwise partial 
response. The equivalent lowpass signal u(t) has a constant envelope, which is 
an advantage when a nonlinear amplifier is employed. 

Of great practical importance are so-called MSK (minimum shift keying) 
signals. They are a special case of CPM signals obtained for 

al, = fl, h = 112 (3-5) 

For MSK the frequency pulse is rectangular 

v(t) = { y2T O<t<T 
otherwise 

(full response) (3-6) 

For Gaussian MSK (GMSK) v(t) is the response of the Gaussian filter to a 
rectangular pulse of duration T (partial response). 

An interesting property of MSK signals is that they can be interpreted as 
linearily modulated passband signals where the quadrature component is delayed 
with respect to the in-phase component by T [2 , Chapter 61. The following signal 
is equivalent to (3-3): 

with 

c azn-l h(t - [2n- l]T - eoT) 

h(t) = sin 2 
10 

O<t_<2T 

0 else 

(3-7) 

(3-W 

and a2t-t) azn- 1 take on values f 1. Notice that the pulse h(t) is time-limited. 
Hence, u(t) is not band-limited. 

The baseband signal is up-converted to passband by an oscillator 
exp[j(uOt + tiT(t))]. Th e mear channel has a frequency response cup(W) 1’ 

which models the physical channel frequency response as well as any filtering in 
the passband region. The signal is subject to wideband additive Gaussian noise 
wgp(t) with flat spectral density No/2 (see Section 1.2.3 above and Chapter 
3 of Volume 1). 

After downconversion by a local oscillator exp[-j(wot + OR(t))] and lowpass 
filtering F(w) in order to remove double-frequency terms we obtain the signal 

u(t) = &3[As(t) @ f(t) + w(t) @ f(t)1 
= fh [As! (t> + n(t)] U-9) 

where sf (t) is related to u(t) and n(t) is a normalized complex-valued additive 
Gaussian noise process (see Table 3-l). 
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Table 3-1 Signals and Normalizations in the Linear Channel Model 
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Signal 

Transmittter u(t) = can gT(t - nT - EOT) 
n 

Linear 
modula- 
tion 

u(t) = ,j 40) 

w 
=2rh c akq(t - IcT - eoT) 

Nonlinear 
CPM 
modula- 
tion 

UBP (t) = fiA Re{ t+~~+~T@)l u(t)} Bandpass 
signal 

Channel C(w) = + + wO)cBP(u + UO) 

Receiver r(t) = 

with 

s(t) = 

wBP(t) = 

YW = 

with 

4) = 

n(t) = 

rjw = 

&[A+) + w(t)] 

[u(t)ejeT(t) 8 c(t)] e-jeR(t) 

fiRe( w(t)ejwot } 

r(t) @ f(t) = K~[Asj(t) + n(t)] 

4) Q9 N 

44 @ f(t) 

y(t)/(KRA) = sj(t) + +)/A Normalized 
input 
signal 

Noise WBP(t): Bandpass process with flat 
spectral density NO /2 

Using the bandpass system model just described, a baseband equivalent model 
is now derived. The baseband equivalent channel is defined as [see eq. (l-97)] 

c(u) = ‘u(u + UO) cBP(u + UO) (3-10) 

Then Figures 3-l and 3-2 can be simplified to the model shown in Figure 3-3 
which still has some traces of the mixer oscillator of the transmitter. 
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n(t) 
A 

Figure 3-3 Normalized Baseband Model with Arbitrary 0~ (t) and 0~ (t) 

If the phase fluctuations 6$(t) have a much smaller bandwidth than the 
channel frequency response C(w), we may interchange the operation of filtering 
and multiplication. The useful signal s(t) in (3-10) now reads (see Figure 3-4 

N u(t) @ +) ,j[edt>-edt)l (3-11) 

= u(t) QD c(t) ejeo(t) 

with @c(t) = eT(t) - OR(t). s ummarizing the previous operations, the received 
signal of (t ) = y(t)/( KRA) for linear modulators equals 

n(t) 
7(t) = Sf (t) + A 

= c a,g(t - nT - EOT) ejeo(t) + F 
n 

(3-12) 

where g(t) is the pulse form seen by the receiver 

dt) = gT(t) @ +> @ f@) (3-13) 

u(t) Sf (0 + 
> W) > W) > 

I I exP[i(e,(t) - +#))I 

n(t) 
A 

Figure 3-4 Normalized Baseband Model with Slowly Varying Phase t&,(t) 
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and n(t) is a noise process with power spectral density 

St&) = I~(~)12Stu(~) (3- 14) 

The index 0 in (~0, 00) denotes the actual (unknown) values of the synchronization 
parameters which must be estimated by the receiver. 

For easy reference, the signals in the channel model are summarized in Table 3-l. 

3.2.2 Nonlinear Channel Model 

The linear channel model described in the previous section is not applicable 
to satellite transmission, as shown in Figure 3-5. It consists of two earth stations 
(TX and Rx) usually far from each other, connected by a repeater traveling in the 
sky (satellite) through two radio links. A functional block diagram of the system 
of Figure 3-5 is shown in Figure 3-6. 

The block labeled HPA represents the earth station power amplifier with a 
nonlinear input-output characteristics of the saturation type. The TX filter limits 
the bandwidth of the transmitted signal whereas the input filter in the transponder 
limits the amount of uplink noise. The block TWT represents the satellite’s on- 

Figure 3-5 Model of a Satellite Link a) 

Nonlinear Power 

I- 
Complex 
Sym~s b,) 

I Receiver 

Figure 3-6 Model of a Satellite Link b) 
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board amplifier. Owing to the satellite’s limited power resources, this amplifier is 
usually operated at or near saturation to obtain maximum power efficiency. The 
output filter limits the bandwidth of the transmitted signal again whereas the Rx 
filter limits the downlink noise. 

The assessment of the error performance for this (and any other) nonlinear 
channel is difficult. While refined mathematical tools and general comprehensive 
theorems are available in the linear case, only very special categories of problems 
can be analyzed in nonlinear situations. There are mainly two avenues to ana- 
lyze satellite systems. The first approach makes simplifications of the problems 
such that an analytical approach is feasible. The other approach uses computer 
simulation. This later approach is the one taken in this book. 

3.3 Channel Capacity of Multilevel/Phase Signals 

Information theory answers two fundamental questions: 

1. What is the ultimate data compression? (answer: the entropy H) 
2. What is the ultimate transmission rate of communication? (answer: the 

channel capacity C) 

We gain a considerable insight comparing these boundaries with the performance 
of any communication system design. 

The communication model studied in information theory is shown in Figure 
3-7. This discrete-time channel is defined to be a system consisting of an input 
alphabet X and an output alphabet Y and a probability matrix p(y 1 x) that expresses 
the probability of observing the output y given that we send x. If the outcome yi 
depends only on the symbol xi the channel is said to be memoryless. 

We consider now the memoryless Gaussian channel when yi is the sum of 
input xi and noise 12;: 

Yi = Xi + 126 (3-15) 

Source _3 Source __) Channel 
Encoder Encoder X 

I I 
Discrete 
Channel 

I I 

Sink - Source - Channel . 
Decoder Decoder Y 

L 

Figure 3-7 Discrete Model of a Communication System 
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t 
C (BITS/SYMBOL) 

64-QAM 

32-AMPM 

16-QAM 

8-AMPM 
8-PSK 

4-PSK 

2-PSK 

SNR (dB) 
30 

Figure 3-8 Channel Capacity for a Discrete-Valued 
Input ai and Continuous-Valued Output yi 

The noise ni is drawn from an i.i.d. Gaussian distribution with variance b:. The 
channel capacity C for this channel can be computed for a discrete input channel 
signal as well as for a continuous-valued input. 

For a discrete input we denote the input by oi instead of Xi where oi is 
a complex-valued PAM symbol. The channel capacity has been computed by 
Ungerboeck [3] for the case where all symbols are equally probable. The results 
are displayed in Figure 3-8. 

In Figure 3-8 (After Ungerboeck [3], the ultimate bound for a continuous- 
valued input alphabet xi is shown: 

c = log, 1+ p 
( > 4 

Formula 3-16 is one of the most famous formulas in communication 
important to understand the conditions under which it is valid: 

(3- 16) 

theory. It is 

(i) xi is a complex Gaussian random variable with an average power constraint 

El I] [ xi 2 <P. 

(ii) ai equals the variance of a complex Gaussian random variable. 

The capacity C is measured in bits per channel use, which is the same as bits per 
symbol transmitted. The capacity is a function of the average signal-to-noise ratio 
P/a: where P is the average power. 
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Real and imaginary parts of (3-15) each describe a real-valued Gaussian 
channel. The capacity of a real-valued channel is given by 

(3- 17) 

where PI = E{ x3}, xi is a real Gaussian random variable and a;/2 is the 
variance of the real noise sample. 

The total capacity of both channels is the sum of the capacity of the individual 
channels. Since the sum is maximized if the available power P is equally split, 
we obtain 

.=2CD=2(;)log,(l+-$) 
(3-18) 

which is eq. (3-16)‘. 
From Figure 3-8 we also observe that for any SNR we loose very little 

in capacity by choosing a discrete input alphabet ai as long as the alphabet is 
sufficiently large. The higher the SNR the larger the alphabet. This result gives a 
solid theoretical foundation for the practical use of discrete-valued symbols. 

In a real physical channel a time-continuous waveform s(t, a) corresponding 
to the sequence a is transmitted. If the signal s(t , a) is band-limited of bandwidth 
B the sampling theorem tells us that the signal is completely characterized by 
samples spaced T = 1/(2B) apart. Thus, we can send at most 2B symbols per 
second. The capacity per symbol then becomes the capacity per second 

(baseband) 
(3- 19) 

A complex alphabet is always transmitted as a passband signal. Looking at the 
sampling theorem we notice that W = l/T symbols per second can be transmitted. 
Hence, 

(passband) (3-20) 

Thus the capacity formula (in bits per second) is applicable to both cases. However, 
the proper bandwidth definition must be used (see Figure 3-9). 

‘If the symbol ak is complex, one speaks of two-dimensional modulation. If ak is real, of one speaks 
of one-dimensional modulation. The term originates from the viewpoint of interpreting the signals as 
elements in a vector space. 
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Baseband 

!!!Q 

c 
2 

0,2= NOB 
B f 

-i, 
I 

a;= NOW 

Figure 3-9 Bandwidth Definitions 

Introducing the energy E, per symbol 

E8 =PT T : symbol duration 

and using 

(3-21) 

a; = NOW (passband) 

No B (baseband) 
No : power spectral density (3-22) 

(see Figure 3-9) as well as (Nyquist sampling conditions) BT = l/2 and WT = 1, 
(3-19) and (3-20) can be written in the form 

C= (3-23) 

In addition to the sequence a the waveform s(t, a) depends on a set of parameters 
8 = (e,,..., 0,) (representing phase, timing offset, etc.). These parameters 
are unknown to the receiver. In the simplest case of an AWGN channel these 
parameters may be assumed to be approximately constant. In order to be able to 
retrieve the symbol sequence a, these parameters must be estimated. The estimate 
8 is then used as if it were the true value 8. This is the task of synchronization. 

It is by no means evident that the task of synchronization can be accomplished 
in such a way that the real channel has a capacity which is only slightly smaller 
than that of the idealized discrete-channel of information theory. 
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Just as the channel capacity is a bound on the ideal channel, there exists 
a lower bound on the variance of the parameter estimate 4. This bound will be 
discussed in Chapter 6. Any estimator has a variance larger than this bound. Thus, 
the channel capacity can at best be approached but never reached. The following 
examples help to illustrate the issue. 

Remark : A truly optimal receiver requires the joint estimation of the data sequence 
and the parameters 8, see Section 4.3. This optimal receiver is nonrealizable. In 
any realizable receiver the parameters are estimated separately. 

Example 1: 2-PSK Ibansmission over the Deep-Space Channel 
By inspection of Figure 3-8 we see that a 2-PSK modulation comes close to the 
capacity bound in the region of energy-efficient operation, which is roughly at 
0 < E,/(&/2) 5 1. It can be shown that the capacity of the AWGN channel 
using 2-PSK is well approximated by the (unconstrained) capacity (3-19): 

C= Blog2 (I+$) (3-24) 

The energy per channel use is related to the fundamental quantity energy per bit 
Eb by 

P = E,r = EbRb (3-25) 

where &, is the rate of information bits per second and r is the rate of coded 
bits per second. The ratio R = Rb/r = E,/Eb is the code rate (information 
bits/coded bits). 

Replacing E, by E, = &,R we obtain 

C= Blog, (I+$$) (3-26) 

Letting the code rate R tend to zero, we can write for (3-26) 

c NB 1 EbR 
O” - iii!i NO/2 

(3-27) 

For R + 0 the bandwidth B goes to infinity. Since 2B R = 2( r/2) R = Rb 21 C, , 
we obtain the minimum signal-to-noise ratio: 

Eb -2ln2 
No 

(3-28) 

which is often referred to as the Shannon limit for the AWGN channel. We thus see 
that by letting the code rate R tend to zero, coded 2-PSK modulation approaches 
the capacity bound. 



3.3 Channel Capacity of Multilevel/Phase Signals 223 

But what about synchronization? The information is transmitted in the form 

UBP(t) = 
J- 

% ak cos (uot $ 8) al, = fl (3-29) 

where 00 is the carrier frequency and ak: the symbol in the kth T-interval. The 
signal is coherently demodulated by a PLL. The power at the receiver input equals 

P ES 
‘-‘BP 

=- 

T 
(3-30) 

The noise power is 

4 = NOW 

and thus the signal-to-noise ratio (SNR) at the input stage 

SNRi=& 
0 

(3-32) 

Since E, = EbR and WT = 1, we obtain 

(3-33) 

Thus, as R + 0, the input signal-to-noise ratio, SNRi ---) 0. Since there is a 
lower limit which realizable PLLs can cope with, we see that synchronization sets 
a lower bound on R. 

In summary, the limit R ---+ 0 is not meaningful if one takes into account 
synchronization. It is exactly for this reason that in the Pioneer 9 system a code 
rate of R = l/2 was selected despite a penalty of (-1.2 dB). For more details the 
reader is referred to the paper by James Massey [4]. 

Example 2: IJvo-Dimensional lkansmission at High SNR 

For bandwidth-efficient operation more than one bit per symbol is transmitted. 
Performing the same calculation as in the previous example we obtain 

MS : alphabet size 

R : code rate 

(3-34) 

Since R log, MS > 1, the synchronization input SNR is not the limiting factor. 
In conclusion, we observe that E, is the quantity of interest for the inner receiver 
while it is .&, for the outer receiver. 
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Chapter 4 Receiver Structure 
for PAM Signals 

In this chapter we first discuss the main building blocks of a digital receiver 
(Section 4.1). The discussion is intended as an introduction to get a qualitative 
understanding of the design issues involved. In Section 4.2 we are concerned 
with the question under what conditions the samples of the received signal contain 
the entire information on the continuous-time signal. The samples obtained under 
such conditions provide so-called sufficient statistics for the digital receiver to be 
discussed in Section 4.3. Here we systematically derive the optimum receiver based 
on the maximum-likelihood criterion, The essential feature of our approach is that 
the receiver structure is the outcome of a mathematical optimization problem. 

4.1 Functional Block Diagram of a Receiver for PAM Signal 

This section examines the main building blocks of a data receiver for the 
purpose of exposing the key functions. It is intended as an introduction for the 
reader to get a qualitative understanding of the design issues involved which will 
be discussed in detail in later sections. 

As in all receivers the input is an analog signal and the output is a sequence 
of digital numbers, one per symbol. A typical block diagram of an analog receiver 
is shown in Figure 4-l. Analog-to-digital conversion (A/D) takes place at the 
latest stage possible, namely immediately before the detector and decoder, which 
is always implemented digitally. The other extreme case is a fully digital receiver 
shown in Figure 4-2 where the signal is A/D converted to baseband immediately 
after downconversion. The adjective “typical” should be emphasized in both cases, 
as many variations on the illustrated block diagrams are possible. 

For example: 

. In a hybrid receiver, some of the building blocks are realized in analog 
hardware. 

. The sequential order of some of the digital signal processing blocks can be 
interchanged, depending on the realization constraint. 
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g,,(t) 
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Quantizer 
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MIXer Conversion r(t) Analog 
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Recovery 

$Cqj+h 

Sampler/ 
Quantizer 
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Figure 4-1 Block Diagram of an Analog Receiver 

The block diagram is also incomplete, since 

. Analog input stages are not shown. 

. Important building blocks, e.g., for automatic gain control (AGC), lock 
detector are omitted for the sake of a concise presentation of fundamental 
aspects. 

In an analog receiver (Figure 4-1) the incoming signal is first coherently de- 
modulated to a complex baseband signal. The phase coherent reference signal 

exP [j (w9 + qq)] is generated by a voltage-controlled oscillator (VCO) being 
controlled by an error signal from a suitable phase error detector. The error sig- 
nal can either be derived employing the baseband or passband signal, as will be 
discussed later on. The baseband signal is then further processed in a data filter 
and subsequently sampled and quantized. The sampling instant is controlled by 
a timing recovery system which generates exactly one sample per symbol. The 
order of phase and timing recovery implies that phase recovery must work with 
an arbitrary timing epoch and data symbol sequence. 

A fully digital receiver has an entirely different structure as can be seen from 
Figure 4-2. In a first stage the signal is downconverted to (approximately) baseband 
by multiplying it with the complex output of an oscillator. The frequency of the 
oscillator is possibly controlled by a frequency control loop. As a first major 
difference to the analog counterpart, the purpose of the downconversion process 
to baseband is to generate the complex baseband signal (1/Q components), not to 



rf 
(0

 Fi
gu

re
 

4-
2 

Bl
oc

k 
D

ia
gr

am
 

of
 a

 T
yp

ic
al

 
D

ig
ita

l 
PA

M
 

R
ec

ei
ve

r 



228 Receiver Structure for PAM Signals 

coherently demodulate the bandpass signal. Due to the residual frequency error 
this complex baseband signal is slowly rotating at an angular frequency equal to the 
frequency difference between transmitter and receiver oscillators. The signal then 
enters an analog prefilter F(w) before it is sampled and quantized. All subsequent 
signal processing operations are performed digitally at the fixed processing rate 
of l/T8 (or fractions of it). 

Before we discuss the various signal processing functions in detail we want 
to draw the attention of the reader to one of the most basic differences between 
the analog and digital receiver: the digital receiver does not need to have a clock 
frequency equal to the symbol rate l/T as does the analog counterpart. The only 
existing clock rate at the receiver is l/Td which is unrelated to the symbol rate 
l/T. In other words, the ratio T/T8 is irrational in general; any assumption that 
T is an exact multiple of T8 oversimplifies the timing recovery problem of a fully 
digital receiver as we will see in the sequel. 

Before we can discuss how to obtain one matched filter output z(nT + ST) 
for every symbol transmitted from a system running at rate l/Td, we must examine 
the analog filtering and sampling/quantizing operation first. 

We set the goal that the digital receiver should have no performance loss due 
to sampling and digital signal processing when compared to the analog counterpart 
(which we assume to be optimal according to a given criterion). At first sight this 
seems to be an unattainable goal. Should we not (in the limit) sample infinitely 
often, T8 + 0, in order to obtain a vanishing discretization error when performing 
the continuous time filtering operation of the matched filter? 

00 

z(nT) = 
J 

‘$1 SMF(nT - t) dt 
-CO 

(4-l) 

= AvyoTb 2 @S) gMF(nT - iTs) 
i=-cm 

At=& 
s 

If we make no further assumption on the signal r(t), this indeed is true and any 
finite sampling rate would invariably lead to a performance loss. 

But since we are mostly concerned with bandwidth efficient transmission, the 
signals transmitted can be accurately approximated by a band-limited signal. (This 
will be discussed in Section 4.2.2.) For the moment let us assume the bandwidth 
of the useful signal s(t) to be B and s(t) passing the filter F(w) undistorted. If the 
signal is sampled at rate l/T8 1 2B , the sampling theorem tells us that the analog 
signal can be exactly reconstructed from these samples. We can also show (see 
Section 4.2) that any analog filtering operation can be exactly represented by a sum 

(4-2) 
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Equation (4-2) is a special case of the Parseval theorem. It is of fundamental 
importance to digital signal processing since it states the equivalence of digital and 
analog (better: discrete-time and continuous-time) signal processing. 

The equivalence argument we have given is correct but incomplete when we 
are concerned with the optimal detection of a data sequence in the presence of 
noise. A qualitative argument to explain the problem suffices at this point. The 
signal TJ (t) at the output of the prefilter F(w) is the sum of useful signal ~j (t) 
plus noise n(t). Since r!(t) is band-limited the noise n(t) is band-limited, too. 
The noise samples {n(kT,)}, in general, are therefore correlated, i.e., statistically 
dependent. This implies that they carry information which must be taken into 
account when further processed in the matched filter. In Section 4.2 we will 
derive sufficient conditions on the design of the analog prefilter F(w) such that 
the samples (rf (ICT,)} contain all the information contained in the continuous- 
time signal rj (t). The reader should have noticed that the symbol rate l/T has 
not been mentioned. The condition on the prefilter F(w) and its corresponding 
sampling rate l/T., indeed does not require T/T, to be rational. In other words: 
sampling is asynchronous with respect to the transmitter clock. 

4.1.1 Timing Recovery 
Let us continue on the assumption that the samples {rj(kT,)} contain all 

information. Due to a time shift between transmitter and receiver clocks, samples 
at t = kT+iT are required. In an analog receiver the solution of this problem is to 
control the sampling instant of the received signal (see Figure 4-3a). The sampling 
process is synchronized to the symbol timing of the received signal. A modification 
of this analog solution would be to derive the timing information from the samples 
of the receiver (instead of the continuous-time signal) and to control the sampling 
instant. Such a solution is called a hybrid timing recovery (Figure 4-3b). 

In truly digital timing recovery (Figure 4-3~) there exist only clock ticks at 
t = kT, incommensurate with the symbol rate l/T. The shifted samples must 
be obtained from those asynchronous samples (r(kT,)} solely by an algorithm 
operating on these samples (rather than shifting a physical clock). But this shifting 
operation is only one of two parts of the timing recovery operation, The other part 
is concerned with the problem of obtaining samples of the matched filter output 
t(nT + tT) at symbol rate l/T from the signal samples taken at rate l/T,, as 
ultimately required for detection and decoding. 

It should have become clear why we insist that T and Tj are incommensurate. 
While it is possible to build extremely accurate clocks, there always exists a 
small difference between the clock frequency of the two separate and free running 
clocks at the transmitter and receiver. But even the slightest difference in clock 
frequencies would (in the long run) cause cycle slips as we will explain next. 

The entire operation of digital timing recovery is best understood by empha- 
sizing that the only time scale available at the receiver is defined by units of Ts 
and, therefore, the transmitter time scale defined by units of T must be expressed 
in terms of units of TS. 
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Figure 4-3 Timing Recovery Methods: (a) Analog Timing Recovery: Sampling 
Is Synchronous with Received Signal at Symbol Rate l/T, (b) Hybrid Timing 
Recovery: Sampling Is Synchronous with Received Signal at Symbol Rate l/T, 
(c) Digital Timing Recovery: Sampling Is Asynchronous with Received Signal; 
Symbol Rate l/T and Sampling Rate l/T8 Are Incommensurate 

Recall that we need samples of the matched filter at (nT + ST). We write 
for the argument of these samples 

The key step is to rewrite the expression in brackets in the form 

(4-3) 

(4-4) 
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Figure 4-4 (a) Transmitter Time Scale (nT>, (b) Receiver Time Scale (kT,) 

where mra = Lint (a) means the largest integer less than or equal to the real number 
in the argument and fin is a fractional difference. 

The situation is illustrated in Figure 4-4 where the transmitter time scale, 
defined by multiples of T, is shifted by a constant amount of (EAT), and the time 
scale at the receiver is defined by multiples of Ts. ‘Iwo important observations 
can be made due to the fact that T and Tj are incommensurate. First, we observe 
that the relative time shift p,T, is time-variable despite the fact that (QT) is 
constant. Second, we observe that the time instances m,T, (when a value of 
the matched filter is computed) form a completely irregular (though deterministic) 
pattern on the time axis. This irregular pattern is required in order to obtain an 
average of exactly T between the output samples of the matched filter, given a 
time quantization of Ts. 

Notice that the timing parameters (pn, m,) are uniquely defined given 
{ QI, T, T,}. A “genius” that knew these values could compute the time shift 
pn and decimate the sampling instant. In practice, of course, there is a block 
labeled timing estimator which estimates { pn, m,} (directly or indirectly via i) 
based on noisy samples of the received signal. These estimates are then used for 
further processing as if they were true values. We will discuss methods of inter- 
polation, timing parameter estimation pn and decimation control m, in detail in 
the following sections. 

Summarizing, digital timing recovery comprises two basic functions: 

1. Estimation 
The fractional time delay EO has to be estimated. The estimate 2 is used as 
if it were the true value ea. The parameters (m, , fin) follow immediately 
from i via eq. (4-4). 

2. Interpolation and Decimation 
From the samples {rj (ICT,)} a set of samples (rf (kT, + j&T,)} must be 
computed. This operation is called interpolation and can be performed by a 
digital, time-variant filter HI (ejwTm , &,T,) , The time shift & is time-variant 
according to (4-4). The index n corresponds to the nth data symbol. 

Only the subset {y(m,T,)) = (z(nT + tT)} of values is required for further 
processing. This operation is called decimation. 
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Figure 4-5 Linear Interpolator 

Example: Linear Interpolation (Figure 4-S) 
The simplest method to obtain a coarse estimate is linear interpolation. Given 
j&a9 we obtain 

rj(k% + jMJ f~ r#T,) + Cln[rf([k+l]T,) - q(kTd)] 

k+l 
= C ci rf (iTa) 

i=k 

with 
ck = @--j&a) 

ck+l = pn 

(4-5) 

The coefficients { ci) define a linear time variable transversal filter. As can be 
seen by inspection of Figure 4-5, there is an interpolation error committed by this 
simple filter. In Chapter 9 we will discuss more sophisticated types of interpolation 
filters which asymptotically perform exact interpolation. 

4.1.2 Phase Recovery 
We pointed out that downconversion still leaves an unknown carrier phase 80 

relative to a hypothetical observer which results in a rotation of the complex data 
symbol by exp (jee). This phase error can be corrected by multiplying the matched 
filter output by exp (-$a). In reality, the matched filter output is multiplied by an 
estimate of the phase, exp The process of phase recovery thus comprises 
the basic functions: 

1. Phase Estimution 

Phase estimation is performed after the matched filter. Therefore, optimum 
filtering for phase estimation coincides with optimum filtering for data de- 
tection. 
Phase estimation is performed at symbol rate. Since timing recovery is 
performed before phase recovery, the timing estimation algorithm must either 
work 

(i) with an arbitrary phase error offset or 
(ii) with a phase estimate (phase-aided timing recovery) or 
(iii) phase and timing are acquired jointly. 



4.1 Functional Block Diagram of a Receiver for PAM Signal 233 

2. Phase Rotation 

(i) The samples z(nT + ZT) are multiplied by a complex number 
exp (-j$(nT)). A small residual frequency error can be compen- 

sated by a time-variant phase estimate b(nT) = 8 + E(nT) 

(ii) The samples z( nT e-j’ are further processed in the detection/ 

decoding unit as if were true values under the tacit hypothesis of 
perfect synchronization. 

3. Frequency Synchronization 
Frequency synchronization is an essential task in many applications. In the 
presence of a (possibly) sizable frequency offset a coarse frequency adjustment 
in the analog domain is necessary. The reason is that digital timing and phase 
synchronization algorithms work properly only in the presence of a small 
residual frequency offset. The remaining frequency offset is then compensated 
in a second stage as shown in Figure 4-2. 

In summary, several characteristics that are essential features of the timing 
and phase recovery process have been discovered: 

1. Phase recovery can be performed after timing recovery. This is the opposite 
order as found in classical analog receivers. 

2. Frequency synchronization is typically done in two steps. A coarse frequency 
adjustment in the analog domain and a correction of the residual frequency 
offset in the digital domain. 

The receiver structure discussed is a practical one typical for satellite transmission. 
In satellite communication the filters can be carefully designed to obey the Nyquist 
criterion. In a well-designed receiver the matched filter output then has negligible 
intersymbol interference (ISI). For transmission over voice-grade telephony chan- 
nels the designer no longer has this option since the channel c(t) introduces severe 
intersymbol interference. The optimal receiver must now use much more compli- 
cated mechanisms for detecting the data symbols in the presence of ISI. In Figure 
4-6 the structure of a practical, suboptimal receiver using an equalizer is shown. 

to timing recovery 
A 

PA? 
,, Matched ., -$& 
’ Filter 

Ws 
G&e 1 ‘*’ 

Figure 4-6 Receiver Structure in the Presence of IS1 
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The task of the equalizer is to minimize the IS1 according to a given opti- 
mization criterion, An excellent introduction to this subject can be found in the 
book by Lee and Messerschmitt [ 11. 
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4.2 Sufficient Statistics for Reception in Gaussian Noise 

The goal of this section is to put the qualitative discussion so far on a 
mathematical basis which will allow us to systematically derive optimul receiver 
structures. 

In mathematical abstract terms the problem can be stated as follows: assume 
that the transmitted signal belongs to a finite set of possible signals. Added to 
the signal is a disturbance which we will assume to be colored Gaussian noise. 
The receiver’s objective is to estimate the transmitted data from the noisy received 
signal according to an optimality criterion. 

Example 

We assume pulse-amplitude modulation transmission (PAM) transmission 
corrupted by Gaussian noise. The received signal is given by 

?-j(t) = Sj (t) + 7 - +) - y an g(t - nT - EAT)@” + f$) (4-6) 
n=O 

The pulse g(t) is the convolution of gT(t), the channel response c(t), and the 
prefilter f(t). For an alphabet size of L the number of possible signals transmitted 
is NL. 

The criterion of optimality considered in the following is the maximum- 
likelihood (ML) criterion. The ML receiver searches for the symbol sequence 
a which has most likely produced the received signal T! (t). 

The notation (4-7) is purely symbolic since rj (t) is a time-continuous function 
with uncountably many points for which no probability density function exists. 
Thus, our task is to reduce the continuous time random waveform to a set of 
random variables (possibly a countably infinite set).2 

2 Since the mathematical details 
overall structure of this section. 

CiUl become quite intricate, it is important to intuitively understand the 
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4.2.1 Vector Space Representation of Signals 
The notion of a vector space will play a key role in our development 

augmenting our understanding with geometric intuition. The reader not familiar 
with vector spaces is referred to Chapter 2.6 in [l] for a short and simple 
introduction. 

The waveform z(t) can be understood as an element of a vector space. The 
set of orthogonal functions (4, (t)) serves as basis for this vector space while the 
coefficients {x, } are the components of the vector z(t) with respect to this base. 
The vector z(t) is then represented as a series 

x(t) = c xn ha(t) (4-Q 
n 

where 

[T,, To] : observation interval (4-9) 

The equality in (4-8) is understood in the mean-square sense which is defined as 
the limit 

X(t) - 2 Xn ha(t) 

2 

N1@m E II =o Tu < t < To (4-10) 
n=l 

We require that x(t) has finite power (finite length in vector space terminology) 

+~t)12] < O” (4-l 1) 

If we truncate the series after N terms, we approximate x(t) by zN(t). Geo- 
metrically, we can view xN(t) as a vector in an N-dimensional subspace which 
approximates the vector x(t) in the infinite dimensional space. This is illustrated 
in Figure 4-7. In the figure, the vector space x is three-dimensional . The subspace 

Figure 4-7 Illustration of Approximation of Vector x 
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is a plane (N=2). The vector closest to z(t) is the projection P(x) onto that plane, 
We see that the mathematical structure of a vector space allows to meaningfully 
define optimal approximation of signals. 

Since a vector is uniquely defined by its components, given the base, the 
coefficients (components) {zn} contain all the information on z(t). The N- 
dimensional probability density function (pdf) p,, (~1, 22, . . . , ZN) therefore is 
a complete statistical description of the vector z~(t). In the limit N + 00, 
Pz,(Q, 22, * * *, 2~) contains all the information of the random waveform z(t). 

We apply this result to the ML receiver. Let us assume we have found a 
suitable base i&,(t)) for the vector space Rf . If the components of the vector 
‘f(t) are denoted by zn, then 

(4-12) 

and the pdf 

as well as the limit N + 00 are mathematically well defined. The pdf (4-13) thus 
provides the basis for finding the most likely sequence a. 

The general solution to finding the pdf P~,,~ (~1, . . . , ZN ]a) is complicated. 
The interested reader is referred to van Trees [2, Chapter 3 and Sections 4.2,4.3]. 
For our purpose it will be sufficient to consider the special case of band-limited 
signals and an injinite observation interval. This restrictive assumption will lead 
us to a solution perfectly matched to the needs of digital signal processing, 
The base functions of this vector space are the si( z) = sin (X)/X functions, 

h(t)=si(2aB(t-&)) B=2 8 12T (4- 14) 

The components of the vector are obtained by simply sampling the signal TJ (t), 
resulting in 2, = YJ (nT,). We do not need to compute an integral (4-9) as in 
the general case. 

4.2.2 Band-Limited Signals 
There are a number of reasons why a strictly band-limited signal is an excellent 

model for signal transmission, despite the fact that the signal is not time-limited 
(nonphysical). 

First, in any bandwidth-efficient transmission the power is concentrated within 
a bandwidth B while only a negligible amount of power is located outside. This 
suggests that a band-limited signal is a good approximation to the physical signal. 
Indeed, the error between a non-band-limited physical signal x(t) approximated 
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by a band-limited signal zu~(t) obtained by truncating the spectrum B, equals 

E lx(t) - J Sz (w) dw for all t (4-15) 

lwl>%rBz 

and thus can be made arbitrarily small. This can be proven by supposing that the 
error signal [z(t) -zuL(t)] is the response of a linear system [l - HBL(w)] to z(t) 
where HBJ,(w) is an ideal lowpass filter: 

ffBL(u)= {; 
1424 < B, 
else 

(4- 16) 

The mean-square error is given by 

E 4(t) - xBL(t)12] = $ 4 s&)11 - HBL(u)12 f&d (4- 17) 

-00 
which can obviously be written as 

xBL(t)12] = / s,(u) h (4-18) 

Jwl>2~B, 

Any band-limited signal can be expanded into a series of the form (4-8) 
where the base function C/J~ is given by 

‘&) = 
sin[n/T,(t - nT,) ] 

x/T (t - nT’) = si 8 1 &=& (419) 8 - 
and the coefficient xn equals the sample value x(nT,) of x(i). The function x(t) 
then has the series representation 

00 

x(t + T) = c x(7 + nT,) si $ (t - nT,) 
?a=--oo t 1 (4-20) 

7: arbitrary time shift 

If x(t) is a deterministic waveform, then (4-20) is the celebrated sampling theorem. 

In the stochastic version of this theorem the equivalence of both sides is to 
be understood in the mean-square-sense: 

N 

x(t + T) - c X(T + nT,) si ? (t - nT,) = 0 (4-21) 
n=- N s 

For the proof of this theorem the reader is referred to Section 1.3. 
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In the usual form of the theorem it is assumed that r = 0. However, the 
general form (4-20) represents the mathematical basis required for timing recovery. 
This key observation follows from the following. Since (4-20) is true for all t and 
r, it trivially follows by setting r = 0 and t = t’ + r: 

(4-22) 
n=-co 

But since t’ is just a dummy variable name, the shif property of band-limited 
functions is obtained by equating (4-20) and (4-22): 

00 
z(t + T) = C 2(7 + nT,)si 

[ 
g (t - nT,) ?I=-oo 

2 z(nT,) si[ $ ,iir-nTa)] 

1 
= 

r&=-co s 

(4-23) 

The shift property states that the signal z(t + T) can be either represented by the 
samples (~(7 + TIT,)) or the samples (~(n7’~)). 

Now assume that we need the samples z(lcT, + T) for further processing. 
We have two possibilities to obtain these samples. We sample the signal z(t) 
physically at t = kT, + r [first line of (4-23)]. Alternatively, we sample z(t) at 
kT, to obtain the second line of (4-23), 

z(kT, + T) = 2 r(nT3)si[$(kT8+r-nT,)] (4-24) 
73=-m s 

which shows how to digitally convert the samples {z(kT,)} to any shifted version 
{s(kT, + T)). W e em ph asize the word digitally since the right-hand side of (4-24) 
is exactly in the form of a convolutional sum. We can view the sequence on the 
left side as being generated by a digital interpolator filter with the impulse response 

hI(kT,, T) = si F (kT, + T) 
s 1 

and input z( kT,). The two possibilities are illustrated in 

The frequency response of the interpolating filter is 

HI(ejwT*,.)=$ 
s 

Figure 4-8. 

(4-25) 

n, 7 
> 

(4-26) 

where HI(w, r) is the Fourier transform of si[n/T, (t + T)]: 

Hl(w, T) = Z exp(jwT) 
0 

I I 1 iv- 
elsewhere 

(4-27) 
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t= kT,+z 

a) - 
x(t) x( kTs + z ) 

t = kTs -, 

Figure 4-8 Generation of Shifted Samples: (a) Sampling at 
t = kT, + 7, (b) by Digital Interpolation 

We claimed earlier that there is no penalty associated with digitally processing a 
continuous-time band-limited signal. Mathematically, the equivalence of analog 
and digital signal processing can be stated as follows. 

4.2.3 Equivalence Theorem 

Table 4-1 Equivalence of Digital and Analog Signal Processing I 

Linear filtering: 

00 
Y(t)lt=kT, = J h(kTs - u) x(u) du 

-CO 
co 

(4-28) 

= Ts c h(kT, - nT#) e(nT,) 
n=-ccl 

Condition: 

H(w): Band-limited frequency response with Bh < 1/2T. 

z(t) : Band-limited stochastic process with B, 5 1/2T,, 

E [ IxW12] < 00 or deterministic signal with finite energy 

The equivalence theorem is of fundamental importance in digital signal 
processing. The first line in (4-28) in Table 4-l represents the form suitable 
for analog signal processing while the second line represents that for digital signal 
processing (Figure 4-9). 

For the proof of the equivalence theorem we show that the signal &f(t) 
reconstructed from the output of the digital filter, $/d( kTb), equals (in the mean- 
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Figure 4-9 Equivalence of Digital and Analog Signal Processing 

square sense) the signal y(t) obtained after analog filtering, 

E [ IYW - Yd(Q12] = 0 

The signal yd(t) is given by 

Yd(t) = c Yd(kT,)$k(t) 

k 

k n 

Inserting (4-30) into (4-29) and taking expected values yields 

E [ tY@) - %#)12] = &I@, t) - Ry&! t> - R,*,; (6 9 + &/,(t, 9 

Using the series expansions of correlation functions [equation (l-166)] 

R&l, t2) = cc %(7G, ~r,)&(h)hn(~2) 

n m 

RiT(tl, mT,) = C h(nT,, mZ)bb(tl) 
n 

(4-29) 

(4-30) 

(4-3 1) 

(4-32) 

and observing that Jh(r)&(t-r)dr = T$(t-nT,), the cross-correlations in 
eq. (4-31) become 

4&t) = &/s(W = ~y’y~(V> = &&, t) 
= T,2 cc h*(t-nT,)h(t-mT,)R,(laT,, mT,) (4-33) 

n m 

Hence, the right-hand side of eq. (4-31) equals zero. The two signals y(t) and 
yd(t) are thus equal in the mean-square sense. 

Despite the fact that a band-limited signal is of infinite duration, it is possible 
to consider finite estimation intervals. This is done as follows. The truncated 
series corresponds to a function denoted by 

f2K+l(q = 2 z(nT,) ,i[F (t - nT8)] 
n=- K a 

(4-34) 
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The estimation interval is T, = 2 (K T8) but notice that ;i?s~+r (t) extends from 
(--oo,N. 

The function has a useful interpretation in the vector space. As any signal, 
the truncated series represents a vector in the signal space. The components of 
&~+r with respect to the base vector $1, 111 > K are zero. The vector &~+1 
is therefore an approximation in a (2K + 1) dimensional subspace to the vector 
x in the full space. Since the system of base functions {&(t)} is complete, the 
error vanishes for K -+ cm. 

4.2.4 Sufficient Statistics 
We recall that in our channel model (see Section 3.2.1) we assumed the 

received signal to be the sum of useful signal plus additive noise. We discussed 
previously that for bandwidth efficient communication the signal s(t) can be 
accurately modeled as strictly band-limited to a bandwidth of B. But what about 
the noise w(t)? Going back to Figure 3-4 we recall that the additive noise w(t) has 
been described as Gaussian with typically much larger bandwidth than the signal 
and a flat power spectral density within the bandwidth of the useful signal. Any 
practical receiver comprises a prefilter F(w) to remove the spectral portion of the 
noise lying outside the signal bandwidth B. The signal ~j (t) then equals the sum 

(4-35) 

where n(t) is colored Gaussian noise with spectral density 

s&4 = Iq4l” St&) (4-36) 

Immediately a set of practically important questions arise: 

(i) What are the requirements on the prefilter F(w) such that no information is 
lost when signal r(t) is processed by F(w)? 

(ii) In case of a digital receiver we need to know how often the signal must be 
sampled in order to be able to perform the tasks of data detection, timing 
and carrier phase recovery solely based on these samples. Furthermore, is it 
possible to match sampling rate l/T, and prefilter characteristic F(w) such 
that no performance loss occurs due to time discretization? 

To answer these questions we must delve rather deeply into mathematics. But 
the effort is truly worth it since the abstract mathematical results will provide us 
with guidelines to synthesize optimal receiver structures not obtainable otherwise. 
With these preliminary remarks let us start to answer the first question. 

It is intuitively clear that the spectral components outside B contain no 
information and should be removed. To mathematically verify this statement we 
decompose the signal r(t) into 

r(t) = s(t) + w(t) + [w(t) - m(t)] (4-37) 
-- 

ye(t) fi(t> 
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Figure 4-10 Signal Decomposition 

where no is the part of the total noise which falls into the bandwidth of the 
useful signal while C(t) equals the spectral components of the noise outside B. 
The signal decomposition of (4-37) is illustrated in Figure 4-10. 

We have to demonstrate two facts. First, it is obvious that the part of the 
received signal C(t) that we are throwing away is independent of s(t). But we 
must also demonstrate that ii(t) is independent of the noise components which 
we are keeping. (Otherwise they would be relevant in the sense that they would 
provide useful information about the noise.) This is readily done as follows. The 
cross spectral density equals 

&&ii(~) = St.&) h(w) [h(Q) - 11 (4-38) 

Since the product HL(w) [HL(w) - l] q e ua s zero everywhere, the cross spectrum 1 
is zero for all frequencies w. Hence, the two processes no and 6(t) are 
uncorrelated and, by virtue of the Gaussian assumption, statistically independent. 

We conclude that 6(t) is irrelevant to the decision of which message was 
transmitted or to the estimation of the synchronization parameters. This is true 
irrespective of the decision or estimation criterion chosen. Since ye is strictly 
band-limited to B, it can be expanded into a series with base functions 

q&(t) =si[SaB (1- &)I 

Thus, a sufficient statistics can be obtained by prefiltering r(t) with an ideal analog 
lowpass filter and subsequent sampling at Nyquist rate l/T” = 2B. 

This, of course, is a solution of no practical interest since it is impossible 
to realize (or even closely approximate) such a filter with sufficient accuracy at 
reasonable complexity. Fortunately, it is possible to generate a sufficient statistic 
employing a realizable analog filter F(w). 

We maintain that the samples {y(nT’)) re p resent sufficient statistics if the 
following conditions on the analog prefilter F(w) and sampling rate l/T8 are 
satisfied (Figure 4- 11). 
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a) 
T I I 

B : bandwidth of the useful signal s(t) 

B,: bandwidth of the prefilter 

Figure 4-11 (a) Conditions on the Analog Prefilter, 
(b) Conditions on the Inverse Filter 

Condition for Sufficient Statistics 

arbitrary but unequal to zero I I g <B 

F(w) = arbitrary B 5 151 < BF (4-39) 

To prove the assertion we use the concept of reversibility (Figure 4-12). 
Briefly, the concept of reversibility states that if any preliminary processing 
employed is reversible it can be made to have no effect on the performance of 
the system. 

We assume the system in the upper branch comprises an ideal lowpass filter 
of bandwidth B. We recall from our previous discussion that the samples y(kT,) 
represent sufficient statistics. Next we show that there exists a digital filter which 
reverses the effect of the analog prefilter F(w), satisfying condition (4-39). 

It is tempting to consider the samples { rf (ICT, )) as a representation of the 
signal ‘f(t), but it is faulty reasoning as we learn by inspection of Figure 4-11. 
The bandwidth BF of the noise is, in general, larger than half the sampling rate 
l/Ts. Thus, the sampling theorem is not applicable. 



244 

a) 

b) 
r(t) 
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y(t) 

kT* 
* F(o) - H L(@ K -I joTs 
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Equivalence Theorem 

cl 
r(t) 

- F(o) - HL@) c H-‘(a) 
Y,(t) 

Y 

F(o)H L(w)H-‘(o) = HL(@ 

Figure 4-12 Reversibility Steps 

Despite that fact we can prove reversibility. We recognize that due to 
condition (4-39) there is no noise aliasing in the passband of the useful signal. 
Filtering of (ICT,) by the digital lowpass filter HL (ejUT*) is therefore equivalent 
to filtering of (t) in the continuous-time domain by HL(w). In this case we may 
interchange sampling and filtering. Since the signal yr(t) is now band-limited to 
B we can process the samples y1 (ICT,) by a digital filter 

H-‘(,jwTe) = l/F(U) I I &<B (4-40) 

which reverses the effect of F(w) in the passband of the useful signal. Due to 
the equivalence theorem (4-28) the signal yd(t) equals y(t) in the mean-square 
sense. But since ( yd(kT”)} is obtained from {of (Q,)), it immediately follows 
that {~@‘I,)) is sufficient statistics. 

The practical significance of condition (4-39) is that we obtain guidelines on 
how to trade a simple analog prefilter against the sampling rate l/T’ and possibly 
elaborate digital signal processing. 

4.2.5 Main Points 
. Band-limited signals 

A band-limited (BL) signal can approximate a physical signal with arbitrary 
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accuracy. The approximation error is bounded by the power of the BL signal 
outside the bandwidth B of the BL signals [eq. (4-15)]. 

. Series representation of BL signals: 

x(t + T) = c z(nT,)si 
n 1 (4-4 1) 

From the series representation it follows that the time-shifted sample 
x(kT, + r) can be obtained by digital interpolation of the samples (x(kT,)}. 
The frequency response of the digital interpolation filter is 

I I 2 < 1/2T, 
(4-42) 

Timing recovery can thus be done by digital interpolation. The sample instants 
are determined by a free-running oscillator. There is no need of controlling 
a VCO to take samples at t = kT, + r. 

. Equivalence of digital and analog signal processing 

00 

Y(t) I t=kT, = 
J 

h(kT, -v) x(u)dv 

-CG 

= Ts c h(kT, -nTa) x(nT.,) 
n 

(4-43) 

Digital and analog filters are related as follows: 

hd( kZ) = Tj h(t) lt=kT, 

H&jWTo) = TJ [$f+ - $f)] 

n 
(4-44) 

= H(w) for 121 < 1/2T, 

Thus, the two filters have identical frequency responses in the baseband. 

0 Suscient statistics 
All the information of the received signal rj(t) is contained in the samples 
{rf(kT,)}. The signal r!(t) is obtained by filtering r(t) with a generalized 
anti-aliasing filter F(w) [eq. (4-39)]. There is a tradeoff between sampling 
rate l/T8 and analog prefiltering complexity. Oversampling relaxes the 
requirements on the rolloff thus leading to simple analog filters. 
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4.3 Optimum ML Receivers 

In this section we systematically derive receiver structures based on the ML 
criterion. This is an example of what we have termed “derived structure approach” 
in Volume 1. The essential feature of this approach is that the receiver structure is 
the outcome of the solution of a mathematical optimization problem; no a priori 
guesses are made. 

4.3.1 Receiver Objectives and Synchronized Detection 
The ultimate goal of a receiver is to detect the symbol sequence a in a received 

signal disturbed by noise with minimal probability of detection error. It is known 
that this is accomplished when the detector maximizes the a posterior-i probability 
for all sequences a 

&MAP = a% ma= P (a 1 rf ) (4-45) 

We can rewrite the a posteriori probability using Bayes’s rule: 

Pb M = 
P(V I a> P(a) 

P@f 1 
(4-46) 

The MAP (maximum a posteriori) detector therefore needs to know the a priori 
distribution P(a) and the distribution of rj conditioned on the knowledge of the 
data sequence a. This conditional distribution is completely specified by the noise 
process. Since p(rj) does not depend on the data sequence, maximizing p(a 1 rj) 
is the same as maximizing p(rj la) P(a). For equally probable data sequences then 
maximizing the a posteriori probability is the same as maximizing the likelihood 
function p(rj la), and MAP reduces to ML. For the mathematical purist we should 
mention that conceptually this statement is incorrect. In the ML approach a is 
assumed unknown but deterministic while in the MAP approach a is a random 
sequence. However, the result is the same for equally probable sequences. The 
statement “MAP reduces to ML” should always be understood in this context. 

Returning to p(rj I ) a we notice that the synchronization parameters are absent. 
As far as detection is concerned they must be considered as unwanted parameters 
[ 1, p. 871 which are removed by averaging 

p(a I rj > = P(a) /Ph I aYe) PP) de (4-47) 



4.3 Optimum ML Receivers 247 

Thus, in an optimal MAP (ML) receiver there exists no separate synchronization 
unit. 

The notation in the above equation needs explanation. The symbol 8 denotes 
a random sequence of synchronization parameters. The function p(0) is the joint 
probability density function of this sequence p(8) = ~(80, 81, 82, . . .), where 
each sample 8k may stand for a set of parameters. For example, 81, = [ok, ek]. 
The integral (4-47) (weighted average) then is to be understood with respect to the 
whole sequence and all parameters, The probability density function p(e) describes 
the a priori knowledge about the statistical laws governing that sequence. While 
the truly optimal receiver appears intimidating, suitable approximations will allow 
us to derive physically implementable receiver structures. 

Let us assume the receiver operates at high signal-to-noise ratio. Then the 
likelihood function weighted by the a priori probabilities becomes concentrated at 
its maximum: 

J Pkj la, e> PP) de 
0~ ma drj la, e> de) (4-48) 

Maximizing the integral leads to the rule 

( > ii,e = w max P(rj la, 0) P(e) (4-49) 

a, 8 

As a first important result we observe that the receiver performs a joint detec- 
tion/estimation. There is no separation between synchronization and detection 
units. At this point it is necessary to take a closer look at the properties of the 
synchronization parameters. In particular we have to distinguish between parame- 
ters which are essentially static, es, and parameters that may be termed dynamic, 
80. For static parameters there is no useful probabilistic information except that 
they are in a given region. Therefore, 8s is unknown but nonrandom. In view of 
eq. (4-49) the joint detection/estimation thus reduces to maximizing the likelihood 
function p(rj ]a, es) with respect to (a, es): 

( > ii, 4s = arg mm p(rjla, es) (4-50) 
a, es 

For static synchronization parameters, (4-50) defines a joint ML estima- 
tion/detection rule. On the other hand, probabilistic information is available 
for dynamic parameters and should be made use of. Hence joint detection and 
estimation calls for maximizing 

= arg mix p(rj la, b) Z@D) 
a$D 

(4-511 
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Using Bayes’s rule we can find a second representation of eq. (4-51), 

From the second representation it is immediately recognized that 80 is a MAP 
estimate so that one may speak of MAP dynamic parameter estimation and ML 
data detection. Dynamic parameter estimation will be thoroughly discussed in 
Part E which deals with fading channels. In Part D we focus on static parameter 
estimation. 

Since there are infinitely many possible values of the synchronization param- 
eters while the number of possible sequences is finite, the most natural joint max- 
imization procedure is to first maximize the joint likelihood function p(rj la, 8~) 
with respect to 8s for each possible a and then select the sequence a with the 
largest likelihood 

&(a) = arg max p(rf la, 0~) 
8s 

Ma) =*(rh&=&(a)) (4-53) 

ii = arg max AS (a) 
a 

The first maximization step yields a conditional synchronization parameter estimate 
8s (a) that is subsequently used in the decision likelihood computation as if 
it were the true parameter. However, each candidate sequence a comes with 
its own synchronization estimate &(a) conditioned on that sequence. Clearly, 
the optimum joint estimation detection rule is far too complex for a practical 
application. However, it readily guides us toward practical approximations. 

A first approach to separate the joint detection estimation rule into two disjoint 
tasks is to transmit a preamble a0 of known symbols prior to sending the useful 
data. During the preamble the (static) synchronization parameters can be estimated: 

A 

e&0) = arg max p(rjla=ao, 0s) (4-54) 
es 

The estimation rules which use a known sequence a0 are called data-aidedn(r) 
Subsequent detection of the useful data a is then done using the estimate Bs(ao) 
as if it were the true value: 

&= arg max p rj la, 0s = “S a0 u )) (4-55) 
a 

In order to accommodate ever-present slow variations of the synchronization 
parameters one may use segments of the decoded sequence to update the synchro- 
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nization parameter estimate: 

,. 
B&L) = arg max p(rfla =&&) 

OS 
(4-56) 

iir; : segment of decoded data 

Using segments AL of the decoded data as if it were the true symbols leads to 
so-called decision-directed (DD) synchronization algorithms. Notice that decision- 
directed algorithms always assume that an (accurate) initial estimate of 8s is avail- 
able. Only under this condition the synchronization-detection process [eq. (4-56)] 
works. 

Another possibility is to actually perform the averaging operation to remove 
the data dependency: 

P(r#w = c Phb, es> P(a) (4-57) 

all possible 
sequences a 

This leads to the class of non-data-aided (NDA) synchronization algorithms, 

es = arg max p(rj les) 
OS 

(4-5 8) 

Virtually all realizable receiver structures are based on the principle of syn- 
chronized detection where estimates of the synchronization parameters are used in 
the detection process as if it were the true values: 

&= arg max p 
( 
rf18, es=& 

> 
(4-59) 

a 

The estimates 4s are obtained by DA, NDA, or DD synchronization algorithms. 
Systematic derivation of these algorithms will be the topic of Chapter 5. 

4.3.2 Optimum ML Receiver for Constant 
Synchronization Parameters 

We consider the detection of a sequence a of N symbols. The received 
signal of (t) is given by (3-l): 

q(t) = 
n(t) 

t - nT - COT) ejeo + A 
n=O 

(4-60) 

where the pulse g(t) is the convolution of the transmitter pulse gT(t) with the 
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channel impulse response c(t) and the analog prefilter f(t): 

g(t) = ST(t) 8 c(t) @ f(t) (4-61) 

The noise n(t) is characterized by its power spectrum: 

s&4 = W)12 &(q (4-62) 

In many cases the noise process can be modeled as a complex random process 
with flat spectral density Na within the passband of the analog prefilter F(w). 
However, this is not essential to the following derivations. 

For the time being, the synchronization parameters (0, E) are assumed con- 
stant. However, we should be aware that the synchronization parameters are always 
time variant. But the time scale on which changes of these parameters are observ- 
able is much larger than the time scale necessary to express the symbol duration. It 
is therefore reasonable to separate these two time scales. We consider a first time 
scale which deals with the detection process and which is defined in units of the 
symbol duration T. The second time scale deals with slowly varying parameter 
changes of (0, E) with time constants much larger than T. Thus, the synchroniza- 
tion parameters may be considered piecewise constant over a number of symbols. 
This assumption greatly eases the systematic derivation of synchronizers. As we 
will see, tracking of the slowly varying parameters can be done in a post-processing 
unit which considers the estimates of the first state as noisy measurements. 

After these preliminaries we are now ready to tackle our goal of deriving the 
ML receiver structure for constant synchronization parameters. We have already 
done a great deal of preparatory work. It has been shown that the samples 
{rf (kT,)} are sufficient statistics. The (2M + 1) samples taken symmetrically 
to the origin 

rf,2M+l = (Pf,-hf, . . . Tf,b ..+~f,d (4-63) 

are the truncated representation of the sample vector rf.3 
Assuming the sequence a and the synchronization parameters (0, E) to be 

known from (4-60), the likelihood function follows immediately: 

P(rf,zhf+l la,09 = h(rf,2k2+1 - sf,2bf+l) (4-W 

which is simply the (multivariant) pdf of the noise sequence n for the arguments 
nk = rf(kT,) - sf (CCT,), Ik I 5 M. We assume that n(t) is Gaussian with 
covariance matrix A and (provided it exists) inverse matrix Q. The elements of 
A are given by 

Akl = [al,,, = E[n(kT,) n*(IT,)] 
(4-65) 

3 However, it would be faulty reasoning to say that rf,zM+l is a (2M + 1)-dimensional approximation 
of the signal rf (t). Even for A4 --+ 00, rf does not represent the signal rf (t) as we explained earlier. 
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where I&(T) is the correlation function corresponding to the power spectrum 
Sri(w) [eq. (4-62)]. Then 

p(rf,aM+l 1 a, E, 0) = [ (2n)2M+1 (det A)1’2] -’ 

x exp( -[rf,2M+l - sf,2bf+d 
H (4-66) 

x Q2M+l [rj,2M+l - 9J,2M+ll) 

where xH denotes the transposed vector with complex conjugate elements. 

the 
Now we can divide p(rf,sM+l 1 a,&, 0) by anything that does not depend 

parameters. For a = 0 the received signal equals rf (t) = n(t). Thus, 
on 

P(rI,ZM+l I a = 0) = [ (~.lr)~~+l (det A)~‘~] -’ 

=P{ - +72~+1 Q2~+1 rj,2~+1 > 

(4-67) 

We introduce the quotient 

zk2A!f+1 I a,&, e> 

P(rj,2iwt1 I a = 0) 
(4-68) 

Substituting (4-66) and (4-67) into this quotient, canceling common terms, letting 
M --) co and taking the logarithm we obtain the log-likelihood function 

qrj la, &, 0) = $Qq + SyQrj - syQsj 

= 2 Re[rfHQsf] - syQsj 
(4-69) 

where rj , sj are the infinite-dimensional sample vectors. For simplicity in notation 
we have suppressed the parameter set (a, 0, E) in the signal vector sj . They will 
reappear when we now insert the signal samples sf (ET,) defined by (4-60) into 
(4-69). 

For the first expression in (4-69) we obtain after some lengthy algebraic 
manipulation 

N-l co 

r?Q sj = c a, e@ C r;(kT,) g&,(0 + CT - ICT,) 
n=O &=-00 

(4-70) 

In Section 4.3.3 we will learn that gMF(kTd) is a digital matched filter which for 
the present discussion we assume to be given. Let us denote the conjugate complex 
of the second sum in (4-70) by z( nT + ET), 

co 

z(nT +&T) = c rj(kT,) gMF(nT + &T - kT,) (4-7 1) 
k=-cm 

Formally, the sum has exactly the form of a digital convolution of the input samples 
rj (AT,) with a linear digital filter. The discrete-time impulse response is different 
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Figure 4-13 Time-Variant, Discrete-Time Impulse Response gMF( kT8 - t) 

for every nT, hence, the filter is time-variant. This fact is illustrated by Figure 
4- 13 where on the horizontal axis the impulse response gMF( hT, -t) (all k) is 
displayed for t = ET and t = 
z(eT) (n = 

nT + eT. For example, to obtain the sample 
0), we have to convolve the sampled input signal rf (kT,) with an 

impulse response gMF( kT, - ET) 

z(ET) = 2 rf(kT,) SMF(-kT’ + ET) (4-72) 
k=-cm 

There are several features in (4-71) which need a thorough discussion. The 
most intriguing and disturbing fact is the appearance of the symbol duration T in 
z(nT + ET). If the digital convolution of (4-7 1) is to be interpreted as the output 
of a (time-variant) digital filter operating at the clock rate l/Ts, then only outputs 
at multiples of TJ are available. Under the (oversimplifying) assumption that T is 
a multiple of Td, i.e., T = IT,, the output z(nT + ET) can be written as 

z(nT + ET) = z([nI]T# + ET) 

= 2 ‘f (Ic%) Sm( -kT, + [nI]T, + ET) 
(4-73) 

Then z(nT + ET) is the output of the time-invariant digital filter with impulse 
response gMF( kT, - ET) taken at t = (nI)T,. We could thus run the digital 
matched filter at rate l/T3 and take the output z(kT, + ET) at k = In (Figure 
4-14). This operation is called decimation in digital signal processing. 

Clearly the assumption T = IT, is an unacceptable oversimplification since 
T is determined by the clock at the transmitter while Tb is determined by an 
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Figure 4-14 Computing z(nT + ET) in a Digital Matched Filter Followed by a 
Decimator; Condition: T is Exactly a Multiple of T, 

independent clock at the receiver. Even with extremely precise clocks we can 
never assume T and T, to be commensurate. Indeed, generating an estimate of 
the transmitter time base at the receiver is what synchronization is all about. 

Despite its oversimplification the previous discussion leads into the right 
direction for a solution to the problem. The key idea is to write the argument 
of z( nT + ET) as the sum 

nT+ET=[m,,+p,]T, (4-74) 

Here m, means the largest integer that is less than or equal to the real number 
on the left side and p,, is a fractional difference, as illustrated in Figure 4-15. 
Inserting the right side of (4-74) into (4-71) we obtain 

z(nT + ET) = 2 rj(kz) ad-& i- mJ' + AT,) (4-75) 

The samples of the impulse response shifted by (p,T,) follow from the shift 
property of band-limited signals [eq. (4-23)]: 

gMF(t - p&) = 2 gMF(iTs 

i=-00 
-pJi)si[&(t-iT.)] 

= 2 g&E) si [ $ (t - p,T, - in,)] 

(4-76) 

i=-00 3 

For t = IT, we obtain from the previous equation 

SMF(~Ta - p,T,) = 2 adiTs) si[; (K - p,,Ts - in,)] (4-77) 
i=-00 8 

Equation (4-77) is exactly in the form of a convolution sum. We can thus view 
the sequence {gMF(/T, - p,T,)} as being generated by a digital interpolator filter 
with impulse response 

(4-78) 

and input gMF( iT,). The interpolator filter is a linear, time-variant filter (due to 
p,,) with output denoted y(kT,). The matched filter is time-invariant. 
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Figure 4-15 Fractional Difference, (a) Transmitter Time Scale 
(nT), (b) Receiver Time Scale (A$,) 

Unlike conventional digital filters where the input rate equals the output rate, 
the right-hand side of (4-75) defines a time variable decimation process since only 
outputs y( m,,T,) at times m,T, are taken: 

y(mJi) = 2 V(k%) SMF(-h% -I- m, Tb + pn T,) (4-79) 
&=-cm 

By comparison of (4-79) with the definition of z(nT + ET), (4-75), one concludes 
that 

z(nT + ET) = y(m, T,) (4-80) 

Since T/T3 is irrational, the time instances m,T, form a completely irregular 
(though deterministic) pattern on the time axis {kT,} (see Figure 4-15). This 
irregular pattern is required in order to obtain an average time between an output 
a(nT + ET) of exactly T (given a time quantization of TS). The samples y( m, T,) 
obtained at average rate l/T are then phase rotated to obtain z( nT + ET) e-je. 

Figure 4-16 summarizes the digital signal processing required to obtain 
z(nT + ET) e -je from the received signal samples rf ( kTb ). The received samples 

‘f 0) 

Matched Filter 

& sMFWs) 

rf m3 1 

y(kTs) 

4 4 rotator 
hi variable m n 

decimation 
I 

($I@ 

Figure 4-16 Optimum ML Receiver Structure: Computation 
of the Matched Filter Output 
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control: compute only 

1 
at mnTs 

kTs 
transversal filter 

Y Ym Js) 
> h,(kTs ll4l) > gJkT,) - > 
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input rate l/T.. 

kT, 

I I I I I I I I I + 

m”T, m T n+l s 
kTs 

4 

I- - results are required only here 

Figure 4-17 Interchanging Position of Digital Interpolator and Matched Filter 

rf (/CT”) are first processed in a digital matched filter followed by the time-variant 
interpolator, both running at rate l/Td. Since the filters are linear, their position 
may be interchanged (Figure 4-17). Notice that only the results y(m, T,) are 
required for data detection and phase synchronization. The input data rate of the 
filter is l/T,. It runs at l/Ts but only outputs at instants m,T, (average rate l/T) 
are actually computed. In a practical realization gMF (kT, ) would be realized as an 
finite impulse response (FIR) filter where the samples are clocked in at rate l/Ts. 
The output is activated at instants m,T, only (Figure 4-18). As an interesting 
detail we remark that in the case where the interpolator precedes the matched filter 
the output of the interpolator does not equal of (kT, + pn T,) since ~-f(t) is not 
band-limited to B 5 l/2 Ts. 

input at constant data rate l/Ts 
(shift register) 

activate at 
mnTs only 

Figure 4-18 Matched Filter Realized as FIR Filter 
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The second term of (4-69) is independent of the received signal. As will be 
demonstrated in the following section, it can be written as a quadratic form: 

SfHQS, = aHHa (4-8 1) 

with 

h m,n = [HI,,, = c !#% - mT) gMF(-kc + nT) 
k=-00 

gH = ( ar, Y”‘7 a;v-1 > (symbol sequence) 

The matrix elements hm,n are independent of the synchronization parameters (0, E) . 
They can be interpreted as response to the matched filter gMF(hT,) at time nT 
with g(kT, - mT) as an input. If hm,n = 0, na # n, we have Nyquist conditions. 
Defining the vector z with elements zn = z( nT + ET) and using (4-70) and (4-71), 
the log-likelihood function can be written in the form 

L(rf 1 a, e, 0) = 2 Re[aHz e-j81 - aHHa (4-83) 

Alternatively, the log-likelihood function can be written in the form 

L(rf 1 a, &, 0) = [z e-j’ - H-la] H H [z e-ie - H-la] (4-84) 

which shows that the ML estimate is equivalent to a generalized minimum distance 
rule. For Nyquist pulses the matrix H is diagonal. Notice that in order to obtain 
an estimate of the data sequence it is inevitable to jointly estimate the “unwanted” 
parameter (0, E). 

The estimator is noncausal and thus an impractical scheme since we have to 
store the entire received sequence {rf (kT,)} to perform iteratively the maximum 
search over the parameter set (a, 8, E). It requires to compute rnn, pn, given 
T, T, , for every trial value e. The samples { rf (ICT,)) are then processed for every 
(6, e) as illustrated by Figure 4-16. With the resulting vector z the inner product 
aH z e-je is computed. 

Before we discuss realizable digital estimators we briefly want to discuss an 
analog realization. From the equivalence of analog and digital signal processing 
we obtain 

z(nT + ET) = 2 q(kT,) gMF(-kc i- nT + ET) 
k=-00 

1 cy) 
(4-85) 

=- 
l-3 J 

q(t) gMF(-t -t nT -t ET) dt 
-CO 

Equation (4-85) can be interpreted in two ways. First, z(nT + ET) can be v&red 
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KnT z(;T + &,T)e 
-je 

Figure 4-19 Analog Computation of z(nT + ET) 

as the output of an analog matched filter gMF(i! - ET) (see Figure 4-19). To find 
the optimum value, a bank of matched filters with trial values ei, i = 0, . . . , L 
must be implemented and sampled at symbol rate l/T to obtain Z( nT + &IT). 
If L is chosen sufficiently large, the discretization of the parameter is negligible. 
Alternatively, one may use a single filter gMF(t) and control the sampling instances 

to occur at t = nT + ET. 
In the literature it is often stated that sampling the analog matched filter g&t) 

at symbol rate l/T is sufficient statistics. The foregoing discussion has shown 
that, concerning synchronization, this argument is incorrect since the matched 
filter output must be computed for all possible values Q, i = 1, . . . . L. It is 
impossible to estimate E from the samples {z( nT)} as it is from the samples 
r~ (kT, ). This fact also follows directly from the conditions on the analog prefilter 
F(w) [eq. (4-39)] for sufficient statistics. For bandwidth-efficient transmission the 
bandwidth B of the signal sf (t) lies typically between 

$<B<$ (l/T symbol rate) (4-86) 
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Now, if we choose the sampling rate l/T8 equal to the symbol rate l/Z’, there is 
aliasing due to undersampling. 

4.3.3 Digital Matched Filter 
The matched filter is a key component of any receiver. This section is 

concerned with a thorough discussion of this component. The derivation is 
somewhat technical and may be skipped at first reading up to (4-110). 

The starting point of our derivation is the (2M+ 1)-dimensional approximation 
of eq. (4-68). Taking the logarithm and canceling common terms yields 

J~(wM+~ 1 a,&> 0) =2 b [rf,,+,Q 3M+1 S~,SM+I] 

- &+I Q2~+1 ~j,2M+1 

(4-87) 

Defining the vector d2M+i 

&M+l = Q 2M+l Sj,2M+l (4-88) 

we obtain for the components dk 4 

M 

&,2M+l = c qk,l sl (2M + 1) approximation (4-89) 
I=-M 

Inserting for 51 

sl = [sjll = Nc a,., g(lTs - nT - ET) eje 
la=0 

into (4-89) and letting M + 00 yields 

dk = 2 qk,ly a, g(lT, - nT - eT) eje 
I=-00 n=O 

Changing the order of summation, (4-91) reads 

& = y a, 2 qk,l g(lT, - nT - ET) eje 
n=O I=-00 

(4-90) 

(4-91) 

(4-92) 

We will prove later on that for M 3 00 the inverse covariance matrix Q 
has Toepliz form 

qk,l , = qk’ 1’ (4-93) 

4 In order to simplify the notation we have dropped the index f in sl = [sf ] , . 
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whenever k - I= k’ - 1’. Using qk,l = q&l the infinite sum has exactly the form 
of a digital convolutional sum. We define the matched filter impulse response: 

YLFW + ET - kT,) := 2 qk-1 g(lT, -nT-ET) (4-94) 
1=-m 

Using this definition in dk we then obtain 

ryQsj=ryd 
N-l 

= c a, eje 2 rj(kT,) &F(-kTs + d + eT) 
(4-95) 

?a=0 k=-oo 

Similarly, 

srHQ sf = sf”d 

ai e -je g*( kT, - nT - ET) 

w 
G 

N-l 

X c am eje &(-kTd + mT + ET) 
m=O 

g*(kT,-nT-ET) g&F(-kT,+mT+cT) 

(4-96) 

By the equivalence of digital and analog signal processing (4-28) the infinite 
convolution sum equals 

00 
c ( g IcTa - mT - ET) YMF( - kT, + nT + ET) 

k=-oo 

1 O” =- 
T9 I 

Y(t - 7-0 - CT) Y&-t + nT + ET) dt (4-97) 

1 O” =- 
Ts I 

Y(t - mT) gMF(-t + nT) dt 
--oo 
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From the second line of (4-97) follows that the sum is independent of the timing 
parameter E. Introducing the compact notation 

(4-98) 

we can write (4-96) in matrix-vector notation as 

Sf QSf = 8Ha (4-99) 

with hm,n = [HI, n an element of the (N x N) matrix H. Notice that this 
quadratic form is inbependent of 19 and E. Thus, only the form rfXQsf plays a 
role in the optimization of the synchronization parameters. 

Our derivation of the log-likelihood function is based on the Toepliz structure 
of the inverse covariance matrix. This property has allowed us to write dk as a 
convolution sum (4-92). We have defined 

x i,j = [‘li,j element of the noise covariance matrix 

(4- 100) 

ql,m = [QIi,m element of the inverse noise covariance matrix 

Next we prove the asymptotic Toepliz structure of Q. 
Proof; For all M we have 

A&=1 (4-101) 

where 
bk,m = 

1 k=m 
0 else 

(4- 102) 

is an element of the unity matrix I with 

bk,m = c xk,l ql,m W<M (4- 103) 

The covariance matrix A is a positive-definite Hermitian matrix. Furthermore, it 
is a Toepliz matrix. Using the Toepliz form of A, (4-103) can be written as 

bk,m = c xk-1 ql,m III L M (4- 104) 

The asymptotic Toepliz form of the inverse matrix Q may best be proven by 
applying the z-transform method. The z-transform of bk,m (m fixed) of (4-104) 
is defined as 

b(z, m) = C bk,m z-lc = c z-lc c Ak-1 Ql,m 

k k 1 (4- 105) 
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Assuming an infinite horizon, M -+ 00, we obtain by interchanging the order of 
summation 00 cxl 

Ql,m 2 
-1 

c 
x&-l %-(‘-‘) (4- 106) 

I=-00 &=-a0 

Since k runs from -oo to 00, the second factor is independent of 1. It equals 
the (two sided) z-transform of the sampled and normalized correlation function 
l/A2 &&!‘,‘,): 

X(z) = -$ (4- 107) 
kc-co 

The sequence { b&,m} is nOnzerO for k = m only. Hence, the z-transform equals 

b(z,m) = zsrn (4- 108) 

The z-transform of q(z, m) is defined as 

(4-109) 

Now, using (4-108) in (4- 106) and solving this equation for q( z, m) finally yields 

%-m % -m , \ 

q’z’ ml = x(z) = S&)/A2 
(4-l 10) 

We recall that q( z, m) is the z-transform of the mth column of the matrix Q. From 
the right-hand side of (4- 110) and the shift theorem of the z-transform it follows 
that the columns ql, m are identical, apart from a shift m. The (asymptotic) Toepliz 
form of Q follows immediately (see Figure 4-20). 

After these lengthy mathematical derivations all the results are available to 
gain some physical insight into the matched filter we formally introduced by 
(4-94). Previously (in Section 4.3.2) we learned that the output of the matched 
filter at any time can be generated by a time-invariant matched filter with impulse 
response gMF (kT,) followed by a time-variant interpolator hl (k& , j.& ). It suffices, 
therefore, to consider the time-invariant matched filter 

&(-kTb) = 2 q&-l g(lT,) 

I=-ccl 
(4-111) 

Much understanding can be gained by considering the matched filter in the 
frequency domain 

GMF (,jwT. > = q cejwT. > G* ($wT. > 



262 Receiver Structure for PAM Signals 

1 i-th 
i column 
I 
I  

‘> 

\  

I  
I  

qi-l,i-l b qi-l,i 
I 

-- 

I m-th 
I column 

Asymptotic Properties: 
q m+l,m = q(‘) 
q m,m+l = q*m+l,m 

re:Q$& 

I 

ss 
I -----+--------------. 
I 

m-th 
row 

inverse covariance matrix Q: 
for an infinite horizon, 
Q is a Hermitian Toepliz matrix 

Figure 4-20 Inverse Covariance Matrix Q : For an Infinite 
Horizon, Q Is Hermitian and a Toepliz Matrix 

where q ( ejwT*) is the Fourier transform of an arbitrary column of the inverse 
covariance matrix 

co 

n=--60 

n=-00 

Using the result (4-l 10) with z = ejwTa we can replace q(ejwTa) by 

q (,jwT.> = 
Sn(ejwbs)/A2 

(4-113) 

(4- 114) 

We notice that the power spectrum Sn (ejwT8) is real and therefore q (ejWT8) 
is real, too. Since q(ejwT*) is the Fourier transform of q(n), it follows that 
d-4 = q* (n). Finally, from the Toepliz structure of Q and the previous 
observation, we obtain 

!Zmtn,m = C?(n) (4-l 15) 

Qn,rntn = q*(-n) (4-l 16) 
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Hence, 
* 

Qm+n,n = Qn,m+n (4-l 17) 

which shows that Q is Hermitian (Figure 4-20). 
Employing the Poisson theorem we can relate the power spectrum of the 

sampled process to that of the continuous-time process n(t) : 

w - g k (4-l 18) 

where [eq. (4-62)] 

Sri(W) = IF( Sty (4-l 19) 

is the spectrum of the colored noise at the output of the analog prefilter F(w). 
Replacing q by X we finally obtain for the frequency response of the digital 
matched filter (Figure 4-21) 

GMF ( dwT1) = 
G* (eW’o) 

(4-120) 
l/(Ta A’) E Sn (w - 2r/T,k) 

kc-m 

Ws 
S”@ 1 

I 
B 1 1 

4 2T, T, 

Figure 4-21 Matched Filter Transfer Function GMF(~~~~*) 



264 Receiver Structure for PAM Signals 

Notice that in the baseband 

GMF(~~“~‘) = 0 for 
I I 
& >B (4-121) 

An interesting problem arises when the bandwidth Bf of the noise n(t) is 
smaller than half the sampling rate: Bj < (l/2) T., (strict oversampling). From 
the right-hand side of (4-118) we learn that the power spectrum J, (ejwT*) of the 
sampled noise process has gaps under this condition. As a consequence, q (ejwT8) 
[eq. (4-l 14)] does not exist which in turn implies that the inverse covariance matrix 
Q becomes singular. However, for the definition of the matched filter this is 
irrelevant since only the frequency response of F(w) in the interval 1 w/27r 1 < B 
is of concern. Hence, F(w) can be replaced by any filter which coincides with it in 
the above range and which is arbitrary but nonzero for B 5 1 w/2a 1 < l/T8 - B. 

Remark: By construction, the output of the matched filter must be independent of 
the prefilter F(w). If the opposite were true, { rf ( kTb)} would not be sufficient 
statistics. We can easily verify this conjecture. Since 

G(w) =GT(+'(+'(~) 

Sn(w> = Iqw)12sw(w) 
(4-122) 

we obtain (baseband) 

GhF ( ejwT*) = [Gdw)C(w)F(W)l 
l/A2 Ts IJ’(w)12Sw (w) 

(4-123) 

The useful signal at the MF output has been processed by a filter cascade with 
frequency response 

f&t (eiwT’) = GT(W)C(W)F(W)GMF (eiwT’) 

= IGdW) I2 (ccw) I” 
1 (4- 124) 

l/A2Ww (w) 
The power spectrum of the noise at the output of the matched filter equals 
(baseband) 

SMF (eiwT’) = IGMF(eiwT’) 12s, (eiwT’) 

I~T(w)~2~c(w)~2 1 = 
SW (4 1/A2T, 

Both outputs are independent of F(w). 

(4-125) 

Signal-to-Noise Ratio at the Matched Filter Output 

We compute the signal-to-noise (SNR) ratio when the output of the matched 
filter equals the sum of symbol plus white noise sample: 

4a = an + n, (4- 126) 

Obviously, a detector which has to deal with IS1 and colored noise can do no 
better than under these idealized conditions. The SNR obtained thus serves as a 
bound on performance. For eq. (4-126) to be true the following conditions are 
sufficient (Figure 4-22): 
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2% T3 

Figure 4-22 Power Spectrum of the Sampled Process n(kT,) 
When IF( Obeys Nyquist Conditions 

0 w(t) is a complex process with flat power spectral density NO. 
(ii The prefilter IF( obeys 

(4- 127) 

(iii Nyquist pulses 

h m,n = C( g kT, - mT)gMF(nT - K) 
k (4- 128) 

1 
ho,o m=n = 
0 else 

From conditions (i) and (ii) it follows that the power spectrum of the sampled 
noise n(kT,) is white: 

No =- 
T9 IJv)I = 1 

The variance equals 

*IT, 

a; ;; /- Sn (ejwT*) dw =- 

-T/T. 
No =- 
T, 

(4- 129) 

(4-130) 

From the definition of GMF(~~~~B), eq. (4-120), and the previous equation we 
obtain 

G* (&wT.) 
GMF(ejwT’) = No/(Ts 4 (4-131) 
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Using 

v(t) = (Eo = 0) 
n=O 

(4- 132) 

the matched filter output z(0) can be written as follows: 

z(0) = a0 2 S@%) i’MF(-h%) + ; 2 WC) SMF(-k%) (4 133) 
k=-ca k=-00 

= a0 ho,0 + rig(O) 

Due to the Nyquist conditions there is no intersymbol interference, provided we 
have perfect synchronism, i.e., EO = E = 0. [Without any loss of generality we 
have assumed n = 0 in (4-133)]. 

The variance of the filtered noise 

is found to be 

gg 4 l 
= A2 No/(A2T,) ho’o 

(4-134) 

(4- 135) 

= ho,o 

The constant h a,0 is related to the energy of the pulse g(t) by the Parseval theorem: 

ho,o = c g(C) gMF(-h%) 
k=-oo 

= E g(&) g*(C) 
k=-co 

A2 +O” A2Eg 
=- 

No J 
g(t) g’(t) tit = --j&-- 

Inserting (4-136) into ui9 yields 

The average energy of the useful signal 

a0 2 g(K) n&-k%) = a0 ho,0 

(4-136) 

(4-137) 

(4-138) 
k=-co 
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is 
Ew = E[M2] Iho12 

The ratio of signal to noise is therefore 

(4- 139) 

SNRMF= 
+12] A2 Es 

No 
(4- 140) 

The SNR is usually written in a different form. The average energy per symbol 
equals 

E, = E[~cJ,~~] A2 E, (4-141) 

so that the SNR is given by 

Es SNRMF= - 
No 

(4- 142) 

Notice that the result is independent of the sampling rate l/T’. The result is 
identical to that we would have received for an analog matched filter, again 
confirming the equivalence of analog and digital signal processing. 

4.3.4 Main Points 
. MAP receiver 

The optimal MAP receiver has no separate synchronization unit. The syn- 
chronization parameters are considered as unwanted parameters which are 
removed from the pdf by averaging 

. ML receiver 
The ML receiver jointly estimates the synchronization parameters and the 
data sequence. The receiver comprises a digital matched filter, a time-variant 
interpolator and decimator, a phase rotation unit and a data sequence estimator. 
The matched filter operation operates on samples of (ICT, ). The sample value 
at the correct sampling instant is obtained by digital interpolation of the 
matched filter output. The digital interpolator performs the function of a 
timing recovery circuit. The data sequence estimator and phase recovery 
circuit operate with one sample per symbol. The samples Z( nT + ET) (l/T 
symbol rate) are obtained from the matched filter output by a time-variant 
decimator. 
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Matched jilter 
Frequency response 

GMF (ejwTa) = 
G* (,+C) 

l/(KA2) C Sn (u - +) 
(4- 144) 

k 

with 
G(ejwTa) = $ C G(u - Frn) 

’ m s 
(4- 145) 

Signal-to-noise ratio at the matched filter output 

(4- 146) 

with symbol energy 

E s = E [ lan12] A2 7 Ig(t)l”dt 
-00 

(4- 147) 

The output of the matched filter is independent of the sampling rate l/7’., and 
the frequency response of the generalized anti-aliasing filter F(w). 

4.3.5 Bibliographical Notes 
The classical papers on optimum receivers were published in the 1970s 

[2]-[5]. They all deal with time-continuous (analog) signal processors. The 
problem was reconsidered in [6] by restricting the problem to band-limited signals 
as the basis for (equivalent) optimum receivers employing discrete-time (digital) 
signal processing. One of the first hardware implementations of a fully digital 
receiver is reported in [7]. 

4.3.6 Appendix 

Normalized Equations for Nyquist Pulses and Symmetric Prefilters IF (w ) I” 
Inserting 

rf(kT#) = cura g(kT, - nT - EOT) ejeo + y 
n 

[eq. (4-6)] into 

(4- 148) 

z(nT + ET) = c q(kT’) gMF(nT + eT - ICT,) 
k 

(4- 149) 
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[eq. (4-85)] yields 

C am g(kT, - mT - aT)ej*O + n(C) 
7 1 

X gMF(nT + eT - kTb) 

= c an hm,n (& - ejeo) + n,(nT) 

where hm,n (E - ea) is defined by 

hm,n(& --Eo) = C g (kT# - mT - EAT) gMF(nT + GT - kT8) 
k 

and ng is the noise process 

‘dnT> = c n(K) gMF(nT + ET - kT,) 

269 

(4- 150) 

(4-151) 

(4- 152) 
k 

For Nyquist pulses and symmetrical prefilter (conditions 4- 127) the noise n,(nT) 
is white with variance 

The function hm,n(E - ~0) for E - EO = 0 becomes 

hm,n(E-Eo = 0) = { ;o,o ,“1, m 

(4-153) 

(4- 154) 

Consequently, the matched filter output sample taken at the correct instant nT+coT 
exhibits no ISI. 

Normalizing eq. (4-150) by E [IanI ho,o(O) we obtain after some simple 
algebra (using the quantities defined in Section 4.36) 

F(nT + ET) = Can Km,n(E-Eo) ejeo + F(nT) (4- 155) 
n 

with 

The (normalized) likelihood function equals 

(4- 156) 

p(rfla, 8, el) = const x exp -2 C [ Ixn12- 2 Re[if@(nT + d")]eeie 

n 

(4- 157) 
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Chapter 5 Synthesis of 
Synchronization Algorithms 

In this chapter we derive maximum-likelihood (ML) synchronization algo- 
rithms for time and phase. Frequency estimation and synchronization will be 
treated in Chapter 8. 

The algorithms are obtained as the solution to a mathematical optimization 
problem. The performance criterion we choose is the ML criterion. In analogy to 
filter design we speak of synthesis of synchronization algorithms to emphasize that 
we use mathematics to find algorithms - as opposed to analyzing their performance. 

5.1 Derivation of ML Synchronization Algorithms 

Conceptually, the systematic derivation of ML synchronizers is straightfor- 
ward. The likelihood function must be averaged over the unwanted parameters. 
For example, 

joint estimation of (8, E) : 

P(rf I& 4 = c P(a) Ph 1% 4 4 
all sequences a 

phase estimation: 

we) = J 
[ 

C P(a) p(q la, 4 4 PC4 d& 1 (5-l) 
all sequences a 

timing estimation: 

Pkf l-9 = J[ c P(a) Pkf la, 6 4 2-e) f&3 
all sequences a 1 

With the exception of a few isolated cases it is not possible to perform these 
averaging operations in closed form, and one has to resort to approximation 
techniques. Systematically deriving synchronization algorithms may therefore be 
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understood as the task of finding suitable approximations. The various algorithms 
are then the result of applying these techniques which can be systematic or ad hoc. 

The synchronizers can be classified into two main categories: 

1. Class DD/DA: Decision-directed (DD) or data-aided (DA) 
2. Class NDA: Non-data-aided (NDA) 

The classification emerges from the way the data dependency is eliminated. When 
the data sequence is known, for example a preamble a0 during acquisition, we 
speak of data-aided synchronization algorithms. Since the sequence a0 is known, 
only one term of the sum of eq. (5-l) remains. The joint (0, e) estimation rule 
thus reduces to maximizing the likelihood function p(rf 1 a = a0 ,8, E) : 

( > b DA =arg max p(rf Ia=aO,8,E) (5-2) 
e,e 

When the detected sequence & is used as if it were the true sequence one 
speaks of decision-directed synchronization algorithms. When the probability is 
high that & is the true sequence ao, then only one term contributes to the sum 
of eq. (5-l): 

c P(Qol la, 6 4 2 P(q la = 4 6 E) (P(a = 8) N 1) (5-3) 
all sequences a 

Thus 

( > 
0 DD = arg max p(rf la = ii, 8, E) (5-4) 

e,c 
All DD algorithms require an initial parameter estimate before starting the detection 
process. To obtain a reliable estimate, one may send a preamble of known symbols. 

Class NDA algorithms are obtained if one actually performs (exactly or 
approximately) the averaging operation. 

Example: NDA for BPSK with i.i.d. symbols 

n=O 
(5-5) 

An analogous classification can be made with respect to the synchronization 
parameters to be eliminated. For example, 
(DD&De) : data- and timing directed: 

p(rf le) = p(rf la = ii, 8, e = it) 

DD, timing independent: (5-6) 
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Figure 5-l Feedforward (FF) and Feedback (FB) Synchronization Algorithms 

and 
(DD&De) : data- and phase directed: 

p(q I&) = p(q la = ii, e = 8, e) 
DD, phase independent: 

G-7) 

p(rf IE) = J p(rf la = 4 4 E) P(e) de 

The algorithms can be further categorized according to how the timing/phase 
estimates are extracted from the received signal. We distinguish between algo- 
rithms which directly estimate the unknown parameters (00, ~0). Such algorithms 
are called feedforward (FF) because the estimate is derived from the received sig- 
nal before it is corrected in the interpolator (for timing) or the phase rotator (for 
carrier recovery). 

The other category derives an error signal &I = 8 - 00 and & = t - ~0, 
respectively. These algorithms are called feedback (FB) because they derive an 
estimate of the error and feed a corrective signal back to the interpolator or 
phase rotator, respectively. Feedback structures inherently have the ability to 
automatically track slowly varying parameter changes. They are therefore also 
called error-feedback synchronizers. 

For illustration, in Figure 5-l a typical block diagram of a digital receiver 
is sketched together with the various signals required for FF or FEl algorithms. 
Notice that the position of the various blocks may be interchanged, depending on 
the application. For example, interpolator and rotator may be interchanged. 

When deriving a synchronization algorithm from the ML criterion, one as- 
sumes an idealized channel model (to be discussed shortly) and constant parame- 
ters, at least for quasi-static channels. In principle, a more realistic channel model 
and time-variable parameters could be taken into account, but it turns out that this 
approach is mathematically far too complicated. In view of the often crude approx- 
imations made to arrive at a synchronizer algorithm, it makes no sense to consider 
accurate channel models. Instead, one derives synchronization algorithms under 
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idealized conditions and later on analyzes the performances of these algorithms 
when used in conjunction with realistic channels. 

We assume Nyquist pulses and a prefilter ]P’(u)]~ being symmetric about 
1/2T,. In this case the likelihood function [see eqs. (4-83), (4-157)] assumes the 
simplified form 

Nc lho,0121a,12 - 2uiz,(&)e-je 
n=O 

(5-8) 

with the short-hand notation Z,(E) = z(nT + ET). 
We said earlier that synchronization algorithms can be systematically derived 

by finding suitable approximations to remove the “unwanted” parameters in the 
ML function. The result of these approximations is a function L(O), where 8 
denotes the set of parameters to be estimated. The estimate 8 is defined as the 
argument for which L(8) assumes an extremum. Depending on the definition of 
L(8), the extremum can be either a minimum or a maximum: 

4 = arg extr L(e) 
8 

(5-9) 

Strictly speaking, 6 is an ML estimate only if the objective function L(B) is the 
ML function P(rf I 6). However, for convenience we frequently speak of ML 
estimation also in the case that L( 0) is only an approximation to p(rf 1 0). 

A first approximation of the likelihood function (5-8) is obtained for 
large values of N. 
SfHSf = C l~0,0121ha12 

We have shown in Chapter 4 that the inner product 
is independent of the synchronization parameters. For 

a sufficieitly large N the sum 

YN =yl%12 
n=O 

(5-10) 

is closely approximated by its expected value. This is a consequence of the law 
of large numbers. We can therefore discard the term C Ian I2 

const. from maximization to obtain the objective funcion 

+ ~~[lha12] = 

L(a, 8, e) = exp (5-l 1) 

Several important conclusions can be drawn from this objective function. In most 
digital receivers timing recovery is done prior to phase recovery. The reason 
becomes clear by inspection of (5-11). Provided timing is known, one sample 
per symbol of the matched filter output is sufficient for carrier phase estimation 
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and symbol detection. To minimize the computational load in the receiver, carrier 
phase estimation and correction must be made at the lowest sampling rate possible, 
which is the symbol rate l/T. All digital algorithms for phase estimation to be 
derived later on will therefore be of the DE type running at symbol rate l/T. 
They will be either DD (DA) or NDA. 

While the number of different carrier phase estimation algorithms is small, 
there exists a much larger variety of digital algorithms for timing recovery. This 
is due to the fact that the number of degrees of freedom in deriving an algorithm 
is much larger. Most importantly, the sampling rate l/T8 to compute z~(E) can 
be chosen independently of the symbol rate. At the one extreme the samples 
G&) = z(nT + ET) can be obtained by synchronously sampling the output of 
an analog matched filter z(t) at t = nT + ET A digital error feedback algorithm 
running at rate l/T is used to generate an error signal for the control of an analog 
voltage-controlled oscillator (VCO) in this hybrid timing recovery system. Using 
a higher sampling rate l/T, > l/(T(l + CX)) (a: excess bandwidth), the matched 
filter can be implemented digitally. The samples ~~(6) are then obtained at the 
output of a decimator zla (E) = z( m, Tj + pnTJ). Timing recovery is performed 
by a digital error feedback system (FB) or direct estimation (FF) of the timing 
parameter e and subsequent digital interpolation. All of them - DD, DA, and 
NDA - methods are of practical interest. 

5.2 Estimator Structures for Slowly Varying 
Synchronization Parameters 

5.2.1 Time Scale Separation 
Discussing the optimal receiver in Section 4.3.1 we modeled the synchroniza- 

tion parameters as random processes. The time scale on which changes of these 
parameters are observable is much coarser than the symbol rate l/T. It is therefore 
reasonable to separate these time scales. We consider a first time scale which op- 
erates with units of the symbol duration T to deal with the detection process. The 
second (slow) time scale deals with the time variation of the parameters E(nT) 
and O(nT) with time constants being much larger than T. We can thus consider 
the synchronization parameters as approximately piecewise constant and estimate 
these parameters over segments of M >> 1 symbols. The number M of symbols 
over which the synchronization parameters can be assumed to be approximately 
constant depends on the stability of the oscillators and the frequency offset. 

If the variance of the short-term estimate is much larger than the variance of 
the synchronization parameter, processing the short-term estimate in a postproces- 
sor which takes advantage of the statistical dependencies between the estimates 
yields a performance improvement. We have thus arrived at a first practical two- 
stage structure as shown in Figure 5-2. 
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Figure 5-2 (a) Two-Stage Estimator Structure, (b) Time Variation of Parameter 

The two-stage estimator has several advantages from a digital signal process- 
ing point-of-view. Computation of ML estimates basically is an inner product 
(feedforward) computation which can be processed in parallel and thus is suitable 
for VLSI implementation. The more complex processing in the postprocessing 
stage then runs at a lower rate of l/(MT) compared to l/T8 > l/T in the first 
stage. 

An alternative to estimating a slowly varying parameter is to generate an 
estimate of the error and use this estimate as an error signal in a feedback system 
(Figure 5-3). 

kTs 
error signal 

Interpolator e(kT, ) 

> hl (kT, ,Q 1 
y Error ) Loop ___ 
’ Detector Filter 

A A 

a&) &kT, 1 

Figure 5-3 Timing Error Feedback System 
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5.2.2 Truncation and L Symbols Approximation 
of the Likelihood Estimates 
In this section we consider approximations to the optimal estimator with respect to 

(i) Estimation of the synchronization parameters using only a subset of L < N 
symbols out of N transmitted ones 

(ii) Estimation of the synchronization parameters using a finite observation inter- 
val {rf(kT,)}, a 5 k L b 

In many practical applications we estimate the parameters (6, E) over L symbols 
in a continuous stream of N symbols, L << N [case (i)]. The observation interval 
L is limited by the fact that the parameters are not strictly constant but slowly 
time variable. L is then chosen such that 

LT < r,j,rc (S-12) 

where ~6, rC are the correlation time of the respective processes. Following (4-83) 
the log-likelihood function for L symbols reads 

L(rf 1 aL, 0, E) =2 Re C ai ~~(a) e+ 
n=J 1 

J+(L-1) J+(L-1) 

- C C 4 al hl,n 

n=J l=J 

(5 13) 

Note that the entire received signal rf is processed. Only the data vectors 
a and z are replaced by aL and ZL, respectively. This remark is important since 
truncation of the received signal rf leads to entirely different degradations [case 
(ii)] as will be discussed shortly. 

The approximation error of choosing a finite interval L among a number of 
N transmitted symbols is determined next. The received signal equals the sum of 
useful signal s( t ,&Jo) and noise n( t ) . Notice that the parameter values 80 = (00, eo ) 
are the true values to be clearly distinguished from the trial parameters (0, e). 
Inserting Sf (t) + n(t) into (4-71) yields 

z(nT + ET) = a, g( kT, - mT - QT) ejeo + n(kT,) 1 

5 Can be omitted at first reading. 
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Interchanging the summation over k and m yields [again with the short-hand 
notation Z, (E) = z(nT + ET)] 

%&)==~LI, 2 ( g kT, -mT-e*T) gMF(-kTs + nT + ET) ejeo +n,(nT) 
m=O k=-co 

(5-15) 
with the additive noise term 

n,(nT) = 2 n&T,) gMF(-kTs + nT+ ET) (S-16) 
k=-oo 

We note from the last two equations that the entire signal rr is processed as 
expressed by the infinite sum over k. We recognize in the infinite sum the output 
of the matched filter excited by the pulse g(kT,). Repeating the steps leading to 
h m,n of (4-98) we define hm,n (e - ~0): 

hm,n(& - EO) = 2 g(kT# - mT - EOT) gMF(-k& + nT + ET) (5-17) 
k=-w 

which depends on the error (60 - E) between the true value and its trial parameter. 
Notice that for ~0 - E = 0 we recover hm,n of (4-98). 

In the L symbol log-likelihood function only the values for 0 5 J 5 n < 
(J+L- 1) 5 (N-l) of z(nT + aT) ai are summed up. We obtain for the 
observation-dependent term of (5 13) 

J+(L-1) N J+(L-1) 

x ai C amhm,n(E-60) e-j(e-eo) + C ai n,(nT) 
n=J m=O n=J 

(5-18) 

The double sum 
plus a residue: 

of the previous as a sum over L symbols 

J+(L- 1) J+(L- 1) 

C C aiamhm,n(&-&o) e-j(e-eO) 
n=J m=J 

J+(L-I) J-l 

+ C C azamhm,n(&-EO) e-j(e-eO) 
n=J m=O 

J+(L-1) N 

+ C C aiamhm,n(&-&O) e-j(e-eO) 
n=J m=J+L 

(5- 19) 

We recognize in the first double sum exactly the term that would appear in the 
log-likelihood function if L symbols were transmitted in total. The second two 
sums are interfering terms caused by symbols outside the considered L interval. 
They represent self-noise which is present even in the absence of additive noise. 
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*L 81 

Figure 5-4 Symbol Vector a 

Using vector matrix notation the contribution of the self-noise can be seen 
more clearly. We write the symbol vector a comprising N symbols as the sum 
of two disjoint vectors, 

a = aL+al (S-20) 

where aL contains the symbols for J 5 n 5 (J+ L - 1) and al the remaining 
symbols (Figure 5-4). 

Leaving aside e -j(e-eo), the double sum of (5-19) can then concisely be 
written in the form 

a:HaL + afHa[ (5-21) 

The projection of Hal on af is marked in Figure 5-5. It is seen that the self- 
noise contribution depends on the amount of intersymbol interference (ISI) as 
evidenced by the nonzero off-diagonal terms in the matrix. Let us denote by D 

J J+(L-1) 

J+(L-1) - 

Figure 5-5 Projection of Hal on a; 
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the number of symbols which essentially contribute to the self-noise. This number 
is independent of L. For sufficiently large L the self-noise becomes negligible and 
the performance approaches asymptotically that of the optimal ML estimator. 

Further, one recognizes 
bution for E = eo. 

that for Nyquist pulses there is no self-noise contri- 

In case (ii), only a subset of samples {rf (ITS)}, J < k 5 (J+ ML - 1) is 
processed. The factor A4 is the integer of the ratio [T/TslINT = M. The interval 
then approximately equals that of received L symbols. 

The truncated log-likelihood function is obtained from (4-95) by restricting 
the summation from J to (J+LM-1): 

c rj (kG) d(kT,) - c 

E=J 1 
J+(L-1) J+(L-1) 

c a: ai h,, 

n=J l=J 

(5-22) 

with 

d(kT$) = Ne an &F(-kT, + nT + ET) e+@ 
n=O 

(S-23) 

In the second term the summation is restricted to L symbols corresponding to 
the truncated measurement interval. It is the same term as in case (i), eq. (5-13). 
The first term comprises short-term correlation of segment [rjlL with [d(kT,)], . 
It is important to realize that the L-segment correlation is not equivalent to the 
matched filter method [compare with (513)]. While in both cases a subset of L 
symbols is considered, in the matched filter approach the entire received signal is 
processed. Performing the correlation operation defined above, an additional term 
is introduced by truncating the received signal to LM samples. Thus, correlation 
in general is inferior to matched filtering. 

5.2.3 Maximum Search Algorithm 

There exist a variety of algorithms for maximum search of the objective 
function. The choice depends mostly on the bit rate and technology available. 

Parallel Search Processing 

Today’s technology allows the integration of highly complex digital signal 
processors. The computational load can be managed by parallel processing rather 
then using an extremely fast technology. 
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Iterative Search Processing 

The maximum search operation can be performed serially. A necessary, but 
not sufficient condition for the maximum of the objective function is 

the 
In (5-24) we assume that an estimate of the data sequence is available or that 

sequence a = a0 is known. For NDA algorithms the argument 6 is absent. 

(5-24) 

Since the objective function is a concave function of the parameters (0, E) we 
can apply the gradient technique (or steepest ascent method) to compute the zero 
of (5-24) if the initial estimates are within the convergence region. 

n 

ok+1 = 8, + (Y2 
d 

z L r.f b-dk,ik > 

(5-25) 

CQ : convergence parameter 

with the short-hand notation a/da: L(rj 15) = [a/&c L(rflx)],,g. 

Notice that the received data over a segment of L symbols is processed 
repeatedly which requires that the data are stored in memory. This places no 
problem with today’s digital technology. The iterative search is of particular 
interest to achieve acquisition with known symbols during a training period. 

5.2.4 Error Feedback Systems 

Error feedback systems adjust the synchronization parameters using an error 
signal. The error signal is obtained by differentiating an objective function and 
computing the value of the derivative for the most recent estimates 8, , in, 

dL 

3-r ( 
6,e=8,,&=& 

> (5-26) 
dL 

ae ( i&e=&,&=& 
> 

For causality reasons, the error signal may depend only on previously re- 
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viewed symbols a,, (which are assumed to be known). The error signal is used 
to predict the new estimate: 

(5-27) 

We readily recognize in eq. (5-27) the estimate of a first-order discrete-time error 
feedback system where (cy,, cre) determines the loop bandwidth. Higher-order 
tracking systems can be implemented employing appropriate loop filters. 

The error signal can always be decomposed into a useful signal plus noise. 
For E and similarly for 19 we obtain 

zero-mean 
v 

noise procese 

The useful signal depends nonlinearily on the error (^ -00) and&-&g). We 0, 
speak of a tracking mode operation of an error feedback system when the error 
is sufficiently small. The useful signal in (5-28) must be zero for zero error in 
order to provide an unbiased estimate. The process of bringing the system from its 
initial state to the tracking mode is called acquisition. Acquisition is a nonlinear 
phenomenon (see Volume 1, Chapter 4). 

We observe some similarities between the maximum search and error feedback 
systems. In both cases we use the derivative of the objective function to derive an 
error signal. However, we should be aware of the fundamental differences. The 
maximum search algorithm processes the entire signal to iteratively converge to 
the final estimate. The feedback control systems, on the other hand, operate in 
real time using only that segment of the signal which was received in past times. 

5.2.5 Main Points 
0 ClassiJication of algorithms 

We distinguish between algorithms which assume the symbol sequence to be 
known and the obverse: The first class is called decision-directed (DD) or 
data-aided (DA), the obverse NDA. We further distinguish between feedfor- 
ward (FF) and feedback (FB) structures. 

l Synchronization parameters are slowly varying. They are estimated using 
one of the two structures: 

. Two-stage tracker 
The synchronization parameters are approximately piecewise constant. 
They are estimated over an interval of L symbols in a first stage. 
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. 

Postprocessing of the short-term estimates is done in a second stage. 
This stage exploits the statistical dependencies between the short-term 
estimates of the first stage. 

. Error feedback system 
An automatic control system is used to track a slowly varying parameter. 

We process the entire received signal rj (kT,) but use only a subset of L << N 
symbols out of N transmitted ones for estimation. This produces self-noise. 
If we process only a segment of samples T-I(~&) we generate additional 
noise terms. 

Bibliography 
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Dateniibertragung. Dusseldorf: VDI Verlag, 1989. 

5.3 NDA Timing Parameter Estimation 

The objective function for the synchronization parameters (0, E) is given by 
eq. (5 11): 

L(a, 8, c) = exp Nc at z,(e) e-je 
n=O (5-29) 

Cl: %n(&) e-j8 

In a first step we derive data and phase-independent timing estimators. The estimate 
of E is obtained by removing the unwanted parameters a and 0 in eq. (S-29). 

To remove the data dependency we have to multiply (5-29) by P (ia), where 
(iu) is the ith of M symbols, and sum over the M possibilities. Assuming 
independent and equiprobable symbols the likelihood function reads 

L(O,e) = Nfi1 Fexp { -$ Re[‘az Zn(E) e-je] P(‘a)} 
n=O i=l 

(5-30) 

There are various avenues to obtain approximations to (5-30). Assuming 
M-PSK modulation with M > 2, the probabilities 

P(‘a) = $ for ia=ej2*ilM i= l,...,M (5-3 1) 

can be approximated by a continuous-valued probability density function (pdf) of 
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eia where CY has a uniform distribution over (-X, r): 

Zn(E) GcBaBe) 
11 

dell 

= n j exP \ -$ lM)I COS (-a - 0 + arg Z,(E)) da, 
n=O --A > 

Since cos (s) is integrated over a full period of 27r, it is independent of 8 and 
arg %n (E) 1 

where 1c( s) is the Bessel function of the first kind of order zero. It is quite inter- 
esting that in this approximation the distribution of the phase 8 is of no concern. 
Thus, by averaging over the symbols we have achieved phase independency. But 
also notice that maximization requires knowledge of the signal-to-noise ratio a:. 

Let us in a second approach first average over the phase to obtain a data- 
dependent algorithm: 

(5-34) 
Notice that the result is the same for all phase modulations (M-PSK) (since 
l%l = const.), but not for M-QAM. In order to obtain an NDA synchronization 
algorithm for M-QAM, we would have to average over the symbols which is not 
possible in closed form. 
But the objective functions of (5-33) and (S-34) can be further simplified by a 
series expansion of the modified Bessel function, Taking the logarithm, expanding 
into a series 

XL 
IO(X) Iii 1 + - 

2 
1x1 < 1 (S-35) 
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and discarding any constant irrelevant for the estimation yields 

NDA: t = arg max Lr(E) 

cz arg max Nc Iz,(E)12 
c n=O 

(5-36) 

DA: t= arg max &(a,&) 

2 arg max Nc I%n(&)121Un12 
c n=O 

For M-PSK (ian I2 = const.) both algorithms are identical. 

Let us now explore a totally different route. We want to eliminate the data 
dependency in (5-29). This requires averaging over the symbols, if possible at all. 
Furthermore, it requires knowledge of 0: (operating point) which is not available 
in general. The algorithm would possibly be sensitive to this operating point. Both 
problems can be circumvented by considering the limit of the likelihood function 
(5-29) for low signal-to-noise ratio (SNR), ui >> 1. For this purpose we expand 
the exponential (5-29) function into a Taylor series: 

Nl Re [a; G&) e-je] 1 2 (5-37) 

We next average every term in the series with respect to the data sequence. For 
an i.i.d. data sequence we obtain for the first term 

n=O 

= y Re[E&] zn(&) e-je] 
n=O 

(5-38) 

=o 
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since ~!?[a~] = 0. For the second term we obtain 

[ 

5 Re [u;", z,(E) e-je] 

Y&=0 1 [ ' = t E uI", zn(E) e-je + a, z;T(e) ej'] 2 

n=O 

+ aNc [(U~)2(Zn(E))2fZw'2e + (Un)2(.Z~(E))2e+52e + 21a,121&b(E)12] 

n=O 
(5-39) 

Now, taking expected values of (5-39) with respect to the data sequence 
assuming i.i.d. symbols yields (E[cn] = 0): 

r N-l l2 

E, Re C [u: Zn(&) e-je 

n=O '1 

+ i Nf Re[IZ[ui] (~i(e))~ ej2’] 
n=O 

Using (5-40) leads to the following objective function: 

n=O 

+ Re Nc E[ui] (z~(E))~ e-j20 
n=O 1 

(5-40) 

(5-41) 

Averaging over an uniformly distributed phase yields the noncoherent (NC) timing 
estimator 

N-l 

(NC) (5-42) 
n=O 

which is the same as equation (5-36) (NDA). 
Equation (5-41) serves as a basis for the joint non-data-aided estimation of 

phase and timing. The phase estimate 

BA = $ arg Ne E[ui] (~i(e))~ 
{- n=O 1 

(5-43) 
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maximizes the second sum of (5-41) for any c, since the sum 

becomes a real number. 
of the absolute value 

5 E[uX] (%;(e))2 e-jae^ 
n=O 

(5-44 

Consequently, the estimate 2 is obtained by maximization 

(5-45) 

This is an interesting result since it shows that the two-dimensional search for (0, e) 
can be reduced to a one-dimensional search for E by maximizing the objective 
function 

L(E) = Ne E[1”“(2] 1zn(E)12 + 
n=O 

= E[Iunl"] Nc Izn(&)12 + 
n=O 

(S-46) 

Incidentally, we have found another form of a non-data-aided/phase- 
independent algorithm. More precisely, the algorithm we found is an implicit 
phase-directed algorithm. This is because (5-46) is independent of the trial pa- 
rameter 8. See Figure 5-6. 

Comparing (5-46) and (5-42) we observe that the noncoherent (NC) timing 
estimator does not depend on the signal constellation while the implicitly coherent 
(IC) estimator does so. In the following we restrict our attention to two classes of 
signal constellations of practical importance. The first contains the one-dimensional 
(1D) constellation comprising real-valued data for which E [ ui] = 1 (normalized). 
The second class consist of two-dimensional (2D) constellations which exhibit 
a 7r/2 rotational symmetry, this yields E [uz] = 0. Hence, for 7r/2 rotational 
symmetric 2D constellations, the IC and NC synchronizers are identical, but for 
1D constellations they are different. 

Main Points 

Conceptually, the approach to obtain estimators for the synchronization pa- 
rameters is straightforward. The likelihood (not the log-likelihood function!) must 
be averaged over the unwanted parameters. This is possible only in a few isolated 
cases in closed form. One must resort to approximations. 

In this chapter various approximation techniques are introduced to derive NDA 
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timing estimators. The practically most important result is a phase-independent 
algorithm 

e = arg m.m C Izn (&)I” 
n 

The algorithm works for M-QAM and M-PSK signaling methods. 

5.4 NDA Timing Parameter Estimation by Spectral Estimation 

In the previous section the unknown timing parameter was obtained by a 
maximum search (see Figure 5-6). It is interesting and surprising that one can 
circumvent this maximum search. 

We consider the objective function (5-42), 

L(e) = 5 Iz(lT+ &T)12 (S-48) 
1=-L 

We assume a symmetric observation interval [-L, L]. This choice is solely to 
simplify some of the following computations. For a sufficiently large number N 
of transmitted symbols (N >> L) the process ]z( IT + ET) I2 is (almost) cyclosta- 
tionary in the observation interval. A cyclostationary process has a Fourier series 
representation 

n=-a3 

= c 
cg) ej2rnc 

n=-co 

where the coefficients cn (I) are random variables defined by 

cg) = + ] 1%(/T + eT)12 e-j(2+lT)nTc Q(&T) 
0 

1 

= 

s 
Iz(lT + eT)12 e-j2rnr dc 

0 

(5-50) 

The objective function (5-48) equals the time average of the cyclostationary process 
]z(lT + ET) la over the interval [-L, L] . This time average can be obtained by 
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(1) * computing the Fourier coefficients cn m every T interval and averaging over 
2L + 1 values: 

L L co 

c I%(ZT + ET)12 = 

c[x 

,p p*f= 

I=-L 1=-L n=-00 1 co (5-5 1) 

= c 
c ej2mo 

n 
n=-00 

with 
L 

c, = 
c 

c$) (S-52) 
I=-L 

We will show later on that only three coefficients, namely (c-1, CO, cl} have 
nonzero mean. Thus 

5 I%(zT+ET)12 = co + 2 Re [cl ej2*‘] + C 2 Re[cn ejarnc] (5-53) 
I=-L InIl 

zero-mean disturbance 
for all values of e 

By definition, the ML estimate g is that value of E for which (5-48) assumes its 
maximum: 

5 I@+ 2T)12 > 2 l%(ZT + &T)12 VE 
I=-L I=-L 

(5-54) 

On the other hand, by the Fourier series representation of (5-53) we see that i 
is also defined by 

~2 = arg max (CO + 2 Re[q ejarr]) 
P 

(5-55) 

Since CO and the absolute value Icr I are independent of E (to be shown later) the 
maximum of (5-55) is assumed for 

1 
if=-- arg cl 

2n 

It is quite remarkable that no maximum search is needed to find t since it is 
explicitly given by the argument of the Fourier coefficient cl. The coefficient 
cl is defined by a summation of (2L + 1) integrals. The question is whether 
the integration can be equivalently replaced by a summation, since only digital 
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algorithms are of interest here. This is indeed so, as can be seen from the following 
plausibility arguments (an exact proof will be given later). 

The output of the matched filter is band-limited to B, = (1/2T)( 1 + CX). 
Since squaring the signal doubles the bandwidth, the signal (z(t) 1” is limited to 
twice this value. Provided the sampling rate l/T, is such that the sampling theorem 
is fulfilled for ]z(t)12 [and not only for z(t)], 

BI4’ =~(l+ck).& 
s 

(5-57) 

the coefficients cl, CO can be computed by a discrete Fourier transform (DFT). 
Let us denote by the integer Md the (nominal) ratio between sampling and symbol 
rate, AI8 = Z’/T8. For the samples taken at kT, we obtain 

I%( [MS + k]T,) 12e-j(2*lM,)k 
I 

A particularly simple implementation is found for Mb = 4 (Figure 5-7). For this 
value we obtain a multiplication-free realization of the estimator: 

Cl = I~([41 + k]T,)12(-j)k 1 d?T-k = (-jJk (s-59) 

z-l : Delay of Ts 

h 

c 

iif 

-18 

I 

8 
+ 

Figure 5-7 Timing Estimation by Spectral Analysis; M, = T/T’ = 4 
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Splitting up in real and imaginary part yields 

Re(cl)= - ; k b(4K)12 - I~[(41 + 2)T6]12 
d IS-L 

r 

Im (cl) = Y& 2 -12[(41+ 1)T,]12 + 12[(41+ 3)T,112 
J 1=-L 

We next prove that E^ = -1/27r arg cl is an unbiased 
rather technical and may be omitted at first reading. 

estimate. 

(S-60) 

The proof is 

Proof: We assume 

(i) Sampling rate l/Ts > (2/T)(l + a) (t wice the rate required for the data 
PaW. 

(ii) The ratio T/T3 is an integer MS = T/Td. 
(iii) i.i.d. data. 
(iv) g(4) = g(t) (real and symmetric pulse). 

The matched filter output z(lT,) equals 

%(ZT,) = -1%) (5-61) 
k=-00 

Replacing in the previous equation the samples rj (kT,) by 

N 

rf(kT,) = c a, g(kTs - nT - eoT) + n(kTd) (5-62) 
n=- N 

(~0 true unknown value), we obtain 

N w 

z(lT,) = 
a c 

%a g(kT, - nT - eoT) g* (kT, - IT,) + m(kT,) 
n=- N k=-00 1 

= 5 [an h(lT, - nT - EoT)] + m(kT,) 
n=- N 

(5-63) 
where m( kT,) is filtered noise, and the function h(s) is defined by the inner sum 
over k 

h(/T,-nT-coT) = 2 g(Kl’.. - nT - EOT) S*(k% -IT,) 
k=-00 

1 O” 
=--- 

T, J 
g(;z: - nT - EOT) g*(g - K) &J 

-00 

(5-W 
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The last line of the previous equation is a consequence of the equivalence theorem 
of analog and digital signal processing [assumption (i)]. 

Squaring z(L!“) and subsequently taking expected values with respect to i.i.d. 
data and noise yields 

E [Iz(ZT,)12] = E[(a,12] 5 (h(ZT, - nT - coT)12 + Pn (5-65) 
n=- N 

with Pn 2 0 the additive noise contribution being independent of eo. 
If the number of symbols is sufficiently large, we commit a negligible error 

when the summation in the previous equation runs from -co to +oo (instead of 
[-IV, IV]). The infinite sum 

hg(t) = 5 Ih(t - nT - E~T)I~ (5-66) 
n=-00 

represents a periodic function hp(t) which can be expanded into a Fourier series 
where h, (/T, ) are the samples of h, (t) taken at t = IT,, 

h&) = 2 di $WT 
i=-00 

(S-67) 

The coefficients cZi are related to the spectrum of Ih(t - eoT)12 by the Poisson 

+00 

Qi = ; J Ih(t - .soT)12 e-j2ritlT dt 

-CO 

+oO 
(5-68) 

1 z-e -jZni(c&zyT 

T J 
lWl2 e -j2dt/T & 

Since the pulse g(t) is band-limited to 

B, = &@+a) (5-69) 

so is h(t). Since squaring the signal h(t) doubles the bandwidth, the spectrum of 
Ih(t is limited to twice this bandwidth: 

Blhta = $(l+ Ck) (5-70) 

The integral in (5-68) equals the value of the spectrum of Ih( at f = i( l/T). 
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Thus, only three coefficients d- 1, de, dl are nonzero (a < 1) in the Fourier series 
(Figure 5-8): 

E[Iz(t)12] = E[lan12] 2 Ih(t - nT- EoT)12 
n=-03 

= 2 E[lan12]di emww 
i=- 1 

(5-7 1) 

with do, dl , d- 1 given by (5-68). Due to the band limitation of E [ ~z(t) 1’1 

the Fourier coefficients cli and E [ IZ(ATT,) 12] are related via the discrete Fourier 
transform. The coefficients do and dl, respectively, are given by 

do = - ; Mgl E [l+T.)12] 
’ k=O (5-72) 

Comparing with the coefficient c,, of (5-58) we see 

4 = const.E[q] do = const.E[co] d, = E[c,J = 0 

n # e&+1, -11 
(5-73) 

as conjectured. 
From (5-68) it follows that E[co] is independent of E: 

+oO 

E[co] = const. 
J 

IW 12dt 
-CO 

(5-74) 

I spectrum of 
I h(t) I2 

I 1/(2T) l/T ’ 2rr o 
21c 

Figure 5-8 Spectrum of Ih(t and Coefficients di 
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For cl we find 

+oO 

E[cl] = const. e-j2*‘0 
/ 

lW>l”e -i(2dT)Qt 

-00 
(5-75) 

If the pulse g(t) is real and symmetric, then Ih( = Ih( and 

arg E[cl] = -2x&o (5-76) 

ThUS 

t= 
1 

-grgcl (5-77) 

is an unbiased estimate. 

Main Points 

One can circumvent the maximum search for 2 by viewing I zn (E) I2 as a 
periodic (l/T) timing wave. The argument of the first coefficient cl of the Fourier 
series representation of ]zn (E) I2 yields an unbiased estimate 

with 

i= -Largcl 
2lr 

(5-78) 

L 1 M.-l 

Cl = 

c[ = M, 
Iz[(lM, + &)TJ]12 e-j* k 

(M, = fiG8 intege~~” 
1 (5-79) 

In the inner sum the Fourier coefficient c(II) for the Ith time interval of length T 
is computed. The final estimate for cl is obtained by averaging the result over 
(2L + 1) intervals. 

A particularly simple realization is obtained for four samples per s m- 
bol, MS = 4. Because in this case we have exp (-j27rk/M,) = (-j) r , a 
multiplication-free realization is possible. 

this 
Since the algorithm provides a unique estimate of 8, it is hang-up free. For 
reason and because of its simplicity it is often used in practice. 
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5.5 DA (DD) Timing Parameter Estimators 

Replacing in eq. (5-29) the trial parameter a,, and the phase 8 by their 
estimates yields a DD phase-independent algorithm: 

+,~,i) = exp{ -2 Re[g ii; Z,(E) e-j} (S-80) 
= 

This algorithm finds application when phase synchronization is done prior to 
timing recovery. The computation of the objective function can again be computed 
in parallel. Instead of the nonlinearity to remove the data dependency we now have 
the multiplication by the symbols (see Figure 5-9). 

We next consider the joint estimation of (0, E), 

L(ii, E, 0) = exp a; z,(e) e+ (5-81) 

The two-dimensional search over (0, e) can be reduced to a one-dimensional one 
by defining 

N-l 

(5-82) 

We then have 
n=O 

max Re[p(E) e-je] = ma Ip( Re [e-j(eearg”(E))] (S-83) 
c,e c,e 

‘f 0) 

Figure 5-9 Decision-Directed Timing Estimation 
Using the Phase-Corrected Signal 
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The joint maximum is found by first maximizing the absolute value of p(e) (which 
is independent of 0). The second factor 

Re ,-@-add) 
[ 1 (S-84) 

is maximized to a value of one by 0 = arg P(E). Hence, for timing estimation 
we only need to maximize 

B = arg max l&)1 
8 

(5-85) 

The carrier phase estimate 6 can then be computed directly as 

8 = arg p(e) (5-86) 

In a practical realization the summation is confined to L < N symbols. 

Main Points 

The two-dimensional search for jointly estimating (0, C) can always be reduced 
to a one-dimensional search (Figure S-10): 

rf (t) kTs 
d 

e=max 
E 

N-l 

4=arg C&L Zn(i) 
n=O 

. 

(S-87) 

Figure 5-10 DA (DD) Joint (0, E) Estimator 
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5.6 Timing Error Feedback Systems at Higher Than Symbol Rate 

5.6.1 DD and Phase-Directed Timing Recovery 
We differentiate the log-likelihood function (S-29) with respect to the 

parameter & 

Since the summation is performed in the loop filter we drop the summation to 
obtain the error signal at time nT (see Section 5.2.4): 

z(nT) = Re &i i z(nT+6T) 1 ,-je^ 
Ed 

] (5-89) 

Our definition of the error signal is formal since we have not yet explained how to 
compute the differential d [zn (~)]/a&. To find the answer let us for a moment forget 
that we intend to process the information digitally. Because of the equivalence of 
digital and analog signal processing, we know that z(nT + ET) can be obtained by 
processing the incoming signal rf (t) with an analog matched filter gMF(t) which 
is sampled at t = nT + CT: 

z(nT + ET) = 
J 

gMF(nT + ET - u) rf (u) du 
-00 

(590) 

Differentiation with respect to E is now well defined: 

00 
d 

a~% (nT+ET) = i(f) It=nT+T = 
J 

$jMF(nT-t&T-u)rj(u) du 

--oo 
00 (5-9 1) 

= 
s 

gm(v)+f(nT+cT-v) dv 

-00 

where &~(t) and +1(t) are the differentiated pulse and signal, respectively. 
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Figure 5-11 Impulse Response of the Digital Differentiator 

In books of numerical mathematics, differentiation of functions is considered 
as a problematic operation. Fortunately, in our case differentiation is well behaved 
since it is always done in conjunction with matched filtering, which is a lowpass 
process. 

Due to the equivalence of digital and analog signal processing, differentiation 
can be done in the digital domain. The impulse response of the digital differentiator 
is defined in the frequency domain by 

Hd (ejuT8) = jwT, (S-92) 

The impulse response hd( kT,) is the inverse Fourier transform of Hd (ejwTm) : 

hd(kT,) = 2 1 Hd(ejwT.) ejwkT# dw (5-93) 

After some elementary algebraic manipulations we find 

Ol 
k=O 

h&T,) = @T C-1)” else 
3 

(5-94) 

(see Figure 5-11). The digital differentiator produces exactly the derivative 
i(nT + ET); there is no approximation involved as usual in numerical differ- 
entiation. One error signal per symbol is produced. 

In Figure 5-12 we show a first structure of a digital timing error detector. The 
signal is sampled at a rate l/Td, processed in a digital matched filter followed by 
a digital interpolator. These are the familiar building blocks we have encountered 
earlier. The signal path then branches in two directions. The upper path is the 
familiar one, leading to the data detector (after being decimated). In the lower 
path the signal is processed in the digital differentiator hd(kT,) and subsequently 
decimated. Interpolation and decimation are controlled and determined by the 
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fractional time delay fin and basepoint m,. We recall from Section 4.1 that these 
quantities are related to the desired time instant (nT + EIT) by 

nT+E^T= mJ” + i&A 

m, : largest integer less than or equal nT + E^T 
(5-95) 

A detailed discussion of the (m, , pn) computation is postponed to Section 9.2. 

for 
The structure shown in Figure 5-l 2 is not necessarily the one most 

implementation. Since matched filter, interpolator, and differentiator 
favorable 
are linear 

filters, their position can be interchanged and possibly merged, thus reducing the 
complexity of the receiver. While a digital differentiator (or an ideal interpolator) 
alone would be very difficult to approximate at reasonable complexity, considering 
the linear filtering operation comprising matched filter, interpolator, and digital 
differentiator as an entity may lead to a far simpler solution at virtually negligible 
implementation loss. An example of such an integrated design approach is 
discussed in Chapter 10. 

Example: Wo-Point Diflerentiutor for T/T, = 2 
The simplest approximation to the differentiator for T/T8 = 2 is 

k = -1 
k = 1 
else 

(5-96) 

Thus, the differential quotient is approximated by taking the differences. The 
signal x(nT) (for T/T, = 2) then equals 

T 
nT+Z-+.i T 

The stable tracking point for the error signal (S-97) is found by taking expected 
values over the noise and data. For an i.i.d. data sequence we find (verify) 

E[x(nT)] = Re k [la, I’] [h (g +[&co]T) -h (- ;+I$-Q]T)] e@a)} 

(5-98) 
Remark: We introduced the notation 

h([n-m]T + [Z--E~]T) 

= g g(kTJ -mT-0) gMF(nT+iT-kT8) 
k=-00 

which is more descriptive in describing the mean error function of tracking systems. 
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The notation h n,m( [EI--E$‘) for the right-hand side of (5-99) is appropriate if 
ha,?la@-EOIT) is an element of a matrix H. 

For symmetric pulses the mean error signal equals zero for e = (i-50) = 0. 
The signal is sampled at the maximum of the peak point. If we replace the 
differential quotient by 

z(nT + i T) - %( [n- l]T + ET) (S-100) 

we obtain 

z(nT) = Re i2; [z(nT+ 3 2’) - z([7a-l]T+ i!Z’)] e-j’} 1 
(5-101) 

Taking the expected value yields 

E[z(nT)] = Re{ E[]cn]2] [h(eT) - h(-T+eT)] ej[eo-‘]} (5 102) 

The error signal E[z( nZ’)] is zero for e = l/2 which corresponds to a value 
g= ee + l/2. Thus, the sample of the matched filter required for detection must 
be shifted by T/2: 

z(nT+ [&$I ) T sample required for detection (5- 103) 

The algorithm (5401) would also work for T-spaced samples if the clock is 
physically adjusted to generate samples at t = nT + E”T. The two tracking 
algorithms are equivalent for symmetric Nyquist pulses but perform substantially 
different for nonideally filtered signals. 

There is a subtle point hidden in the algorithm of eq. (5-97). It works with 
two samples per symbol. We therefore have to map the {kT/2} time axis onto 
the (receiver) {kT,) axis to obtain the matched filter output: 

(5- 104) 

Basepoint ?nk and fractional delay pk are therefore defined for T/2 intervals: 

T 
k;+(26)? = mkT8 i- pk% (5-105) 

A second decimation takes place to produce one error signal per symbol. This 
process is completely slaved to the first one: we take precisely (for T/2) ev- 
ery second basepoint, rnn=zra, to produce an error detector output. A detailed 
discussion of the entire control operation is postponed to Section 9.2. 
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5.6.2 NDA Timing Recovery 
From the non-data-aided objective function (5-36) we can derive a simple 

timing error algorithm. Differentiating with respect to E yields 

(5-106) 

= c 2 Re{z(nT + 0) i*(nT + ET)) 
n=O 

Since summation is performed in the loop filter, we obtain for the error signal 
(setting & = g in the above equation) 

x(nT) = Re{z(nT + B 2’) i*(nT + 2 T)} (5-107) 

Differentiation can be approximated by taking symmetric differences. Equation 
(5-96) is a good approximation for Tb = T/4 and a reasonable one for Td = T/2. 
For T/2 we obtain the error signal 

z(nT) = Re { z(nT+QT)[r*(nT+g+BT) -z*(nT- g+iT)] } 

(5408) 

The mean value of the error signal taken with respect to the noise and symbol 
sequence is found to be 

N$h([n-m]T-eT)[ h* ([n-m]T-eT-5) 
m=O 

T 
[n-m]T-eT+T 

(5- 109) 
with timing error e = ~04. For symmetric pulses the mean error signal vanishes 
for e = 0. Thus, stable tracking point and sampling instant of the matched filter 
output used for detection coincide. 

Remark: The same comments with respect to interpolation/decimation control 
as in Section 5.6.1 apply here. 

5.6.3 Main Points 
A timing error signal is obtained by differentiating the objective function. 

Both DD and NDA algorithms are derived. The differentiation is approximated 
by taking symmetric differences. 
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5.7 Timing Error Feedback Systems at Symbol Rate 

The preceding material has demonstrated that for a! < 1 excess bandwidth 
two samples per symbol are sufficient for timing recovery. From that reasoning it 
is tempting to conclude that two samples are necessary as well as sufficient. 

This conclusion is erroneous. There are error detector algorithms (both DA 
and NDA) whereby timing can be recovered from the T-spaced samples of the 
analog receiver filter which need not necessarily be a matched filter. The sampling 
instant is controlled by a numerically controlled oscillator (NCO) (see Figure 5-13) 
which performs synchronous sampling. If the matched filter is realized digitally, 
there is no way around using the higher sampling rate l/T8 to satisfy the sufficient 
statistic conditions. Sampling at symbol rate l/T does not provide the information 
required for timing recovery. 

In practice, quite frequently the analog filter is not matched to the signal. 
Timing recovery must be achieved from symbol-rate samples of a possibly severely 
distorted signal. Typically, the dominating impairment is phase distortion resulting 
in heavily skewed pulses g(t). Our approach in this section will be as follows. 
We will first derive symbol-rate timing recovery algorithms from analog matched 
filter outputs. In a second step we will modify these algorithms to cope with 
nonideally filtered signals. 

The matched filter output z(mT + ET) equals 
00 

&n(E) = c rf(kT,) gMF(mT + d’ - kG) (5-110) 
k=-co 

t=nT+E”,,T 

Timing xm 
> Error c Loop _) 

Detector Filter 

Figure 5-13 Synchronous Sampling in an Error Feedback System. 
Structure of timing error feedback system operating at symbol rate l/T 



5.7 Timing Error Feedback Systems at Symbol Rate 305 

with the (phase-corrected) received signal 

rj(kT,) = “c’a. g(kT$ - nT - a,T) deo-‘) + n(kT,) (5-111) 
n=O 

Notice that we distinguish between the true (unknown) parameters (~0, 80) and the 
trial parameters (E, 0) in the last two equations. In the sequel we assume that an 
accurate phase estimate 4 is available, thus exp j 00 
right-hand side of (S-11 1) into (5 110) yields 

[ ( - “>1 cv 1. Inserting the 

%3(E) = y% c [s( kT, - nT - eo T) + n(kT3)] g&d!‘+ eT - kT,) 
n=O k=-00 

N-l 

= 
c an hn,m(E - EO) + n9(mT) 
n=O 

(5-112) 

where hn,m(& - ~0) is defined as 

hn,m(& -CO) = 2 g(kT, - nT - EoT)gMF(mT + ET - kT,) (5-113) 
k- ---00 

For a symmetric prefilter F(w) it was shown that the noise process 

n,(mT) = 5 n(kT,) 9MF(mT + eT - kT,) (5-114) 
ICC-co 

is white. We can now formally write a log-likelihood function for the samples 
{ z(nT)} over the L-sample segment: 

J+L-1 2 

~5 (ZL 1 a+,@) = cob. + C z~(E) - Ncan hn,m(& - ~0) (5-115) 
m=J n=O 

For the present it should not bother us that the log-likelihood function is purely 
formal since it contains the true value ~0. Since we are interested in error feedback 
algorithms, we consider only values of e close to the true value ~0. This will 
allow us to approximate hn,, (E - ~0) in the vicinity of ~0. For data-aided timing 
estimation the log-likelihood function reads 

J+L-1 2 

L (ZL 1 ii, e, e> = con& + C Zm(E) - Ne tin hn,m(& m&o) (5-l 16) 
m=J n=O 
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Eliminating all terms irrelevant to optimization from (5116), we obtain 
objective function 

the 

n=O 

The error signal is obtained by differentiating (5-117) with respect to & and 
evaluating the function at & = t: 

= 1 

+ 2Re rJgl i,(e) y tiz h:,,(~-&o) (5-118) 
m=J n=O 

J+L-1 

+ C zm(&) Nj ashy,, (E-&O) 

m=J n=O 

A class of particularly important algorithms can be derived from the third line of 
(5-l 18) which works with T-spaced samples of the matched filter, while the first 
two lines require suitable approximation of the derivative i(mT + ET). We thus 
neglect the first two lines of (5-l 18). Doing so we later will have to verify that 
this approximation indeed leads to a working timing error signal. 

Since we are concerned with an error feedback system, only estimates 2 close 
to the true values are of interest. We thus approximate 

ha,m(E - EO) z ha,,(O) (5-l 19) 

For simplicity we use the simpler notation ibn,m = h,,,(O) from now on. Hence, 
the error signal at time 1 for the L samples from I - (L - 1) to I becomes 

x(/T) = Re (5- 120) 
m=l-(L-l) 

As the above result stands it gives little insight in what really happens. It helps 
to introduce a vector-matrix notation. 

The sum over m can be seen as the mth component of the signal vector sh : 

(5-121) 
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The entire error signal then is an inner product of the truncated vector 

2; = (0 * . . 0 Z/+-l) . . . %I 0 . . . 0) 

and the signal vector sh : 

N-dimensional 

(5 123) 

For a causal system only symbols ai, i 5 1 are available. For symmetry 
reasons to become clear soon we also truncate ti at i < 1 - (L - 1). In short, 
we use the symbol set &z = (iry~lj . . . tir) corresponding to the sample set 
2; = (a(JL-1) * * * zr) to form the error signal. The (N x N) matrix h can then 
also be truncated to (L x L) elements (Figure 5-14). We obtain a causal error 
signal 

(5- 124) 

NxN \ 
1 
\ \ \ \ \ \ 

6(L-1) ' 

e 

Cow 

cl (e) 

. 

. 

. 

CL-, (4 

c(e) 

l *  

H 

O b,l 4x , 
h, O h,* I 

. 0 
. 
. 

l *  

HL 

- 
, . . 

0 

0 

. 

$r - e-u4 
. 
. 
. 

^ae . 

4 

Figure 5-14 Truncation of Matrix I%* and Vector 
&* to Generate a Causal Error Signal 
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The matrix fi possesses skew symmetry 

Re{ ‘li,j} = -Re{ &,i> 

(5-125) 

Im( hi,j} = Irn{ “j,i> 

For real pulses g(t) the matrix becomes real. 

The timing error detector has a useful interpretation as the output of a time 
variable transversal filter shown in Figure 5-15 where the coefficients of the taps 
are given by 

cj = 
[ I 
if@* L i 

Oli<L-1 (5-126) 

Example: For L = 2 we obtain (see Figure 5-16) 

z(P) = Re ( { %-l %I(& hil) (y(g)} 

= Re q-r@) ti; hE,r’+q(Z) br-r h;,,} 
{ 

(5-127) 

For a real pulse g(t) the matrix fi is real. With -hr,o = ho,, we obtain 

z(lT) = const.Re{ q-r(e) #’ - q(e) ii;-,} (5-128) 

This algorithm was first proposed by Mueller and Mtiller in their seminal paper 
[l] and has been widely used in telephony modem applications. 

.tT 

z(t) 

+ tT 

Figure 5-16 Mueller and Mtiller Algorithm 
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It is instructive to consider the error signal for zero timing error. Ideally, we 
would expect e = 0 for (ec - 2) = 0 and no additive noise. This is indeed what 
we obtain for Nyquist pulses. The (noise-free) matched filter output ~~(2) equals 

For Nyquist pulses and zero timing error z,,, (~0) = una ho,a. Furthermore, 
error-free detection AL = aL we obtain for the error signal 

z(ZT) = 2 Re((a# fi* (a)} (5-130) 

Due to the skew symmetry, z(W) = 0 for any sequence a. 
Let us next consider the (noise-free) error signal z(W) as a function of the 

timing error: 

q-1 q = C h; an hn,l-l(z - EO) 

n 

= la/l2 h,l-l(g - ~0) + C h; an hn,l-l(E - EO) 

nfl 

= lt.1~1~ h(-T + [t - EO]) + C hf an hn,l-l(g - EO) 

= Ial2 h-l,@ - 4 + c (4 
n#l-1 

(5-131) 

(5-132) 

= Iur_112 h(T + [i - 4) + c (3 
njkl-1 

For independent and equiprobable symbols we obtain the mean error signal 

E[z(U’)] = const.[h([& - EO]T - 2’) - h([t - EO]T + T)] (5-133) 

The algorithm chooses as the optimum sampling instant the center of the pulse, 
as expected. 

57.1 Ad Hoc Performance Criteria 
Frequently the received signal is severely distorted, the dominating impair- 

ment being phase distortion resulting in heavily skewed pulses, and timing recovery 
must be achieved with these pulses. Equation (5-124) then serves as basis for the 
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design of an appropriate timing error detector by choosing the coefficients vector 
CL: 

according to a suitable ad hoc criterion. 

We first consider the less severe case of amplitude distortion. When the pulses 
g(t) are symmetric and the timing recovery algorithm devised for the Nyquist 
pulses still works due to the symmetry, the sampling instant is chosen at the 
maximum, as for Nyquist pulses, The difference lies solely in the fact that the IS1 
causes self-noise distortion at the correct timing instant t = ~0. 

For heavily skewed pulses, the symmetric-pulse-type algorithms must be 
modified since they will perform very poorly. We refer to the paper by MUller 
and Mueller [l] for a detailed discussion. 

5.7.2 Main Points 
A class of decision-directed (DD) timing error detectors for use in a hybrid 

timing recovery circuit is derived. The error detector works with samples from the 
output of an analog filter taken at symbol rate l/T. The synchronous sampling 
process is controlled by an NCO. 

The error detector has the form of a finite impulse response (FIR) filter with 
time-variant coefficients which depend on the last L received symbols. 

Bibliography 
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5.8 (DD&De) Carrier Phasor Estimation 
and Phase Error Feedback 

Replacing t: and a by its estimates, the objective function (S-l 1) reads 

(5-135) 

The phasor estimator needs one synchronized matched filter output sample Zn(b) 
and a detected symbol &. The objective function is maximized by the phasor 

,je  ̂ = e 
j argx a+,+z,(Z) 

n (5-136) 
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II ti (from decoder) 

Figure 5-17 Carrier Phasor Estimator (Feedforward) 

Equation (5-135) thus defines the ML estimation of a phasor and not of the scalar 
quantity 8. The estimate exp j8 

( > 
is unique: for any phasor c tic%, (2) there 

n 

exists exactly one phasor exp je 
( > 

which maximizes the objective function. The 
estimation of a phasor is frequently referred to as pkuuzr~filtering (Figure 5-17). 

The property of uniqueness is lost in a phase error feedback system as will 
be demonstrated next. A phase error signal is readily obtained by differentiating 

(5-135) with respect to 8. Since the summation is performed in the loop filter, we 
obtain for the error signal z(nT) = x, 

Xn = Im [tiiZn(6)e-“] (5-137) 

(one signal per T seconds is generated). Since we are using the imaginary part of 
the phasor only, there is no unique error signal: 

Im [$‘I = Im [F)(~-“)] (5-138) 

The error detector signal is further processed in a loop filter. An update of the 
phase estimate is performed in the digital integrator, 

8n+l = &+Klen (5-139) 

For high SNR the estimate 6n is generated in the feedback loop applying a slicer 
to the signal Zn (8) exp (- j&) . F or a sufficiently small phase error we obtain 

Zn (t)e-j e^n = anho, ei(eo-“a) + noise e an + noise (5- 140) 

(Figure 5-18). For multi-level signals the slice operation requires prior amplitude 
control. 

Operation of the digital phase tracker (DPLL) is quite similar to that of an 
analog PLL. Since the DPLL is nonlinear, it is plagued by the same phenomena 
as its analog counterpart (see Volume 1). 

Example: First-order digital PLL 
We assume noise-free operation, perfect timing, and known symbols (DA). Under 



5.9 Phasor-Locked Loop (PHLL) 313 

a) A* 
an 

b) 

?)(a 
> Slicer ==3 ( - )* Im( 1 

xn 
. 

Figure 5-18 (a) Carrier Phase Error Feedback System 
(Digital PLL), (b) DD Phase Error Detector 

these conditions the matched filter output equals 

&I = a,ejeo 

Using (5 137) the error signal zn reads 

(5-141) 

xn = Im Ia, 122(eo-Bn) 
[ 1 

= la,12sin (60 -&J 
(5 142) 

where &, = 80 - &, is the phase error. The nonlinear equation of operation of the 
digital PLL is obtained by inserting (5-141) into (5-142): 

&a+1 = & + I<1 sin Qln Ii1 loop constant (5- 143) 

5.9 Phasor-Locked Loop (PHLL) 

Looking at the digital phase-locked loop depicted in Figure 5-l 8 we see that 
the incoming signal is multiplied by the phasor exp . The idea is therefore 
quite obvious to track the incoming phasor rather than the phase. The structure of 
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II $R (from decoder) 

Figure 5-17 Carrier Phasor Estimator (Feedforward) 

Equation (5-135) thus defines the ML estimation of a phasor and not of the scalar 
quantity 0. The estimate exp j6 ( > is unique: for any phasor c tik zn (e) there 

rb 
exists exactly one phasor exp je^ 

( > 
which maximizes the objective function. The 

estimation of a phasor is frequently referred to as planarflltering (Figure 5-17). 

The property of uniqueness is lost in a phase error feedback system as will 
be demonstrated next. A phase error signal is readily obtained by differentiating 
(5-135) with respect to 8. Since the summation is performed in the loop filter, we 
obtain for the error signal x(nT) = x, 

Xn = Im 
[ 
ti~~~(+T~’ 1 (5437) 

(one signal per T seconds is generated). Since we are using the imaginary part of 
the phasor only, there is no unique error signal: 

(5438) 

The error detector signal is further processed in a loop filter. An update of the 
phase estimate is performed in the digital integrator, 

h 
e ?a+1 = &a + Kl% (5-139) 

For high SNR the estimate 2dn is generated in the feedback loop applying a slicer 
to the signal zn (Q exp For a sufficiently small phase error we obtain 

z&)e-je^, = anho, e j(b- “4 + noise es a, + noise (5- 140) 

(Figure 5-18). For multi-level signals the slice operation requires prior amplitude 
control. 

Operation of the digital phase tracker (DPLL) is quite similar to that of an 
analog PLL. Since the DPLL is nonlinear, it is plagued by the same phenomena 
as its analog counterpart (see Volume 1). 

Example: First-order digital PLL 
We assume noise-free operation, perfect timing, and known symbols (DA). Under 
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First-Order PHLL 
With F(z) = CE (scalar) the loop equation (5-145) for a first-order PHLL reads 

i&l = ?h + +k - ih) 

= gkp-cr) + ayk 

The step response for a constant reference phasor 

(5 148) 

Yk = ?h (5 149) 

is readily obtained in closed form: 

tik = &+-~)k + loake (&a)’ 

i=l 

(5- 150) 

Since the PHLL is a linear circuit, convergence to the reference value occurs for 
any initial estimate @o 

h 
Yoo = Yo (5-151) 

Consider the situation where the phasors @o and yc are real with opposite sign. The 
phase error signal of the PLL is zero (sin T = 0) and the PLL remains in the false 
lockpoint. For the PHLL, on the other hand, there exists an error signal which 
forces the estimate $& to eventually coincide with the reference phasor ye. This is 
a fundamental difference to the classical PLL where convergence is dependent on 
the initial state (see Volume 1, Chapter 4). This difference can be explained by 
realizing that the PHLL uses both the real and the imaginary parts of the phasor 
while the PLL uses only the imaginary part. 

For a modulated carrier both NDA- and DD-PHLLs exist. Figure 5-20 shows 
the block diagram of DD-PHLL. 

The modulation is removed by multiplying the received signal with the 
conjugate complex symbol decisions. The resulting phasor is subsequently treated 

decisions $ 
> 

A* 

Loop Filter 

Figure 5-20 Decision-Directed Phasor-Locked Loop 
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as the observation ok and filtered by G(Z). Amplitude normalization, if necessary, 
is done in the dashed block. Due to the multiplication with the symbol estimate 
& the loop is nonlinear. The concept based upon this idea has been developed 
by Gardner [ 11. 

1. Although hang-up-free in the linear case, hang-ups may occur due to the slicer 
nonlinearity: in case the phase error moves toward the bounds of the decision 
device, the output of the filter can become zero, i.e., a false zero can appear 
under certain circumstances. 

2. For QAM the estimated phasor requires amplitude normalization (as indicated 
in Figure 5-20). 
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5.10 NDA Carrier Phasor Estimation and Phase 
Error Feedback Systems for M-PSK 

In general, we observe some performance degradation of the synchronizer 
when ignoring a reliable estimate of the data values. For multiamplitude signals 
(QAM), which always operate at high SNR, DD phase recovery is exclusively 
employed. For M-PSK signals the situation is different. There exist NDA circuits 
which can be employed when no reliable data estimate exists, for example, at low 
SNR. For analog implementations NDA methods are almost exclusively used in 
order to minimize complexity, however, for digital implementation this argument 
is no longer valid. 

5.10.1 NDA Phasor Estimation for M-PSK Signals 
To remove the data dependency of an M-PSK signal at the matched filter 

output, we take zn(e) to the Mth power: 

zf(e) = [a,PO + mJM 
= .$jMeo + mk 

noise 

(5 152) 

Since aM = (#sllM) M 
= 1, the data dependency is eliminated, and we obtain 

a signal of the form 

(5-153) 
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> lZ”l m W z,, 1) 
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M 

Figure 5-21 Viterbi & Viterbi Algorithm for NDA Phase Recovery 

where rnk is a noise term resulting from the exponentiation. Replacing tii~,(e) 
by ( Z~ (E^))M the objective function (5- 135) becomes 

L(B) = Fk! 

{ 

C(%n(q)Me-jeM 

n 1 

It is maximized for one phasor 

(5 154) 

exp (jiM) = exp [j arg F (zn(i))“] (5-155) 

Notice that the exponentiation of Zn(&) causes an M-fold ambiguity. If 8 is a 
solution maximizing (5-154), so is (8 + 2nl/M) for I = 0,. . . , M- 1 since 

,j(e^+2lrl/M)M = ,je^M 

This ambiguity must be resolved by means of differential preceding. 
The algorithm can be generalized to 

F(I%n(tf)[)d argzB(‘)M (5- 157) 

where F( 1.1) is an arbitrary function. The algorithm has been derived and analyzed 
by A. J. Viterbi and A. M. Viterbi [I] (Figure 5-21). 

510.2 NDA Phase Error Feedback Systems 
In this section we treat the elimination of the data dependency by averaging. 

For known timing and independent data symbols the objective function (5- 11) reads 

c@ : ith symbol value at time nT 
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We reiterate that averaging over the A4 symbols, [eq. (5-l%)] must be taken over 
the objective function L(s), not its logarithm. A closed form of (5-158) can be 
found for M=2 and M=4, two cases of practical interest. 

(0) Inserting a, = 1, $) = -1 into (5-158) yields for 2-PSK: 

L(t9,E”) = $ 

N-l 

IN 1 
=P --$Re[z*(E^)e-j’ ]} + exp { +-$Re[zn(t)e‘je]}] 

= f E cash (-+ Re[ln(+rjs]) 
n=O 

(5- 159) 

where cash ( l ) is the hyperbolical cosine. Taking logarithm after having taken 
expected values, we obtain the objective function 

L@, i) = Nc In cash (-$ Re[z,.@)e-j’]) 
n=O 

(5- 160) 

The effect of the averaging operation is best understood by .considering the 
noiseless case 

Re[z,(2)e-je] = an COS(O - 00) ara = fl (5-161) 

Since the data symbol an assumes the two values a, = f 1 and since In cash (x) 
is a symmetric and increasing function for IZ I, the value 8 = 80 maximizes the 
likelihood function, irrespective of the actual value of the symbol. Notice that if 
the argument of the maximum is 8, then 8 + T is also a maximum. (We have 
a 7r ambiguity.) 

A phase error signal is obtained by differentiating (5-160) with respect to 8: 

d 
&l(R 2) 

e& 
= $1, [zn(&)e-j”] tanh ($Re [zn(P)e-‘“]) (5-162) 

For optimum operation a: must be known since it appears in the argument of 
the tanh (e). 

It is instructive to consider the two extreme cases of low and high SNR. For 
high SNR (c: ---) 0) we may approximate 

tanh (z) N sign(z) 

to obtain the error signal 

32;‘) = Im 
[ 
Zn(Z)e-je^ ]sign($Re[zn(g)e-jS]) (5-163) 
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But since [see (5161)] 

sign (+Re [1,(+-j’]) = & (5 164) 

(for small phase error) we obtain exactly the same expression as (5-137) for the 
digital PLL. 

For low SNR (0; >> l), the tanh (s) is approximated by tanh (x) N x. The 
error signal (5-162) now becomes 

xt2) = 1+,(6)e-j’] Re [~&)e+‘] n 

which is equivalent to 

(5- 165) 

xp = 
1 

%n (El)e-je^ - .Zi (t)d’ 

IJ 

zn (+ -ji + Zn(z)ej8^ 
2j 2 1 -- 

Irn-(.) Rer() 

(5-166) 

i 
zi(e)e-j2s^ - = ( ,z(+-j2J > 

* 
2j 1 

L 

The error signal is zero for 

J 

arg ~~(8) + hr (5- 167) 

The estimate 8 has a twofold ambiguity, compare with eq. (5-156). 
The results obtained in this example are of general interest. For high SNR 

a slicer (hard limiter) produces a reliable estimate G,. Since no tracker can 
perform better than working with known symbols, it is evident that decision- 
directed methods approach that optimum for high SNR. For low SNR no reliable 
data estimate is produced by a hard limiter. It is therefore advantageous to use a 
device which makes better use of the information contained in the signal samples, 
The expression 

Re [zn (i)e-‘“1 = ara cos (00 - “> + noise (5- 168) 

may be regarded as a “soft-decision” output. The example illustrates that removing 
unwanted parameters by averaging is always optimal. 

The derivation for 4-PSK is quite similar. For a, = ej2=‘i4, I= 0, 1,2,3, 
we obtain for the averaged log-likelihood function 

Ll(O,i)=g [In cash (-$-Re[,n(g)eWj’]) + In cash ($Im[I,(i)e-j’])] 

(5- 169) 
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and for the error signal 

En = 

For high SNR we 
error detectors: 

Im [zn(e)e-j’] tanh ($e [z&-jJ]) 

Re [ zn (t)e- j”] tanh (-$Im[i.(P)e-j’]) 
(S- 170) 

obtain the difference between the output of two 2-PSK phase 

xn = Im[z,,(s)e-jg] sign(-$-Re[z.(E^)e-j’]) 

- Re [~~(b)e-j’] sign( $Im [“.(“)e-j’]) 
(5-171) 

Notice that (5-171) is identical to the DD 4-PSK tracker algorithm of (5-137). 
For 2-PSK we approximated tanh (x) N z for small SNR. If the same 

approximation were made for 4-PSK in (5-170), the error signals would be 
identically zero, 2, E 0, a useless result. A remedy is found if the second 
term in the Taylor series expansion for tanh (x) is taken 

X3 
tanh z N x - - 

3 
(5- 172) 

A fourth-order nonlinerarity is introduced which leads to a useful error signal 

2t.J = -je^ 1 [ Re ,n(z)e-js^ I 
x (Re [t.(.?)e-j”] - Im [z,,(B)e-j’]) 

(5-173) 

The right-hand side of the previous equation is shown to be the same as 

[ 
( 

1 * zz (E)e -j4e^ + z~(~)e-j46 

xn = 1 

% 1 (5- 174) 

Therefore 

L i arg ~2 (e) + $k k=O,...,3 (5- 175) 

The estimate has a Q-fold ambiguity. 

For higher-order M-PSK it appears impossible to obtain a simple closed form 
for the error signal (5-158). Notice, however, that the Viterbi & Viterbi (V&V) 
method is applicable to any M. In view of the fact that larger M-PSK (M 2 8) 
constellations require a higher SNR, thus making DD algorithms applicable, it 
seems not fruitful to pursue the averaging approach further. 
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5.10.3 Main Points 

Since multilevel signals (QAM) operate at high SNR, decision-directed al- 
gorithms are exclusively used. For M-PSK data independent (NDA) algorithms 
have been derived. The V&V algorithm is a feedforward algorithm which works 
for all M-PSK signals. 

For M=2 and 4-PSK the averaging operation over the data can be expressed 
in closed form. The two examples nicely illustrate the fact that averaging is always 
optimum. The optimum phase error feedback systems involve rather complicated 
nonlinear operations which depend on knowledge of the SNR. For the two extreme 
cases of low and high SNR the operation can be greatly simplified. The resulting 
phase error detectors are DD for high SNR and “soft-deciding” for low SNR. 

All NDA phase error feedback systems suffer from an M-fold phase ambiguity 
which must be taken care of by proper preceding of the data and a “phase- 
unwrapping” unit. 
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5.11 Phase and Timing Recovery for 
Nonlinear Modulation Schemes 

Nonlinear modulation methods with the notable exception of MSK (minimum 
shift keying) and G-MSK (Gaussian MSK) [l, 21 have been used very seldom in 
practice since they seem to offer no performance advantage over linear modulation. 

This is even true for transmission over nonlinear channels where a constant 
envelope is advantageous. As shown by Rapp [3] the bit error rate of M-PSK is 
surprisingly insensitive to the nonlinear distortion and heavy filtering. 

Receivers for coherent CPM (continuous phase modulation) are far more 
complex to implement than receivers for linear modulation. Synchronization is 
difficult to achieve. For a thorough discussion the reader is referred to the work 
by D’ Andrea and co-workers [4] and the books by Huber [5] and Anderson and 
Sundberg [6] where additional references can be found. 
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Joint phase and timing recovery for CPM signals have been first discussed 
by de Buda in [7]. This algorithm was further analyzed in [8] and [9]. Based 
on this technique, further developments were made by D’ Andrea and co-workers 
in [4, lo]. In [ 1 l] an algorithm and a single-chip implementation of an MSK 
receiver is described. 

Timing synchronization is discussed in [ 121 where a digital feedback algorithm 
based on a suitable nonlinearity is devised. The same nonlinearity is used in [ 131 
for joint timing and frequency synchronization. This algorithm will be discussed 
in Section 8.6. Performance analysis for offset QPSK (0-QPSK) is documented 
in [14]. Timing synchronization is also described in [15] where the effects of a 
flat fading channel are taken in consideration. The maximum-likelihood approach 
to phase synchronization of CPFSK signals is investigated by Kam [16]. The 
Cram&-Rao bound for CPM signals has been derived by Moeneclaey [ 171. 

The appropriate description of a phase-modulated signal as linear PAM is 
presented in the paper by Laurant [ 181. The results are interesting as they allow to 
apply the results for linear modulation to nonlinear modulation. The dissertation 
by Mehlan [ 191 features the modem design for vehicle-to-vehicle communication 
systems employing MSK modulation. 
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Chapter 6 Performance Analysis 
of Synchronizers 

During data transmission the synchronizer provides an estimate which most 
of the time exhibits small fluctuations about the true value. The synchronizer is 
operating in the tracking mode. The performance measure of this mode is the 
variance of the estimate. 

In Section 6.1 and the appendix (Section 6.2) we derive a lower bound on the 
variance of these estimates. This bound will allow us to compare the variance 
of practical estimators to that of the theoretical optimum and thus assess the 
implementation loss. 

In Section 6.3 we compute the variance of carrier and symbol synchronizers of 
practical interest. The tracking performance is first computed under the assumption 
that the parameters are constant over the memory of the synchronizer. Later on 
we relax this prescription to investigate the effect of small random fluctuations 
(oscillator phase noise) and of a small frequency offset. 

Occasionally, noise or other disturbances push the estimate away from the 
stable tracking point into the domain of attraction of a neighboring stable tracking 
point. This event is called cycle slip (Section 6.4). Cycle slips have a disastrous 
effect since they affect many symbols. Their probability of occurrence must be at 
least a few orders of magnitude less frequent than the bit error rate. Cycle slipping 
is a highly nonlinear phenomenon which defies exact mathematical formalism in 
many cases. One must resort to computer simulation. 

At the start of signal reception the synchronizer has no knowledge about the 
value of the parameters. During a start-up phase the synchronizer reduces the 
initial uncertainty to a small steady-state error. This process is called acquisition. 
To efficiently use the channel, the acquisition time should be short. In Section 6.5 
we discuss various methods to optimize the acquisition process. 

6.1 Bounds on Synchronization Parameter Errors 

In this section we compute bounds on the variance of the estimation errors of 
synchronization parameters. These bounds will alldw us to compare the variance 
of practical synchronizers to that of the theoretical optimum and thus assess the 
implementation loss. 
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We consider the task of joint estimation of a frequency offset S& a phase 8 
and a timing delay E. All parameters are unknown but nonrandom. The signal 
samples sf (kT,) are given by 

sj(kTd) = C a,g(kT, -nT-ET) ejeejnkT* 
n 

(6-l) 

The received signal is disturbed by additive noise 

rf w-i) = sj (kT.9) n(C) + 7 (6-2) 

Equations (6-l) and (6-2) are those of the transmission model introduced in Section 
4.3 with the additional property that the frequency offset s2 is introduced into the 
model. 

Since the parameters are unknown but deterministic, the lower bound on the 
variance is determined by the elements of the inverse Fisher information matrix 
J-l which we introduced in Section 1.4. The elements of J equal 

Jil = -E a2 ln P@j P) 
dei de1 1 (e-3) 

We recall that E[ . ] indicates averaging over the noise, and 6 is a set of parameters 
e = (e,,...,eK). 

For the log-likelihood function [eq. (4-69)] we obtain, up to a constant, 

In P(rj 10) = 2 Re{ rTQsf } - sy Qsj 64) 

Taking the derivative of (6-4) with respect to the trial parameter t9i we obtain 

= 2 Re [rr - SF] Q z 
1 

ds, 
a > 

Taking the second derivative with respect to 81 leads to 

a2 ln P@j I@) 
aei de, = 2 Re 

{ 
% a$ dSj 

[f - f] Q m - ae, Q ae (6-6) 
i i 

Finally we observe that 

E[rf - sj] = E [nj] = 0 05-7) 

since on the average the trial signal sj must equal the received signal rj . Therefore 

(6-Q 
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But since the right-hand side of (6-7) contains nonrandom quantities, the expec- 
tation operation is the quantity itself: 

1 
(6-9) 

= -Jil 

The variance of the estimation error 8i - tii(rf )] obeys the inequality 

var [8” - &(rf )] 1 Jii 

where Jii is an element of the inverse matrix J-l. 

(6- 10) 

We recall that 8, (rf ) is any unbiased estimator. The parameters 8 = (6, E, 0) 
appear in sf in a nonlinear manner and thus the estimator error cannot be expressed 
as the weighted sum of the partial derivatives of In p(rf 10) with respect to the 
various parameters. But since this condition [see eq. (1-21 l)] is necessary and 
sufficient for an efficient estimate, we conclude that there exists no such estimator 
for the synchronization parameters. 

It is, however, intuitively plausible that for high SNR or a large number of 
data symbols the performance of the synchronization parameter estimator should 
come close to the theoretical optimum. We next want to prove this assertion 
and quantitatively investigate the asymptotic behavior of the joint synchronization 
parameter estimator. 

Consider again the general parameter vector 8 = (01, . . . , t9~). For a high 
SNR or a large number of symbols the ML estimate 8 will be clustered tightly 
around the point 80 = (01, . . . , 0~)~ of the actual parameter values. We therefore 
develop the log-likelihood function into a Taylor series retaining terms up to second 
order: 

K 8 h-l P(rfP> 
In P6-f le> = In drj le>bo + c 

kc1 

de 
k 

lea (ok - ek,O) 

+fc 

K d2 In p(rj(e) 
k,l=l 8 ek a el e. (Ok - %del - %d 

(6-l 1) 

+ terms of higher order 

The ML estimate 8, then satisfies 

8 ln I& I@) K d2 In p(rf le) 
d ei I c 80 + 

I=1 

aei del Is, (41 - %o) = 0 (6-W 

because 

Using 

mom ln P(rj 10) = ln P(q I@) le (6-13) 

In p(rf 10) = 2 Re{ ry Qsj} - s?Qsj (6-14) 
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yields 

8 ln ~(rj I@ 
80, 

=2Re{nyQ$ 100} 

(6 15) 

- 

Because rj = sj 10, + nj , we have 

a2 ln Iej I@) I dekdol 80 

(6 17) 

Because of weak noise, the second term can be neglected. Inserting (6-17) into 
(6-12) we obtain 

(6-18) 

We immediately recognize that the coefficients in the last term are the elements 
of the Fisher matrix J (eq. 6-9) so that 

Solving the last equation for the ML estimate we obtain 

( 1 (j-e, =J-’ . . 
alnp(r;l@) 

aeK 

(6-19) 

(6-20) 

which has exactly the form of the necessary and sufficient condition for the ML 
estimate to be eficient [eq. (1-21 l)]. Furthermore, the estimates are asymptotically 
Gaussian distributed. This follows directly from (6-15) and (6-19). The right-hand 
side of (6-15) represents a weighted sum of Gaussian random variables for every 
k. Hence, fik is a Gaussian random variable with mean &,a (and thus unbiased). 

We now want to apply these general results to the problem of jointly estimating 
the synchronization parameter set 8 = 10, E, a}. The computation of the elements 
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of the Fisher information matrix J (6-9) is conceptually simple but technically 
somewhat tricky and for this reason delegated to the appendix (Section 6.2). 

In the following two examples we determine the Fisher information matrix 
for two different estimation problems. While in the first example we consider the 
joint estimation of the synchronization parameter set 8 = (a, 0, E), we assume in 
the second example that the frequency offset R is known when jointly estimating 
the parameter set 8 = (0, E}. The dimension of the Fisher information matrix 
is determined by the number of unknown parameters. Therefore, the Fisher 
information matrix is of dimension 3 x 3 in the first example and is reduced to a 
2 x 2 matrix in the second example. For the special case that only one parameter 
requires estimation, the Fisher information matrix degenerates to a scalar, and the 
bound is the Cramer-Rao bound known from the one-dimensional problem. 

Example I 
We consider the Fisher information matrix for the joint estimation 8 = {Q, 8, E}. 
We assume 

(i) Independent noise samples n(lcT,). The inverse covariance matrix Q is thus 
a diagonal matrix with elements l/o2 = (IVO/A~T~)-~. 

(ii) The signal pulse g(t) is real. 

(iii) Random data. 

Condition (i) is merely for convenience; all results also apply for colored noise. 
Due to conditions (ii) and (iii) the cross terms Jaa and J,e vanish (see Section 6.2). 
Notice that g(t) stands for the overall pulse shape of the transmission path, The 
requirement for g(t) to be real therefore imposes demands on the transmitter as 
well as receiver filter and on the other units such as mixers and oscillator accuracy. 
Under these conditions, the Fisher matrix equals 

It can be verified that the 

var{Ro-ii}> J”“= 

- - 

J= (;: ;; I) (6-21) 

lower bounds are given by the following expressions: 

1 

Jm - J&/Jee 

(N-1)2N 772 

l2 

+oO 
N 

+E, J 
t2 lg(t)12 dt - N 

-CO -CQ 

2E, -l [ 1 12 1 

No (N-1)2 N T2 1+ O(N-2) 
(6-22) 
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var{e0 - “> 1 Jee = Jee _ jAelJnn = 
2E, -‘l [ 1 No N 

2E, -’ 1 [ 1 1 
= No N 1 - O(N-2) 

(6-23) 
and 

var{EO -i} 2 J’” 
1 

=- 
J cc 

2E, -‘l [ 1 
‘s” IG(w) I2 du 

=x 7 ;zl 
T2 j- u2 IG(w)l” du 

(6-24) 

-CO 

where 0 (NB2) is an expression in the order of Nm2 and E,/No is the signal-to- 
noise ratio at the matched filter output, see (4-142). 

For large N we can approximate Jsl* and Jee by 

and 

var{& -B^) 2 Jee = $ -‘f [ 1 

(6-25) 

(6-26) 

Since J&/Jan 2 0 and J&/ Jee 2 0, the expressions for J”” (6-22) and Jee 
(6-23) exemplify that the estimation error variances for 0 and L! are always larger 
than the variance obtained when only a single parameter is estimated, because in 
this case the variance of the estimation error is the inverse of the corresponding 
entry in the main diagonal of J. Given that the Fisher information matrix is 
diagonal, the estimation error variances of a joint estimation are equal to those 
obtained when only a single parameter requires estimation. It is evident from the 
above consideration that we should try to force as many cross-terms of J to zero 
as possible. This can be accomplished, for example, by a proper selection of the 
pulse shape. 

The lower bound on the timing error variance [eq. (6-24)] is not influenced by 
the fact that all synchronization parameters have to be jointly estimated, since the 
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cross coupling terms JaE and Jet vanish under the above conditions. Therefore, 
the timing error variance is the same as the variance we would expect to find if 
we had to estimate the timing when phase and frequency were known. Jet is 
strongly dependent on the pulse shape, as we would expect for timing recovery. 
The variance of the timing error increases with decreasing excess bandwidth. 

A last comment concerns the dependency of var 80 { - 8} on E. This de- 
pendency expresses the fact that there exists an optimal timing offset e for the 
estimation of this parameter. However, the influence is weak since it decreases 
with O(Nm2). 

Example 2 
Now we assume that the frequency offset Re is known. Then the Fisher information 
matrix is reduced to a 2 x 2 matrix. Applying the same conditions as in the previous 
example and using the results of the appendix (Section 6.2), we get the following 
diagonal matrix: 

J = J;e Jo [ 1 cc 
and for the lower bounds it follows 

var{ee - j} 2 Jee = $ = [$I-‘+ 

and 

2 E, -’ 1 
var{e, - e) >, JEc = f = - [ 1 

‘s” lG(w)j2 dw 
--oo 

CC NQ N 
T2 ‘s” w2 IG(w)12 dw 

-00 

(6-27) 

(6-28) 

(6-29) 
Following the above argumentation we can conclude that it is possible for a joint 
estimation of 0 and c to have the same jitter variances as those we would expect to 
obtain by estimating E or 0 individually, given that all other parameters are known. 
Due to the diagonal structure of the Fisher information matrix (6-27) we can in 
addition conclude that the dynamics of the phase and timing error are uncoupled, 
at least in the steady state, if the synchronizer structure in the joint estimation case 
meets the lower bounds determined by (6-28) and (6-29). 

6.2 Appendix: Fisher Information Matrix 

The Fisher information matrix is given by 

(6-30) 
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with entries Jeiol [eq. (6-g)]: 

Joie, = -E 
a2 

m ln Ph I 0) ] =2Re{gqg} (6-3 1) 

where t9d, 01 are elements of the synchronization parameter set 8 = { fl, 0, E} . From 
(6-31) it follows that Je,e, = Jelei. Throughout this appendix we assume that the 
second condition given by (4-127) [symmetric prefilter IF( is satisfied so that 
Q is a diagonal matrix with entry A2T,, /No: 

1 
’ = NO/(TdA2)’ 

(6-32) 

(I is the identity matrix). Note that this still leaves the pulse shape g(t) unspec- 
ified. With 

7a=(N- 1)/2 

Sf(kT,) = c a, g&T, - nT - ET) ej(nkTa+e) (6-33) 
n=-(N-1)/2 

from (4-96) it follows that 

dS 7 ds, 
de1 Q dea 

a (N-1)/2 

Xg c a, g(kTs -nT-ET) e+j(nkTB+e) 
n=-(N-1)/2 

(6-34) 
holds. For reasons to become clear later on we assume a symmetrical interval 
n E [-(N-1)/2, (N-1)/2] for the transmission of the (N+l) symbols. We 
discuss the case of statistically independent known symbols. ’ - 

Performing the operations in (6-34) for the various combinations of parameters 
yields the elements Joie1 = Jelei. We begin with Joa. 

1. Calculation of Jan: 

dS 
Jan = 2 R,e 7 asf 1 

- 
%I x NO/(A2Ts> 

(6-35) 
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With 

= uT1, g* (kT# -mT--ET) e-j(e+nkTm) (-jkT,) 
(6-36) 

a, g(kTd -nT-ET) e+j(e+nk*s) (jkT,) 

and applying the Parseval theorem (4-97) to the outer sum leads to 

as7 asf dRm 
(N-1)/2 

c 
(N-1)/2 1 O” 
c J 

(6-37) 
= 4n an - 

T, 
t2 g*(t-mT-ET) g(t-nT-ET) dt 

m=-(N-1)/2 na=-(N-l)/2 m-O0 
Using the convolution and differentiation theorem of the Fourier transform, the 
right-hand side of the above equation can be expressed in the frequency domain as ccl 
s t2 g(t - nT - ET) g*(t - mT - ET) dt 

-ca 

= & / [ _ & (+,) e-ju(nT+rT))] [G*@) ejw(mT+rT)] du 
(6-38) 

Partial integration yields 

1 
!G 

G(w) e-jw(nT+W G*@) ,$+T+ET) dw )I 
1 

=- 
2n /(I I 

$G(w) 2 ,+(fa-ml? 

- j(nT + ET) G(o) ($*(q) e-h+-m)T 

+ j( mT + ET) G*@) e-j‘+-~)T 

(6-39) 

+ (nT + ET) (mT + ET) /G(w)[~ e-jw(n-m)T du 
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Since G(w) and d/dw G( u ) vanish at the boundaries,’ inserting (6-39) into (6-35) 
yields for statistically independent symbols 

Jim = 
+h12] 2 

No/A2Ts T, 27r 

+ 5 n2 T2 / jG(w)j2 dw 
n=l 

+ N &2 T2 
s 

IG(w)l” dw 

+2& 5nT2/lc(w)12dw} 
n=l 

In obtaining (6-40) we made use of the fact that for large N the double summation 
N N N 

over C C a;l; a, tends to its mean value C E[ai a,]; this is a consequence 
?a=1 ma=1 

of the strong law of large numbers. The inF%e of Jan [eq. (6-40)] can be 
interpreted as the Cramer-Rao bound for frequency estimation, provided that all 
other synchronization parameters (0,~) are known. Now it becomes clear why in 
(6-33) we took a symmetrical summation interval, because for this interval the 
frequency bound described by JGh attains its maximum value [l]. 

Jan can be written as 

E[lan12] 2 
Jian = NO/(A2T,) T, 27r 

+ cN2--1) N T2 
12 

2 

dw 

+ N &2 T2 
J 

lc(~)12 dw 

(6-41) 

1 Notice that by this condition the ideally band-limited signal with rectangular frequency response G(w) 
is excluded. 
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With E, denoting the symbol energy and with the abbreviation E, for the energy 
of the pulse g(t): 

E d = E[a; a,] A2Eg = $$ A2 1 lG(u)12 du 

(6-41) becomes 

Ed Jan = - 2 
(~2-1)~ 

NO 12 
T2 + T2 N .s2 

(6-42) 

(6-43) 

Occasionally, the equivalent time-domain formulation of Jan 

Jan = - 2 
(N2-1) N 

No 12 
T2 + T2 N c2 

J t lg(tp dt } @-w 
N 

+E, J t2 Is( dt + F 
9 

is more convenient for discussion and interpretation of Jan. 

We observe 

The assumption of statistically independent data symbols is critical for the 
validity of the result (6-43). In particular, the bound is invalid for certain 
periodic patterns which may feign a frequency offset which is not discernible 
from a true offset Ro. 

The dependency of Jan on E expresses the fact that there exists an optimal 
time offset for the estimation of 0. Jan depends on both the magnitude and on 
the sign of e. If we demand that g(t) is real and even, then the sign dependence 
vanishes as expected in a symmetrical problem where a preferential direction 
cannot exist. The E dependence is of order N and therefore becomes rapidly 
negligible compared to the term of order N3. 

The dominant term of 0 (N3) is independent of the pulse shape. Only 
for small N the pulse shape comes into play with order O(N). The term 
belonging to 8G(w)/B w  is proportional to the rolloff factor l/o (for Nyquist 
pulses) as can readily be verified. 
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2. Calculation of JEE: JEE is given by 

J = 2 Re 
a+ asf 1 

cc 
-&- %- No/(A2T,) 

, (6-45) 

Applying the Parseval theorem we obtain the following expression after some 
straightforward manipulation: 

q asf N-112 

xde= 
C ElaZ anl 

n=-N-112 

x ‘- j*(kTs -+-&-ET) T  ,-j(e+kTasz) jr&$ mnT-.cT) T  ,j(e+kT,n) 

k=-Co 

(N2’2 E[az an] g Jm j*(t-rzT-ET) i(t-raT-ET) dt 
(6-46) 

= 
n=-(N-1)/2 

8 
-CO 

(N-1)/2 
= C E[ai an] & 7 (-jw) G*(w) ejwnT (jw) G(w) e-jwnT du 

n=-(N-l)/2 8 
-00 

where i(t) denotes derivation with respect to t. Inserting (6-46) into (6-45) yields 

J% 
T2 s” u21G(u)( dw 

J EC = %2N --OO 

7 IGWI dw 
-00 

(6-47) 

Notice: 

a. In obtaining (6-47) we assumed statistically independent data. If this as- 
sumption is violated, the above bound does not hold. Assuming the extreme 
case of identical symbols and N + co, the signal sf (LT,) (6-33) becomes 
a periodic function with period l/T. But since the signal is band-limited to 
B < l/T, sf (ICT,) becomes a constant from which no timing information can 
be obtained. As a consequence J EE equals zero, and the variance becomes 
infinite.2 

b. JEE is independent of s2 and 8. 
C. In the case of Nyquist pulses, JEE is minimum for zero rolloff (CY = 0). This 

is as expected as the pulses decrease more rapidly with increasing excess 
bandwidth. 

2 In most cases cross terms can be neglected. 
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3. Calculation of Joe : Joe is given by 

Jee = 2 Re 
as? as, 1 
x 88 No/(A2T,) 

Inserting (6-34) yields 

(6-48) 

(6-49) 
= No,(a2Tsj xa; Ca,, c g*(kT, -mT-eT) g(kTa -nT-ET) dt 

m n ICC-cm 

Employing the Parseval theorem yields 

CaLCan hm,n (6-50) 
m n 

with (4-97) 

h 
1 1 

m,n =--- 
T3 J No/(A”Z) 

g*(t - mT) g(t - nT) dt (6-5 1) 

4. Remarks 

a. While for Jan and JcI random data were assumed, Joe exists for any sequence 
{an}. This is a consequence of the fact that the quadratic form (6-50) is 
positive definite. 

b. This is most clearly seen if hm,n has Nyquist shape. Then 

(6-52) 

where Es and E, are the pulse and symbol energies, respectively. 
C. For random data, by the law of large numbers we obtain 

Jee = 2 Re{ N E [ian 12] ho,o} (6-53) 

which is the true irrespective whether hm,, is of Nyquist type or not. 
However, note the different reasoning which lead to the same result: 

E, Joe = - 2N 
No 

(6-54) 
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5. Calculation of the cross terms JEe, JEn and Joa: The details of the calculations 
are omitted, since the underlying computational principles are identical to those 
of Jslsl, J,, , and Jee. 

a. Calculation of the cross term Jee : 

J = 2 Re 
as? &3f 1 

Ee d8 de NO/(A2T’) 
(6-55) 

We assume a random sequence and large N such that the cross term 

WY& a,}, m # n can be neglected. With 

= n=(E)‘2 E[a,a~] $ 7 (-j) (-T) g*(t-nT-ET) tj(t-nT-ET) dt 
?I=-(N-1)/2 

s -CO 
n=(N- 1)/2 

= c 
ta=-(N-l)/2 

E[anai] f$ & / (jw) lG(w)j2 dw 
s 

7a=(N- 1)/2 

= c 
n=-(N-1)/2 

E[a,az] F & /u IG(w)l” dw 
s 

we obtain 

J Ee = -2 N $$ ; J w IG(w)l” dw 
0 7r 

with the Fourier transform pair 

h(t) **IG(w)lZ 
No/A2 

J,e reads in the time domain 

JEe = 2NE [ IanI’] g 7 (jw) IG(w) I2 dw 
-CXl 

= 2NE[la,12] T Re{j i(O)} 

= -2NE [la, 12] T Irn{ h(O)} 

(6-56) 

(6-57) 

(6-58) 

(6-59) 

We observe 

(i) J,e vanishes for lG(-w)12 = lG(w)12, This implies G*(-w) = G(w) which 
is satisfied if g(t) is real. 

(ii) Random data were assumed. 
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b. Calculation of the cross term Jcn: 

J 
” = 2 Re 

a+ dSf 1 
x de N,,/(A2T,) 

(6-60) 

We assume a random sequence. With the following expressions: 

as? asf 
dRdE 

= n=(E”2 E[u,a;] $7 (-jt) (-T) g*(t-nT-ET) jj(t-nT-ET) dt 
n=-(N-1)/2 

s 

n=(N- 1)/2 

= c E[unu;] jT-; 7 (t + nT + E) g*(t) g(t) & 
n=-(N-1)/2 

9 
-CQ 

n=(N-1)/2 

= c 
?I=-(N-l)/2 

E[a,u;] jT f 4 (t + e) g*(t) i(t) dt 
s 

-CO 
(6-61) 

we can write JEa as 

J 
q&a a;] 

cn=2NNA 0 2 (-T) Im 
1 

7 (t + E) g*(t) j(t) & 
1 

(6-62) 

--oo 

Again this entry vanishes for real pulses and random data for any E. 

(6-63) 

c. Calculation of the cross term Jon: Joa is given by 

1 

OSf dSf 1 
Jesl = 2 Re x T No/(A2T8) > 

With the following expressions and assuming random data 

as? dSf 
-mae 

= n=iy)‘2 E[u, uz] $7 (-jt) (j) g*(t-nT-ET) g(t-nT-ET) dt 
?I=-(N-1)/2 

s 

= n=(g)‘2 E[u, uz] g-7 (t + nT + E) g*(t) g(t) dt 
n=-(N-1)/2 

8 664) 
-CO 

= n=(E)‘2 E[u, u;] $ g (t +&) g*(t) g(t) clt 
n=-(N-1)/2 

8 

n=(N-1)/2 

= c 

n=-(N-1)/2 
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we can write J,ga as 

Jm = 2N No,A2 -(ET+ & Im[[ (&G*(u)) G(u) du]) (6-65) 

or in the time domain as follows: 

co 

Jest =2N$ eT + + 
s 

t ls(q12 a (6-66) 
9 -CO 

If Is(t)I = Id-t) I or equivalently g* (-t) = g(t), then Joa vanishes for E = 0. 
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6.3 Tracking Performance of Carrier and Symbol Synchronizers 

6.3.1 Introduction 
When operating in a steady state, carrier and symbol synchronizers provide 

estimates which most of the time exhibit small fluctuations with respect to the true 
synchronization parameters; the synchronizers are operating in the tracking mode. 
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Assuming unbiased estimates, a convenient measure of the tracking performance 
is the synchronization error variance, which should be small in order to keep 
the associated degradation of other receiver functions such as data detection 
within reasonable limits. As synchronization errors are small during tracking, the 
system equations describing the synchronizers can be linearized with respect to the 
stable operating point. This simplifies the evaluation of the synchronization error 
variance, which is then referred to as the linearized tracking performance. We 
will evaluate the linearized tracking performance of various carrier and symbol 
synchronizers operating on the complex envelope TJ (t) of a carrier-modulated 
PAM signal given by 

am = Cam g(t-mT-eoT) ejeo + F 

m 

(6-67) 

The operation to the synchronizer is discussed in terms of the matched filter samples 

z(nT+ iT) = c amh [(n-m)T + (EI--EO)T] ejeo + N(nT) (6-68) 
m 

We use the normalized form of Section 4.3.6 (appendix), eq. (4-159, which holds 
for a symmetric prefilter and Nyquist pulses. In this case the symbol unit variance 

El I] [ 
2 a, = 1, h&-e0 = 0) = 1, and the complex noise process iV( nT) 

is white with independent real and imaginary parts, each having a variance of 
NO /2 E;, . Since 

hm,n(0) = { A zs’ n (6-69) 

the matched filter output (ideal timing) exhibits. no ISI: 

z(nT + eoT) = a, eje + N(nT) (6-70) 

The likelihood function [see eq. (4-157)] for the normalized quantities reads 

y (Ian,” - 2 Re[aiz,(E) eaje])]} (6-71) 
n=O 

The linearized tracking performance will be computed under the assumption that 
the synchronization parameters are constant over the memory of the synchronizers. 
This restriction is relaxed in Section 6.3.8, where the effects of a small zero-mean 
random fluctuation (oscillator phase noise) and of a small frequency offset are 
investigated. 

6.3.2 Tracking Performance Analysis Methods 
Here we outline the methods for analyzing the linear tracking performance of 

feedback and feedforward synchronizers. 
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Feedback Synchronizers 

Error feedback synchronizers make use of a (phase or timing) error detector 
whose output gives a noisy indication about the instantaneous synchronization 
error. The (filtered) error detector output is used to update the estimate of the 
synchronizer such that the magnitude of the error detector output is reduced. 

The analysis of feedback synchronizers for baseband PAM transmission has 
already been considered in Section 2.3.1. This method of analysis also pertains to 
feedback carrier and symbol synchronizers for carrier-modulated signals. 

Let us consider a feedback carrier synchronizer. We denote the phase error 
detector output - when receiving the Eth data symbol - by $0 b; 8 , where 8 is 

( > 
the estimate of the true carrier phase 00. The phase error detector characteristic 
go (4) is defined as the average of the phase error detector output: 

se(4) = E [zg (k; fi)] (6-72) 

where 4 = 60 - d denotes the carrier phase error. It is assumed that go (0) = 0, so 
0 is a stable equilibrium point. The zero-mean 

when receiving the kth data symbol is defined as 

Ne(k;8) = zo(k;j) - gs(Bo - 8) (6-73) 

Its autocorrelation function Re(k; 4) and power spectral density Se(exp (jwT); 4) 
depend only on the synchronization error 4: 

Re(k; 4) = E[No (m; 6) Ne (m + k; 8)1 (6-74) 

Se(exp (jwT); 4) = 2 Re(k; 4) exp (-WT) 
k=-00 

(6-75) 

Linearizing the feedback synchronizer about the stable equilibrium point 4 = 0, 
the carrier phase error 4(k) when receiving the kth data symbol is given by 

4(k) = -+---he@ - m)Ne(m;@o) 
m 

(6-76) 

As E[Ne (w eo)] = 0, the carrier phase estimate is unbiased. The resulting 
linearized tracking performance is given by 

TIT 
var[+] = & T 

s 

dw 
I-ffe(exP (hT))12 Se(exp (jwT); 0) - 2T 

(6-77) 

In (6-76) and (6-77), Ke = (d/d4) go (4) ]+e denotes the slope of the phase error 
detector characteristic at the stable equilibrium point 4 = 0, He (exp (jwT)) 
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is the closed-loop transfer function of the carrier synchronizer, and {ho(m)} 
is the corresponding impulse response, i.e., the inverse Fourier transform of 
He (exp (GT)). 

The above analysis method for carrier synchronizers also applies to symbol 
synchronizers. One only has to make in (6-72) to (6-77) the following obvious 
substitutions: 

00 + Eo 8’ E 

4+ e H&xp(GT)) + HE (exp (GT) > 

Ne k;8 + 
( > 

N,(k; 2) 

where “-+” means “is replaced by.” The quantities ~0, E  ̂and e = E - i are the 
actual time delay, the time-delay estimate, and the timing error (all normalized with 
respect to the symbol interval T). The timing error detector output xC (k; i) can be 
written as the sum of the timing error detector characteristic gc (e) and the zero- 
mean loop noise NE (k; 3). The loop noise has an autocorrelation function R, (k; e) 
and a power spectral density SE (exp ($0); e) . The timing error detector slope at 
the stable equilibrium point e = 0 equals I!&. The closed-loop transfer function 
of the symbol synchronizer and the associated impulse response are denoted by 
HE (exp ($0)) and {h,(m)}, respectively. 

Feedforward Synchronizers 
h 

A feedforward carrier synchronizer produces an estimate t9 which maximizes 
some objective function L(6) over the trial value 19 of the carrier phase estimate: 

= m;x L(e) (6-78) 

The objective function depends not only on the trial value 8 of the carrier phase 
estimate, but also on the received signal rf(t); in most cases, L(e) is derived 
from the likelihood function or a suitable approximation thereof. Because of the 
dependence on it, L(e) is a random function; hence, different realizations of 
of give rise to different carrier phase estimates. 

Under normal operating conditions, the estimate b is close to the true carrier 
phase value 00, so that the following truncated Taylor series expansion is suf@ 
ciently accurate for all values of 0 within a small interval containing both 00 and 0: 

L(e) N, ~(6~) + (e - eO)L’(eo) + k(e - eo)2Lyeo) (6-79) 
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where L’(eo) and L”(e0) are the first and second derivative of L(8) with respect 
to 8, evaluated at 0 = 00. Expressing that L(B) from (6-79) becomes maximum 
for 8 = 4 yields 

Leo=-- Lvh) 
wee) 

(6-80) 

In all cases of practical interest, the statistical fluctuation of L”(&) with respect 
to its mean value is much smaller than this mean value. Hence, L”(e0) can be 
safely replaced by E[L”( e,)], w  h ere E[.] denotes averaging with respect to the 
data symbols and the additive noise contained within the received signal rf (t). 
This yields 

iLeo=-. Lvo) 
JqL”( eo>1 

(6-8 1) 

Usually, the objective function is selected such that E[L(e)] becomes maximum 
for t9 = 8; hence, E[L’(eo)] = 0 so that the carrier phase estimate is unbiased. 
From (6-81) we obtain 

(6-82) 

where C#I = 80 - 6. 
The above method of analysis for feedforward carrier synchronizers also 

applies to feedforward symbol synchronizers. Obvious modifications of (6-81) 
and (6-82) yield 

where e = E - E  ̂is the timing error 
maximized by the timing estimate. 

A 
E-&o=- 

L’(Eo) 

E[L”(&o)] 

E [ WoN2] 
var’e3 = (E[L”(E~)])~ 

and L(E) denotes the objective function to be 

(6-83) 

Correspondence Between Feedforward and Feedback Synchronizers 

For many feedforward synchronizers, the objective function to be maximized 
equals the sum of individual contributions which have identical statistical proper- 
ties. Restricting OUT attention to carrier synchronizers (a similar derivation is valid 
for symbol synchronizers), the objective function is given by 

L(e) = 5 qlc; e> 
k=l 

(6-85) 
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where L( Ic; 0) denotes the contribution corresponding to the instant of reception of 
the lath data symbol and K is the duration of the observation window measured in 
symbol intervals; the statistical properties of L(k; 0) do not depend on the value 
of k. The resulting phase error 4 is given by 

4 
1 

L 5 L’(k; 0,) 
= E[L”(Wo)] K k=l 

(6-86) 

which follows from (6-81). 
Alternatively, one could try to maximize L(8) from (6-85) by means of a 

feedback carrier synchronizer, which uses the following phase error detector output 
x8 k;b : 

( > 
xe (k;8) = L’(k;b) (6-87) 

The idea is that, in the steady state, the feedback synchronizer tries to make zero 
the derivative of L(k; 6). At the stable equilibrium point 4 = 0, the slope Ke of 
the phase error detector characteristic and the loop noise Ne (k; 00) are given by 

Ice = E[L”(k; eo)] 

Ne(k; 00) = L’(k; 00) (6-89) 

Hence, it follows from (6-76) that the corresponding phase error is given by 

4(k) = - ’ c he&-m) L’(m, 0,) 
E[L”(k; eo)] m 

(6-90) 

where he (m) denotes the closed-loop impulse response of the carrier synchronizer. 
Comparing (6-86) and (6-90), it follows that (within a minus sign) the 

feedforward phase error (6-86) can be interpreted as a feedback phase error, 
provided that the closed-loop impulse response {he(m)} in (6-90) is selected as 

he(m) = { :I” m = 0, 1, . . . . K-l 
otherwise 

(6-91) 

Hence, the tracking performance of the feedforward synchronizer maximizing 
the objective fun&on (6-85) is the same as for the corresponding feedback 
synchronizer using the phase error detector (6-87) and having a closed-loop impulse 
response given by (6-91). 

Interaction Between Carrier and Symbol Synchronizers 

Several carrier synchronizers make use of a timing estimate, and several 
symbol synchronizers make use of a carrier phase estimate. Hence, carrier and 
symbol synchronizers in general do not operate independently of each other. 
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In the case of a feedback carrier synchronizer which makes use of a timing 
estimate (the same reasoning holds for a feedback symbol synchronizer which 
makes use of a carrier phase estimate), the phase error detector characteristic 
depends not only on the phase error 4 but also on the timing error e, and will 
therefore be denoted as ge (4; e), Linearizing g,g (4; e) about the stable equilibrium 
point 4 = e = 0 yields 

(6-92) 

where 
(6-93) 

Hence, unless Ce, = 0, it follows that the linearized tracking performance of the 
feedback carrier synchronizer is affected by the timing error, When Gee = 0, the 
linearized tracking performance can be evaluated under the assumption of perfect 
timing, i.e., e = 0. A sufficient condition yielding Co, = 0 is that ge(4; e) is zero 
for 4 = 0, irrespective of the timing error e. 

In the case of a feedforward carrier synchronizer which makes use of a timing 
estimate (the same reasoning holds for a feedforward symbol synchronizer which 
makes use of a carrier phase estimate) the objective function to be maximized with 
respect to the trial value 8 of the carrier phase estimate depends also on the timing 
estimate. Assuming that the objective function is of the form 

L(f9; e) = 5 L(k; 8; e(k)) 
k=l 

(6-94) 

where e is the vector of timing errors corresponding to the symbols within the 
observation window, the tracking performance of the feedforward synchronizer is 
the same as for a feedback synchronizer with the 
(6-91) and using the phase error detector output 28 

The corresponding phase error detector characteristic is 

(6-95) 

(6-96) 

Linearizing ge(4; e) about the stable equilibrium point 4 = e = 0, it follows that 
the linearized tracking performance is not affected by the timing error, provided 
that a2 ~ww~41 (0 = tgo = O (6-97) 

e=O 

When (6-97) holds, the feedforward carrier synchronizer can be analyzed as if 
perfect timing (i.e., E  ̂= ~0) were available. A sufficient condition for (6-97) to be 
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satisfied is that E[L(k; 19; e)] is maximum for 8 = 190, irrespective of the timing 
error e. 

For all feedback and feedforward carrier and symbol synchronizers to be 
considered in Sections 6.3.3 to 6.3.6, we have verified that in the tracking mode 
there is no interaction between the carrier and symbol synchronizers; basically, this 
is due to the fact that the baseband pulse at the matched filter output is real and 
even. Consequently, carrier synchronizers will be analyzed under the assumption of 
perfect timing, and symbol synchronizers will be analyzed under the assumption 
of perfect carrier recovery. 

6.3.3 Decision-Directed (DD&De) Carrier Synchronization 
The feedforward version (DD&DE) of the decision-directed maximum- 

likelihood phase synchronizer maximizes over 0 the function L( 6), given by 
Section 5.8: 

L(B) = t Re[t$xk exp (-j0)] 
k=l 

(6-98) 

where tik is the receiver’s decision about the kth data symbol, and %k is a short- 
hand notation for Z( kT + U) , the sample of the matched filter output signal taken 
at the estimate kT + E”T of the kth decision instant. The carrier phase estimate 6 
which maximizes L(B) from (6-98) is given by 

(6-99) 

where arg (s) denotes the argument function. Hence, instead of performing a 
search over t9 to maximize L( 0)) one can directly compute the feedforward estimate 
according to (6-99). The feedforward (DD&De) carrier synchronizer needs one 
synchronized matched filter output sample per symbol. 

The feedback version of the (DD&DE) carrier synchronizer makes use of a 
phase error detector whose output 20 is given by 

(6-100) 

which is the derivative with respect to the kth term in (6-98). The feedback 
(DD&D&) carrier synchronizer needs one synchronized matched filter output sam- 
ple per symbol. 

In the following, we will investigate the linearized tracking performance of 
the feedback version of the carrier synchronizer. As indicated in Section 6.3.2 
in the discussion of feedforward and feedback synchronizers, the performance 
of the feedforward synchronizer can be derived from the result for the feedback 
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synchronizer. According to the discussion of the interaction 
symbol synchronizers, we will assume that E  ̂= 60. 

between carrier and 

When dealing with decision-directed synchronizers, we will make the sim- 
plifying assumption that the receiver’s decision tik is not affected by additive 
noise. Hence, for sufficiently small synchronization errors, this assumption yields 
hk = ak. For example, in the case of M-PSK and in the absence of additive 
noise, one obtains 

hk = ak exp (jkm/kf) (2m-l)?r/M < 4 < (2rn+l)r/M (6-101) 

which indicates that &k = ak for 141 < ?r/M. 
Taking (6-70) into account, (6-100) with E  ̂= EO yields 

(6-102) 

where 
Nk = N(kT + COT) exp (-js> (6-103) 

Note that (Nk) is a sequence of complex-valued statistically independent Gaussian 
random variables with statistically independent real and imaginary parts, each 
having a variance of No/(2E,). The resulting phase error detector characteristic 
$0 (4) is given by 

a(4) = E[o (k j)] = sin (4) (6- 104) 

where we have taken into account that E [ Ia; I] = 1. Note that $0 (0) = 0, so that 
4 = 0 is a stable equilibrium point. The phase error detector slope Ko and loop 
noise No (k; 00) at the stable equilibrium point 4 = 0 are 

Ke = 1 (6-105) 

Ne (k; So) = Im[a$ Nk] (6- 106) 

Because of the statistical properties of {Nk}, the loop noise at the stable equilib- 
rium point fj = 0 is white, and its power spectral density satisfies 

NO Se(exp (jwT); 0) = - 
2~5 

Consequently, it follows from (6-77) that 

(6- 107) 

NO 
va#] = (SBLT)5 

s 

where BL is the one-sided loop bandwidth of the carrier synchronizer: 

2BLT = T 
J 

2dw 
l~e(exP WWI - 2n 

-s/T 

= c w-4 

(6-108) 

(6- 109) 
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In view of (6-91), the linearized tracking performance of the feedforward version of 
the (DD&Ds) carrier synchronizer is obtained by replacing in (6-108) the quantity 
2BLT by l/K. 

It is important to note that the linearized tracking error variance (6-108) 
equals the Cramer-Rao bound, which means that the synchronizer achieves the 
theoretically optimum performance. However, the result (6- 108) has been obtained 
under the simplifying assumption that additive noise does not affect the receiver’s 
decisions about the data symbols. The effect of decision errors on the tracking 
performance will be considered in Section 6.3.7. 

6.3.4 Non-Decision-Aided Carrier Synchronization 
The considered non-decision-aided (NDA) carrier synchronizer maximizes the 

low-SNR limit of the likelihood function [eq. (5-154)] after taking the expected 
value E,[ -1 with respect to the data sequence. The samples of the matched filter 
are taken at nT + iT. In the case of a signal constellation with a symmetry angle 
of 27r/M, the resulting NDA-ML carrier synchronizer operates on the matched 
filter output samples zk, raised to the Mth power; we recall that the samples zk 
are taken at the estimated decision instants kT + E”T. 

The feedforward version of the NDA carrier synchronizer maximizes over B 
the function L(B), given by 

L(O) = 5 Re [E [(u;)~] zy exp (-jMO)] 
k=l 

The carrier phase estimate 4 which maximizes L(B) is given by 

(6-l 10) 

(6-111) 

Hence, the feedforward estimate can be computed directly, without actually 
forming a search over 8. The feedforward NDA carrier synchronizer needs 
synchronized matched filter output sample per symbol. 

per- 
one 

The feedback version of the NDA-ML carrier synchronizer uses a phase error 
detector, whose output ~8 

x0 (k; 8) = Irn[E[(a’,)“] zf exp (-jMb)] (6-l 12) 

which is proportional to the derivative with respect to 19 of the kth term in (6-l 10). 
The feedback NDA carrier synchronizer needs one synchronized matched filter 
output sample per symbol. 

In the following, the linearized tracking performance of the feedback version 
of the NDA carrier synchronizer will be investigated. According to Section 6.3.2, 
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it will be assumed that perfect timing is available, i.e., ,S = ~0. The performance 
of the feedforward synchronizer can be derived from the result for the feedback 
synchronizer. 

Taking (6-70) into account, (6-l 12) with E  ̂= ~0 yields 

(6-113) 

where Nk is given by (6-103). Taking into account that 

E[(Nk)m] = 0 for m 2 1 (6-114) 

it follows from (6- 113) that 

se($) = E [xg (k; 8)] = IE[#] I2 sin (W> (6-115) 

which indicates that the phase error detector characteristic is sinusoidal with period 
27r/M. Note that se(O) = 0, so that ~5 = 0 is a stable equilibrium point. The 
phase error detector slope Ke at 4 = 0 equals 

K@ = Mpqu~] I2 (6-l 16) 

Using a binomial series expansion in (6- 113), the loop noise at 4 = 0 can be 
written as 

Ne(k; 00) = Im ~!?[(a:)~] 5 CM,,,, Np urn 1 (6-117) 
m=O 

where 

cM,m = 
M! 

m!(M-m)! 
(6-118) 

This loop noise is white, and it can be verified from 

for m # n (6-l 19) 

that the (A4 + 1) terms of (6-l 17) are uncorrelated. Hence, the loop noise power 
spectral density is given by 

S&v (jwr); 0) =E [ (Im[urE [(a;)“]]) ‘1 

+ i IE [uf] I2 5 (CM,m)2m! [ %lrnE [ (Uk (2Me2m] 
m=l 

(6-120) 
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where we have made use of 

E[lNkl”q = m! $ rfa [ 1 8 

351 

(6-121) 

The first term in (6-120) is a self-noise term, which does not depend on Es/No. 
The remaining terms, which represent the contribution from additive noise, consist 
of powers of No/Es. For moderate and high values of E, /No, the terms with 
m 2 2 in (6-l 17) can be ignored. This yields 

var[q5] 78 (~BLT) A 
[ %+B] 

where 

(6- 122) 

(6-123) 

B = E [ (I+$- [(dq]) ‘1 
M2 IG47 I4 

(6-124) 

The tracking performance of the feedforward version of the NDA carrier synchro- 
nizer is obtained by replacing 2 BLT by l/K. 

Taking into account that E [ lcz~ I”] = 1, application of the Schwarz inequality 
to (6-123) yields A > 1. Hence, comparing (6- 122) with (6-108), it follows 
that for moderate and large E, /No the tracking performance of the NDA carrier 
synchronizer is not better than that of the DD carrier synchronizer. Numerical 
performance results will be presented in Section 6.3.7. 

Another important NDA carrier synchronizer is the “Viterbi and Viterbi” 
(V&V) carrier synchronizer (Section 5.10.1), which can be viewed as a general- 
ization of the NDA carrier synchronizer. The V&V synchronizer will be discussed 
in Section 6.3.10. 

6.3.5 Decision-Directed (DD) Symbol Synchronization 

In this section we consider two types of decision-directed (DD) symbol 
synchronizers, i.e., the decision-directed maximum-likelihood (DD-ML) symbol 
synchronizer (introduced in Section 5.5) and the Mueller and Mtiller (M&M) 
symbol synchronizer. Both synchronizers make use of the carrier phase estimate 
and of the receiver’s decisions. According to Section 6.3.2, it will be assumed 
that a perfect carrier phase estimate is available. Both synchronizers will be 
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analyzed under the simplifying assumption that the receiver’s decisions are not 
affected by additive noise; this implies that, for small timing errors, the receiver’s 
decisions will be assumed to be correct. The effect of decision errors on the 
tracking performance will be considered in Section 6.3.7. 

Another DD symbol synchronizer, i.e., the data-transition tracking loop 
(DTTL), will be briefly discussed in Section 6.3.10. 

Decision-Directed ML Symbol Synchronizer 

The feedforward version of the DD-ML symbol synchronizer maximizes over 
c the function L(E), given by (see Section 5.5) 

L(E) = 2 Re [6; Z(/CT + CT) exp (-js^>l 
k=l 

(6425) 

This maximization over E must be performed by means of a search. 
The feedback version of the DD-ML symbol synchronizer uses a timing error 

detector, whose output xb(k; Z) is given by (Section 5.6.1) 

z,(k;&) = T Re [hi Z’(W + E^T) exp ( -+G)] (6-126) 

where z’(l) is the derivative (with respect to time) of z(t). 
In the following, we will investigate the tracking performance of the feed- 

back synchronizer; from the obtained result, the performance of the feedforward 
synchronizer can be derived. 

Taking (6-68) into account, (6-126) with hi, = ak and 4 = 60 yields 

&(k e> = T Re ai xahh’(mT-eT) + a;NL 
??a 1 (6427) 

where e = &() - B denotes the timing 
matched filter output pulse h(t), and 

error, h’(t) is the time derivative of the 

Ni = N’( ET + 2T) exp (-je) (6- 128) 

where N’(t) is the time derivative of the noise N(t) at the matched filter output. It 
follows from (6-128) and the statistical properties of N(t), determined in Section 
6.3.1, that 

qI%12] = -h”(O)(NOl~,) (6- 129) 

where h”(0) is the second derivative of h(t), taken at t = 0. The timing error 
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detector characteristic g,(e) is given by 

g,(e) = E[z,(k;i)] = Th’(-eT) (6-130) 

As h(t) is maximum for t = 0, it follows that gE(0) = 0, so that e = 0 is a stable 
equilibrium point. The resulting timing error detector slope K, at e = 0 is 

I& = -h”( O)T2 (6-131) 

The loop noise NE (Ic; ~0) at e = 0 consists of two uncorrelated terms: 

Ndk go) = N,,,(k; eo) + N&k; Ed) (6-132) 

where 
Nc,,(k; eo) = T Re[aiNL] (6-133) 

N,l,(k;~~) = T Re ai c ak-h’(mT) 1 (6-134) 
m#O 

The first term in (6-132) is caused by additive noise; the second term represents 
self-noise. 

As the data symbols are statistically independent, the power spectral density 
SE rra (exp (jwT); 0) of the additive noise contribution NE ,ra (Ic; ~0) to the loop noise 
is flat. Using (6-129), we obtain 

SE,n(exp ($0; 0)) = (-h”(0)T2) $$ 
s 

(6-135) 

Denoting by era the contribution of NE ,12 (Ic; ~0) to the timing error, it follows from 
(6-133) and (6-131) that 

var[e,] = (~BLT) No 
(-hy;))2T2 2E, 

(6- 136) 

where BL denotes the loop bandwidth. In the case of the feedforward synchronizer 
which maximizes L(E) from (6-125), ~BLT must be replaced by l/K. Note that 
(6- 136) equals the Cramer-Rao bound; this indicates that the DD-ML symbol 
synchronizer achieves optimum tracking performance as far as the contribution 
from additive noise to the timing error is concerned. However, recall that our 
analysis assumes correct decisions, i.e., & = ak; for low Es /NO, decision errors 
cause a reduction of the timing error detector slope, which yields an increase of 
the tracking error variance as compared to the Cramer-Rao bound. 

Now we concentrate on the power spectral density of the self-noise con- 
tribution N,,,(lc; eo) to the loop noise NE (Ic; ~0). This power spectral den- 
sity will be evaluated via the self-noise autocorrelation function R,,s (n) = 
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E[&,a(+%,s(~+n>]. F or complex-valued data symbols with E [ui] = 0 (this 
holds for M-PSK with M > 2 and for QAM) and using the fact that h’(t) is an 
odd function of time, we obtain 

R&O) = ; c (h’(mT)T)2 m#O 
(6-137) 

4,&J> = -f (h’(n7’)T)2 n # 0 (6-138) 

For real-valued data symbols (as with BPSK or M-PAM constellations) the self- 
noise autocorrelation function is twice as large as for complex-valued data symbols 
with E[az] = 0. Use of (6-137), (6-138), and (6-75) yields 

S,,,(exp ($0); 0) = c [1-cos (wT)](h’(mT)T)2 
na>o 

(6-139) 

It is easily verified from (6-139) that the self-noise power spectral density becomes 
zero at w  = 0, and, hence, cannot be considered as approximately flat within the 
loop bandwidth. Consequently, the tracking error variance caused by self-noise 
depends not only on the loop bandwidth, but also on the shape of the closed-loop 
transfer function. Denoting by e, the self-noise contribution to the timing error, 
we show in Section 6.3.11 that, for small synchronizer bandwidths, 

var[es] = KJF(~BLT,“$ C m(h’(mT) T)2 
L m>o 

(6- 140) 

where KL is given by (6-131), and the value of I<F depends on the type of closed- 
loop transfer function [the closed-loop impulse response (6-91) is equivalent to 
feedforward synchronization]: 

&’ = 

i 

‘1 feedforward synchonization 

) $cz/(l+ 4c2)12 

first-order feedback synchronizer (6-141) 
second-order feedback synchronizer 

Note that the tracking error variance caused by self-noise is proportional to the 
square of the loop bandwidth (replace ~BLT by l/K for feedforward synchro- 
nization). 

The total tracking error variance equals the sum of the additive noise con- 
tribution (6-136) and the self-noise contribution (6-140). Numerical performance 
results will be presented in Section 6.3.7. 

Mueller and Miiller (M&M) Symbol Synchronizer 

The Mueller and MUller (M&M) symbol synchronizer (Section 5.7) is a 
feedback synchronizer, whose timing error detector output x, (Ic; 2) is given by 

(ii;-lz(kT + U) - iiiz((k - 1)T + ZZ’)) exp (-ji)] (6-142) 
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The M&M synchronizer needs only one synchronized sample per symbol, taken 
at the estimated decision instant. 

Let us investigate the tracking performance of the M&M synchronizer. As- 
suming that tik = al, for all !Z and 6 = 00, it follows from (6-68) that 

=Re c ((&arc-pn - a;ak-I-)h(mT-eT) + (azBINk - aiNk-1) 1 (6- 143) 
n-6 

where Nk is defined by (6-103). This yields the following timing error detector 
characteristic: 

g,(e) = E[zE(k;2)] = h(T - eT) - h(-T - eT) (6-144) 

As h(t) is an even function of time, it follows that g (0) = 0, so that e = 0 is a 
stable equilibrium point. The resulting timing error detector slope at e = 0 is 

KC = 2h’(-T)T (6-145) 

The loop noise NC (k; ~0) at e = 0 is given by 

Note that N, (Ic; ~0) contains no self-noise; this is due to the fact that the matched 
filter output pulse h(t) is a Nyquist-I pulse, i.e., h(mT) = 6,. As both (ak) 
and (Nk} are sequences of statistically independent random variables, it follows 
that the loop noise N,(lc; ea) is white. The loop noise power spectral density 
SE (exp (jwT); 0) equals 

$(exp (jwT); 0) = $ 
8 

(6-147) 

The corresponding tracking error performance is given by 

var[e] = (SBLT) 
1 No 

2(h’(-T) T)2 2E, 
(6- 148) 

Numerical performance results will be presented in Section 6.3.7. 

6.3.6 Non-Decision-Aided Symbol Synchronizer 
The feedforward version of the non-decision-aided maximum-likelihood 

(NDA-ML) symbol synchronizer maximizes over E the function L(E), given 
by (Section 5.6.2) 

L(e) = c Iz(kT + ET)I~ 
k=l 
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The feedback version of the NDA symbol synchronizer uses a timing error detector, 
whose output xc (Ic; 2) is given by [eq. (6-106)] 

x,(k; 2) = T Re[z*(lcT + E”T)z’(H’+ U)] (6-150) 

where z’(t) is the derivative (with respect to time) of z(t). The timing error 
detector output xC (L; i) is proportional to the derivative, with respect to E, of 
the lath term in (6-149). The feedback NDA symbol synchronizer needs two 
synchronized samples per symbol, taken at the estimated decision instants: one at 
the matched filter output and one at the derivative matched filter output. 

In the following, we will investigate the tracking performance of the feed- 
back synchronizer; from the obtained result, the performance of the feedforward 
synchronizer can be derived. 

Taking (6-68) into account, (6-150) yields 

=T Re 
I( 

c a$+ h(mT-eT) + A$ 
)( 

c ulc-na h’(mT-eT) + Ni (6-151) 
7n m )I 

where 
Nk = N(kT + dT) exp (-joa) (6- 152) 

Ni = N’( IcT + ZT) exp (-j&) (6-153) 

and h’(t) is the derivative of h(t) with respect to time. For later use, we derive 
from (6-152) and (6-153) the following correlations: 

NO E[N*, Nk+,] = -&,n 
a 

(6-154) 

(6- 155) 

= $+‘(mT) 
a 

(6- 156) 

where h”(t) is the second derivative of h(t) with respect to time, The timing error 
detector characteristic g,(e) is given by 

g,(e) = E[x,(k; t)] = C h(mT-eT) h’(mT-eT) T 
tn 

(6-157) 

which can be shown to become sinusoidal in e with period 1 when H(w) = 0 for 
Iw] > 27r/T, i.e., a < 1 excess bandwidth. As h(t) and h’(t) are even and odd 
functions of time, respectively, it follows that g, (0) = 0, so that e = 0 is a stable 
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equilibrium point. The resulting timing error detector slope at e = 0 is 

Kc = (-h”(O) T2) - c (h’(mT) T)2 
m 

The loop noise NE (k; ~0) at e = 0 consists of three uncorrelated terms: 

Ndk Ed = %N~N@; EO) + Nc,wv(k; eo) + Nc,sxs(k; go) (6 159) 

where 

N r,~x~(k;~~) = T Re[N,” NL] (6-160) 

N ~,sxN(~;Eo) = T R e ai Ni + c akwrn h’(mT)N,* 1 (6-161) 
m 

N ~,sxs(~ EO) = T Re a; C ak-m h’(mT) 1 (6-162) 
m 

and the subscripts N x N, S x N, and S x S refer to noise x noise term, signal 
x noise term, and signal x signal term, respectively. 

The autocorrelation function R, ,N~N(IC; ~0) of the N x N contribution to the 
loop noise is given by 

R ~,N~N(O) = f (-h”(O) T)2 [$I’ (6- 163) 
s 

R,,wv(nT) = -f (h’(nT) T)2 [2] 2 (6-164) 

The corresponding loop noise power spectral density SE,NxN(exp (jwT); 0) is 

S E,NXA+XP &T); 0) 

(-h”(O) T2) -c (h’(mT) T)2 cos (muT) 1 m 

(6-165) 

Note that S,,NxN(exp (jwT); 0) is not flat. However, as &,~~~(exp (jwT); 0) 
is nonzero at w  = 0, it can be approximated by its value at w  = 0, provided that 
the loop bandwidth is so small that the variation of Sr,~x~(exp (jwT); 0) within 
the loop bandwidth can be neglected. This yields 

(-h”(O) T2) -‘x (h’(mT) T)2 
No [ 1 

2 

V+N,N] = (2&T) 
2E, 

(6- 166) 

m 

where eNxN denotes the timing error caused by the N x N contribution to the 
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loop noise. The performance of the feedforward version is obtained by replacing 
2BLT by l/K. 

The autocorrelation function RE,,sx~( Ic; eo) of the S x N contribution to the 
loop noise is given by 

R E,SXN(O) = f (-h”(O) T2) + c (h’(mT) T)2 $ 1 (6-167) 
m s 

R r,sxN(nT) = -(h’(nT) T)“$ (6-168) 
s 

The corresponding loop noise power spectral density SC ,SxN (exp (jwT); 0) is 

Ss,sxN(exp (GT); 0) 

=f $! (-h”(O) T2) + f $? ~(h’(rr~T)T)~ (l-2cos(mwT)) (6-169) 
5 s m 1 

Approximating S&N(exp (jwT); 0) by its value at w  = 0, we obtain 

var[es,N] = (~BLT) 
1 No 

(-h”(O) T2) - c (h’(mT) T)2 2E, 
m (6- 170) 

where eSxN denotes the timing error caused by the S x N contribution to the 
loop noise. The performance of the feedforward version is obtained by replacing 
2BLT by l/K. 

The self-noise term NC ,sx s (Ic; ~0) from (6- 162) is the same as the self-noise 
term NE,s (Ic; ~0) given by (6-134). Hence, denoting by esx s the timing error 
caused by the S x S contribution to the loop noise, var[esxs] is given by the 
right-hand side of (6-140), with K, given by (6-158). Notice that (6-140) has 
been derived for complex-valued data symbols with E [ui] = 0; for real-valued 
data symbols the result from (6-140) should be multiplied by 2. 

The total timing error variance equals the sum of the N x N, S x N and S x S 
contributions, given by (6-166), (6-170) and (6-140) with Kc given by (6-158). 
Numerical performance results will be presented in Section 6.3.7. 

Other NDA symbol synchronizers, such as the Gardner synchronizer and the 
digital filter and square synchronizer, are briefly discussed in Section 6.3.10. 

6.3.7 Tracking Performance Comparison 

Carrier Synchronizers 

For moderate and large E, /NO, the linearized tracking error variances (6-108) 
and (6- 122) resulting from the DD and the NDA carrier synchronizers, respectively, 
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are well approximated by 

var[+] M (ZBLT) A 
[ %+B] 

(6-171) 

The approximation involves neglecting the effect of decision errors (for the DD 
synchronizer) and of higher-order noise terms (for the NDA synchronizer). For the 
DD synchronizer, A = 1 and B = 0, in which case (6-171) equals the Cramer-Rao 
bound. For the NDA synchronizer, A and B are given by (6-123) and (6124), 
respectively. 

Figure 6-l shows the linearized tracking performance of the DD carrier 
synchronizer for QPSK, taking decision errors into account, and compares this 
result with the Cramer-Rao bound (CRB). 

Figure 6-l Linearized Tracking Performance of DD-ML 
Carrier Synchronizer for QPSK 
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Figure 6-2 DD Phase Error Detector Characteristic 
Taking Decision Errors into Account 

The difference between both curves is caused only by the additive noise 
affecting the receiver’s decisions. Figure 6-2 shows the phase error detector 
characteristic go($) for QPSK, with the effect of decision errors included. 

For small E, /No, go (4) becomes essentially sinusoidal; this agrees with the 
observations made in Section 3.2.2 of Volume 1. Also, we notice that ge(4) 
for QPSK is periodic in 4 with period 7r/2 rather than 27r. Indeed, when the 
signal constellation has a symmetry angle of 27r/M (for QPSK, we have M = 4), 
the statistics of the received signal do not change when the data symbols al, are 
replaced by al, exp (j2n/M) and the carrier phase 60 is replaced by 80 - 2n/M. 
Hence, the statistics of any phase error detector output are periodic in 4 with period 
27r/M, when for each valid data sequence {ok} the sequence {uk exp (j27r/M)} 
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also represents a valid data sequence. We observe from Figure 6-2 that the decision 
errors reduce the phase error detector slope at 4 = 0, which in turn increases the 
tracking error variance. Denoting this slope corresponding to a given E,/NIJ by 
KQ(E~/N~), Figure 6-3 shows the ratio Ke(E,/lV~)/Ke(oo). 

Let us consider the NDA carrier synchronizer for two signal constellations 
of practical interest, i.e., the M-PSK constellation and the square N2-QAM 
constellation. These constellations have symmetry angles of 2n/M and n/2, 
respectively, so the corresponding synchronizers use the Mth power (for M-PSK) 
and 4-th power (for QAM) nonlinearities, respectively. For M-PSK, (6-123) and 
(6-124) yield A = 1 and B = 0, so that (6- 17 1) reduces to the CRB. This indicates 
that, for large E, /No, the NDA synchronizer yields optimum tracking performance 
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Figure 6-3 Phase Error Detector Slope 
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Figure 6-4 Linearized Tracking Performance of NDA 
Carrier Synchronizer for M-PSK 

in the case of M-PSK constellations. Figure 6-4 shows the tracking performance 
for M-PSK, taking into account all terms from (6120), and compares it with the 
CRB. 

The degradation with respect to the CRB is caused by the terms with m 2 2 
in (6-120). It increases with increasing size of the constellation and decreasing 
Es/No. The tracking performance for N2-QAM, taking into account all terms 
from (6-120), is shown in Figure 6-5. 

The performance for 4-QAM is the same as for 4-P%, because the constel- 
lations are identical. For N2 > 4, the tracking performance is considerably worse 
than the CRB [basically because A > 1 and B > 0 in (6-171)], and worsens with 
increasing constellation size. Note that a limiting performance exists for N2 -+ 00. 

Symbol Synchronizers 

The tracking performance of symbol synchronizers depends on the shape of 
the received baseband pulse g(t). In obtaining numerical results, it will be assumed 
that g(t) is such that the pulse h(t) at the output of the matched filter is a raised 
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Figure 6-5 Linearized Tracking Performance of NDA-ML 
Carrier Synchronizer for N2-QAM 

cosine pulse, i.e., 

h(t) = 
sin (7rt/T) cos (curt/T) 

d/T 1 - 4Cr2t2/T2 
(6-172) 

where a E (0,l) represents the rolloff factor. 
For moderate and large E, /No, the timing error variance is well approximated 

bY 

var[e] ~tl (2ll~T)A(a)~ + KF(~BLT)~B(~) (6-173) 
s 

The first term in (6-173) is proportional to the synchronizer bandwidth and repre- 
sents an approximation of the contribution from additive noise; the approximation 
involves neglecting the effect of decision errors (DD-ML and M&M synchroniz- 
ers) or of the noise x noise contribution (NDA synchronizer). The second term in 
(6-173) is proportional to the square of the synchronizer bandwidth and represents 
the self-noise contribution; the quantity KF depends on the closed-loop transfer 
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Figure 6-6 Quantity A(a) for the DD-ML, M&M, and NDA Synchronizers 

function. The factors A(a) and B( ) CY incorporate the effect of the shape of the 
matched filter output pulse g(t). 

Figure 6-6 shows the quantity A(Q) for the DD-ML, the M&M and the NDA 
symbol synchronizers. 
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Figure 6-7 Quantity B(a) for the DD-ML and NDA-ML Synchronizers 

The DD-ML synchronizer yields the smallest Ala), which corresponds to the CBR. 
The M&M and NDA synchronizers behave poorly for large and small values of 
cy, respectively. The quantity B(a) is shown in Figure 6-7 for the DD-ML and 
the NDA symbol synchronizers; for the M&M synchronizer, self-noise is absent, 
i.e., B(a) = 0. 
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Figure 6-8 Tracking Error Variance for DD-ML, M&M, and NDA Synchronizers 

The NDA synchronizer yields more self-noise than the DD-ML synchronizer, 
especially for small values of a; for both synchronizers the self-noise decreases 
with increasing rolloff, due to the faster decay of the baseband pulse h(t) at the 
matched filter output. 

The approximation (6-173) of the timing error variance ignores the effect of 
decision errors and of the noise x noise contribution, so that (6-173) underestimates 
the tracking error variance at low E,/Nc. Figure 6-8 shows the tracking error 
variance when these effects are taken into account, along with the CBR; it is 
assumed that a = 0.2, 2B~2’ = 10w2, and KF = 2. 

We observe that the timing error variance of the DD-ML synchronizer exceeds 
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Figure 6-9 Normalized Timing Error Detector Slope for 
Decision-Directed Synchronizers 

the CBR [which equals the first term in (6-173) in the case of the DD-ML syn- 
chronizer], especially at low E,/No (where the effect of decision errors becomes 
important) and high E,/No (where self-noise becomes important). At moder- 
ate E, /No, the synchronizer yielding the larger value of A( cx) yields the larger 
tracking error variance; this is confirmed by Figure 6-6 which indicates that 

44 I DD-ML< A(a) IhlkM< A(a) lNDA for Q < 0.33. At high E,/No, 
it is the quantity B(cr) that determines the tracking performance; note from Figure 
6-7 that 0 = B(a) lMkM< B(cr) IDD-ML< B(cr) IN,,*, which is reflected by 
the tracking performance at high Es/No shown in Figure 6-8. In the case of the 
DD synchronizers, operation at low Es/No yields decision errors which reduce 
the timing error detector slope and increase the tracking error variance; Figure 6-9 
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shows the actual slope normalized by the asymptotic (large E,/No) slope for the 
DD-ML and M&M synchronizers at cy = 0.2. 

In the case of the NDA symbol synchronizer, the noise x noise contribution to the 
timing error variance is inversely proportional to the square of E,/No and hence 
cannot be neglected at low E,/No. 

The additive noise contribution and the self-noise contribution to the timing 
error variance are proportional to ~BLT and (2B~2’)~, respectively. Consequently, 
these contributions are affected differently when the synchronizer bandwidth is 
changed. Figure 6-10 illustrates that modifying the synchronizer bandwidth has 
a larger impact at high E,/No (where self-noise dominates) than at low Es/No 
(where additive noise dominates); these numerical results are obtained for the NDA 
synchronizer with cy = 0.2 and KF = 2. 
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Figure 6-10 Tracking Error Variance for NDA Synchronizers 
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6.3.8 Effect of Time-Varying Synchronization Parameters 
Until now, we have assumed that the estimation parameters carrier phase 

and time delay remain constant. In practice, however, the actual synchronization 
parameters vary with time, because of oscillator phase noise and frequency offsets. 
In the following, we consider the tracking of a time-varying carrier phase; the 
results are qualitatively the same in the case of tracking a time-varying time delay. 

Carrier Phase Noise 

ing 
When carrier phase noise is present, the actual 

to the lath data symbol can be modeled as 
carrier phase correspond- 

00(k) = tic + A(k) (6 174) 

where 8, is a constant phase and (A(k)} is a sequence of stationary zero-mean 
random variables representing the phase noise. 

In the case of a feedback synchronizer, we use a similar reasoning as in Section 
3.6 of Volume 1 to obtain the following expression for the carrier phase estimate: 

j(k) = c h&-m) e,(m) = 8, + xhe(k-m) A(m) (6- 175) 
m na 

where {he (m)} denotes the closed-loop impulse response. Hence, the carrier phase 
estimate is a lowpass-filtered version of the actual carrier phase; this indicates that 
the high-frequency components of the phase noise cannot be tracked. 

Now we consider the case of a feedforward carrier synchronizer. We restrict 
our attention to the NDA synchronizer; the same result also holds for the DD 
synchronizer. Neglecting additive noise and self-noise, the carrier phase estimate 
is given by 

For MA(E) << 1, linearization of the function arg (e) yields 

kc1 k=l 

(6- 176) 

(6- 177) 

This indicates that the carrier phase estimate is the arithmetical average of the K 
carrier phase values within the observation window. Note that the feedforward 
estimate (6-177) can be written in the form (6-175) of the feedback estimate, 
with the closed-loop impulse response given by (6-91). Therefore we restrict our 
attention to the feedback synchronizer. 
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Denoting the carrier phase error by 4(lc) = t9a(Ic) - 8(/c), it follows from 
(6- 175) that 

‘K/T 

var[@)l = g J II--HB(exp (S))12S~(exp (GT)) du (6-178) 

-s/T 

where Ho (exp (jw T)) is the closed-loop transfer function and SA (exp (jwT)) 
is the phase noise power spectral density. The result (6-178) is also valid for 
feedforward synchronization, provided that the Fourier transform of the impulse 
response (6-91) is inserted for He(exp ($0)). As the phase noise components 
outside the synchronizer bandwidth cannot be tracked, decreasing the synchronizer 
bandwidth increases the tracking error variance caused by phase noise. 

We conclude that feedback and feedforward synchronizers behave similarly 
in the presence of phase noise. The synchronization error variance caused by 
phase noise increases with decreasing synchronizer bandwidth. On the other 
hand, the error variance caused by additive noise and self-noise decreases with 
decreasing synchronizer bandwidth. Hence, the synchronizer bandwidth value is 
a compromise between tracking the phase noise and suppressing additive noise 
and self-noise. 

Carrier Frequency Offset 

When a carrier frequency offset is present, the received complex envelope 
TJ (t ) is given by 

q(t) = c urn !I&- n(t) mT-QT) exp (jfiot + je,‘) + A 
?7a 

(6-179) 

where s2 denotes the frequency offset in radians per second, and 0: is a constant 
phase. Applying ~-j(t) to the matched filter with impulse response g(-t) and 
sampling at the instants kT + EOT yields samples z(kT + COT), given by 

z(kT + EAT) = c uk- h(mT; Ro) exp (j%kT + j&) + N(kT + soT) 
rn 

(6-180) 
where 

+oO 

h(mT; $20) = J g(mT + u) g(u) exp (~Qou) du (6-181) 

-CO 
e c = 0; + GOT (6-182) 

For Qa = 0, (6-181) reduces to (6-70) because h(mT;O) = 6,. For S&I # 0, 
comparison of (6-180) and (6-70) indicates that a frequency offset 00 gives rise 
to the following effects: 

(i) For 00 # 0, the received signal is ill-centered with respect to the matched 
filter. This gives rise to a distorted matched filter output pulse (as com- 
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pared to the case Qe = 0), which introduces intersymbol interference [i.e., 
h(mT; 00) # 6, for 00 # 01. 

(ii) The carrier phase f?,(h) = Q&T + Be to be estimated is a linear function of 
the symbol index k. Unlike the case of carrier phase noise, { 00( Ic)) cannot 
be represented as the sum of a constant phase and a zero-mean stationary 
random sequence. 

When the frequency offset is so small that the variation of the carrier phase 
over an interval equal to the effective duration of the baseband pulse g(t) - which 
equals a few symbol intervals - is negligible, h(mT; Qo) is well approximated by 
h(mT; 0), i.e., h(mT; no) M S,. This yields 

z(lcT + EOT) z uk exp (jflOk!f + j&) + N(kT $ &oT) (6-183) 

When the frequency offset is too large, so that (6-183) is no longer valid, the 
intersymbol interference at the output of the matched filter is likely to cause an 
unacceptable degradation of the receiver performance. For such large frequency 
offsets a frequency correction must be made before the signal enters the matched 
filter. Frequency estimation will be discussed in Chapter 8. Denoting now by 
s20 the residual frequency offset after nonideal frequency correction, s20 is usually 
small enough for (6-183) to be valid. 

A similar reasoning as in Section 2.3.2 of Volume 1 indicates that a frequency 
offset gives rise to a steady-state phase offset in the case of a feedback synchronizer 
with a first-order loop; this phase offset becomes larger with increasing frequency 
offset and decreasing loop bandwidth. The occurrence of a phase offset can be 
avoided by using a second- (or higher-) order loop with perfectly integrating 
loop filter; in this case, the tracking performance of the feedback synchronizer 
is independent of the value 00 of the frequency offset. 

Now we investigate the effect of a small frequency offset on the tracking 
performance of a feedforward synchronizer. We consider the NDA-ML carrier 
synchronizer for M-PSK, which produces a carrier phase estimate given by 

(6-184) 

where Zk is a short-hand notation for z(LT + EoT), given by (6-183), and Ir’ = 
2L + 1 is the length of the observation window. Note that Be from (6-183) 
denotes the carrier phase corresponding to the data symbol aa at the center of 
the observation window, i.e., at k = 0. Using a binomial series expansion, we 
obtain 

1 L 
F c 

%y = exp (jMec) 
k=-L 

F(I(; MOOT) + + 
L 

= 1 & (6-185) 
k=-L 
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where 

F(K; x) = $ 2 exp (jkx) 1 sww2) < 1 
k=-L = I( sin (x/2) - 

(6-186) 

(6-187) 

Nk is a short-hand notation for N (IcT + ~2’) exp (-jet) and c~,~ is defined as 
in (6- 118). Linearization of the function arg (s) yields 

(6-188) 

As E[Dk] = 0, it follows from (6-188) that the carrier phase estimate resulting 
from the feedforward synchronizer is unbiased with respect to the carrier phase 
at the center of the observation window. If 4 is used as an estimate for e,(le) 
with Ic # 0, a bias equal to M&J occurs; this bias assumes its largest values of 
&(K - 1)&T/2 at the edges of the observation window. As (&} is a sequence 
of uncorrelated random variables, we obtain from (6-188) 

1 
= KlyK; MROT) 

E [IDd2] 

2w 
(6489) 

E[l&12] = F (C~,rn)~m! [g]” 

m=l 

(6490) 

It is important to note that E [ 1 Dk 12] does not depend on fi;to. Hence, a frequency 

offset 520 increases the tracking error variance by a factor 1/F2(K; MRoT), which 
equals one for QJ = 0, increases with K, StoT, and M when fle # 0, and becomes 
infinite when KMQe = 27r. 

It follows from (6-189) that the dependence of the tracking error variance on 
the observation window length K is contained in the factor K-l Fm2( K; AdRoT). 
This factor is shown in Figure 6-l 1 as a function of K for various values of Ma&Y. 

Clearly, an optimum value of K exists for 520 # 0: the useful component and 
the variance after averaging the Mth power nonlinearity output samples over the 
observation window are both decreasing with increasing I<. The optimum value 
of K which minimizes the tracking error variance for a given value of MS&$’ is 
denoted Ko, and satisfies 

(6-191) 
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K -' F -2 (K;M RT) 

Figure 6-11 Factor K -lFw2(K; M&J’) as Function of K 

Equivalently, Ii’0 is given by Kc = 2xc/(MRJ), with 

$ sin2 (xc) = mSa i sin2 (z) (6 192) 

Figure 6-12 shows a plot of the function. 

We obtain: 

X0 = 1.1655 sin2 (xc)/xg = 0.7246 (6-193) 

Hence, the optimum value I<0 for a given M&T is 

2.331 
I<;0 = - 

lWoT 
(6- 194) 

When the frequency offset fc = &/(27r) equals 0.1 percent of the symbol rate 
l/T, the optimum values Kc are 185,93, and 47 for A4 = 2,4, and 8, respectively. 
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Figure 6-12 Function sin2 (z)/x 

The minimum variance of the estimate is obtained by substituting (6-194) into 
(6-189). Taking (6-193) into account, this yields 

= sin2 (M&T/B) 1 E[lDd2] 

MS2*T 0.7246 2M2 (K = Ko) 

MStoT EIIDk t2] 

---ix 2iw 

1.61 E[IDkI"] 

= Ir’o 2ikP 
(6- 195) 

where we have made use of sin (z) e x for 1x1 < 1. Hence, the error variance 
for M-PSK in the presence of a small frequency offset 520 is proportional to &T 
and to the size M of the constellation; this variance is a factor of 1.61 (or about 2 
dB) worse than the variance corresponding to the case where the actual frequency 
offset is zero, but an observation window with K = KO has been selected, with 
I<0 related to an assumed nonzero frequency offset 00 . 



6.3 Tracking Performance of Carrier and Symbol Synchronizers 375 

The presence of a frequency offset S& sets a lower limit (6-195) on the 
achievable phase etimate variance of the NDA synchronizer, and, hence, also on 
the bit error rate (BER) degradation caused by random carrier phase errors. In 
Chapter 7 it is shown that the BER degradation (in decibels) for M-PSK, caused 
by random carrier phase errors, is well approximated by 

BER degradation 10 
dB =In(lO) ‘+ No 

2E3cos2 (;)]E[ (8^ - 8,)2] 

- me!!- %os2 (+)E[($- Oc)2] 

(6 1g6) 

- 
- ln(lO) NO 

where the approximation is valid for A4 > 2 and moderate to large Es/No. For 
moderate and large E,/No, we can ignore the terms with m > 1 in (6-190), in 
which case the minimum tracking error variance reduces to 

~~LX?~T No f-d-- 
- 1.45 2E, 

(K = A$, large Es/No) (6- 197) 

Insertion of the minimum tracking error variance (6-197) into (6-19’6) yields the 
minimum BER degradation in decibels: 

BER degradation 
dB 

10 iMS2 T cos2 7r 
= ln(lO) 1.45 O ( > M 

(6-198) 

For a minimum BER degradation of 0.1 dB, the allowable frequency offsets 
foT = RoT/(27r) are only 0.27 percent for M = 4 and 0.08 percent for M = 8; 
the corresponding optimum observation window lengths are Kc = 35 for A4 = 4 
and Ei’o = 59 for M = 8. 

A similar investigation can be made for the feedforward DD carrier synchro- 
nizer. The result is that for slo # 0, the feedforward estimate is unbiased only 
with respect to the carrier phase of the data symbol at the center of the observa- 
tion window and has a bias of MOT with respect to the carrier phase of a data 
symbol, which is E positions away from the center; this situation is identical to 
the case of the Mth power feedforward synchronizer. As compared to the case 
a0 = 0, a nonzero frequency offset s20 yields an increase of the variance by a 
factor of 1/F2(K; S&T), where F(K; X) is given by (6-186); this situation is 
different from the case of the NDA feedforward synchronizer, where the factor 
equals 1/F2(K; MOOT). As a result, the optimum length I(0 of the observation 
window equals 

2.331 
I<‘0 = m (6-199) 

0 

which is a factor of M larger than for the NDA feedforward carrier synchronizer. 
For example, when the frequency offset fo = @,/(27r) equals 0.1 percent of 
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the symbol rate l/T, the optimum value Ke equals 371, irrespective of the 
constellation. The resulting minimum variance for moderate and large E,/Nc is 

QoT No =-- 
1.45 2E, 

(K = Ko, large E,/No) 

1.61 Nn 
(6-200) 

=-- 
K. 2E, 

which is smaller than for the feedforward NDA-ML synchronizer by a factor of 
M. Using (6-200) in the formula (6-196) for the BER degradation yields 

BER degradation 
dB 

10 1 ~ T cos2 T 
=iqiii)iT5° ( 1 M 

(6-201) 

For a minimum BER degradation of 0.1 dB, the allowable frequency offsets 
foT = ReT/(27r) are 1.06 percent for A4 = 4 and 0.62 percent for M = 8; 
the corresponding optimum observation window lengths are the same as for the 
Mth power synchronizer: Kc = 35 for M = 4 and li’a = 59 for M = 8. 

We have shown that feedback and feedforward synchronizers behave quite 
differently in the presence of a nonzero frequency offset sic. When the feedback 
synchronizer has a loop filter with a perfect integrator, the tracking performance is 
not affected by the frequency offset. In the case of a feedforward synchronizer, the 
frequency offset St0 yields an increase of the tracking error variance as compared 
to i&-J = 0. The observation window size K can be optimized to yield minimum 
variance and minimum associated BER degradation. In order to obtain reasonable 
values of the BER degradation, it is required that the frequency offset is a 
small fraction of the symbol rate, i.e., in the order of 0.1 percent for the Mth 
power synchronizer and 1 percent for the decision-directed maximum-likelihood 
synchronizer. When the frequency offset exceeds these small values, the variance 
of the feedforward carrier-phase estimate is too large. A carrier-phase estimate 
with lower variance can be obtained by combining the feedforward estimates that 
result from successive observation windows. Alternatively, a sufficiently accurate 
frequency correction must be applied before the averaging over the observation 
window is performed, so that the residual frequency offset at the input of the 
averaging filter does not exceed the required small fraction of the symbol rate. 

6.3.9 Main Points 

We have investigated the tracking performance of various carrier and symbol 
synchronizers under the assumption of constant unknown synchronization param- 
eters, by linearizing the system equations about the stable operating point and 
computing the resulting synchronization error variance. As far as the tracking per- 
formance is concerned, we have shown that a feedforward synchronizer is equiva- 
lent with a feedback synchronizer having a specific closed-loop transfer function. 
When operating in the tracking mode, the considered carrier and symbol synchro- 
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nizers do not interact after linearization of the system equations, when the baseband 
pulse at the matched filter output is real and even. 

We have analyzed the DD and NDA carrier synchronizers. For both synchro- 
nizers, the phase error variance is proportional to the synchronizer bandwidth. The 
DD carrier synchronizer is free of self-noise and operates close to the Cramer-Rao 
bound. Deviations from the Cramer-Rao bound are caused by erroneous deci- 
sions on the received data symbols. The phase error variance resulting from the 
NDA carrier synchronizer consists of an additive noise contribution and a self- 
noise contribution. In the case of M-PSK, the NDA carrier synchronizer is free 
of self-noise and operates close to the Cramer-Rao bound; the degradation with 
respect to the Cramer-Rao bound is caused by higher-order noise terms at the 
output of the &fth power nonlinearity. In the case of N2-QAM with N > 2, the 
NDA carrier synchronizer yields self-noise, and the additive noise contribution is 
considerably larger than the Cramer-Rao bound; both contributions increase with 
increasing constellation size. 

. We have investigated the DD, M&M, and NDA symbol synchronizers, as- 
suming a cosine rolloff pulse at the matched filter output. The additive noise 
contribution to the timing error variance is proportional to the synchronizer 
bandwidth, whereas the self-noise contribution is proportional to the square 
of the synchronizer bandwidth. 

. The additive noise contribution for the DD symbol synchronizer is close to 
the Cramer-Rao bound, and slightly decreases with increasing rolloff; the 
degradation with respect to the Cram&-Rao bound is caused by the erroneous 
decisions on the transmitted data symbols. The self-noise contribution for the 
DD symbol synchronizer decreases with increasing rolloff. 

. The additive noise contribution for the NDA synchronizer is considerably 
larger than the Cramer-Rao bound for small rolloff, decreases with increasing 
rolloff, and reaches a value close to the Cramer-Rao bound for 100% rolloff. 
The NDA synchronizer yields a self-noise contribution which is much larger 
than for the DD synchronizer when the rolloff is small; the self-noise contri- 
bution decreases with increasing rolloff, and reaches a value close to the DD 
self-noise contribution for 100% rolloff. 

. The M&M symbol synchronizer is free of self-noise; its additive noise contri- 
bution at small rolloff is between the DD-ML and NDA noise contributions, 
and further increases with increasing rolloff. 

When the unknown synchronization parameters are no longer constant but exhibit 
a small zero-mean random fluctuation (such as caused by oscillator phase noise), 
feedback and feedforward synchronizers still behave in a similar way. The 
synchronizers cannot track the frequency components of random fluctuations that 
fall outside the synchronizer bandwidth. Therefore, the synchronizer bandwidth 
value is a compromise between the ability to track random fluctuations of the 



378 Performance Analysis of Synchronizers 

synchronization parameters (this requires a large synchronizer bandwidth) and 
the reduction of the effect of additive noise and self-noise (this requires a small 
synchronizer bandwidth). 

In the case of a small frequency offset between the oscillators at the re- 
ceiver and the transmitter, feedback and feedforward synchronizers behave quite 
differently. When the loop filter of the feedback synchronizer contains a perfect 
integrator, a frequency offset has no effect on the tracking performance. In the 
presence of a small frequency offset, a feedforward synchronizer yields an estimate 
which is unbiased only with respect to the synchronization parameter at the center 
of the observation window; the resulting estimation error variance is larger than it 
would be if no frequency offset were present. The size of the observation window 
which minimizes the error variance is inversely proportional to the frequency off- 
set. The allowable frequency offset which is a very small fraction of the symbol 
rate keeps the BER degradation within reasonable limits. 

6.3.10 Bibliographical Notes 
The linearized tracking performance of various carrier and symbol synchro- 

nizers that are motivated by the maximum-likelihood criterion has received con- 
siderable attention in the literature [ l]-[ 111. All these synchronizers operate on 
samples of the filtered received complex envelope, taken at the symbol rate or a 
small multiple thereof, which makes them suitable for a digital implementation. 

The methods is discussed in Sections 6.3.2 for analyzing feedback and feed- 
forward synchronizers have also been used in [5] and [9]. In the same papers, the 
conditions discussed in Section 6.3.2 yield carrier and symbol synchronizers, that 
do not interact in the tracking mode. 

The NDA carrier synchronizer from Section 6.3.4, which maximizes the low 
E,/No limit of the likelihood function averaged of the data symbol sequence, uses 
an Mth power nonlinearity, where 27r/M is the angle of rotational symmetry of the 
constellation. This result has been shown for BPSK (M = 2) and QPSK (M = 4) 
in [ 121, for M-PSK in [ 111, and for general rotationally symmetric constellations 
(such as QAM for which A4 = 4) in [13]. 

Some simplifications of the feedback DD carrier synchronizer from Section 
6.3.3 have been proposed in [14] for PSK and QAM constellations, and the 
resulting tracking performance has been investigated in [15]. 

The Viterbi and Viterbi (V&V) feedforward carrier synchronizer for M-PSK, 
introduced in [16], is an important generalization of the feedforward NDA carrier 
synchronizer from Section 6.3.4. The V&V carrier phase estimate is given by 

e = $ arg 5 F(lzkI) exp (jMarg (zk)) 
k=l 

(6-202) 

where F(z) is a nonlinearity which can be optimized to yield minimum phase 
error variance. For F(z) = x”, the V&V synchronizer reduces to the NDA-ML 



6.3 Tracking Performance of Carrier and Symbol Synchronizers 379 

synchronizer from Section 6.3.4. It is shown in [ 161 that the phase error variance 
for large E,/No converges to the Cramer-Rao bound, for any function F(z) with 
F( 1) # 0. Hence, the selection of the function F(z) determines the contribution 
of higher-order noise terms to the tracking error variance, and has most effect on 
the tracking performance at low and moderate E, /No. The optimum nonlinearity 
F(z) which minimizes the phase error variance has been derived in [ 181, and turns 
out to be dependent on E,/Ne. The following limits for the optimum F(Z) are 
obtained: 

XM Es/No --) 0 
F(x) = x E,/No ---) 00, no frequency offset (6-203) 

1 E, /NO -+ 00, frequency offset 

Hence, the NDA-ML carrier synchronizer from Section 6.3.4 is optimum for very 
small E,/No. From an implementation point of view, a function F(x) which 
does not depend on Es/No is to be preferred; it is shown in [ 171 that for QPSK 
with zero frequency offset, the function F(X) = x2 yields a tracking performance 
which is very close to the performance corresponding to the optimum function 
F(z), for E,/No > -3 dB. 

The feedback DD-ML symbol synchronizer from Section 6.3.5 requires the 
computation of two samples per symbol, both taken at the estimated decision 
instant: these samples are z(lcT + eT) at the matched filter output (needed for 
making the decision &) and z’(lcT + 27’) at the output of the derivative matched 
filter. From the implementation point of view, it is interesting to consider feedback 
symbol synchronizers that do not need the derivative matched filter. One such 
synchronizer is the Mueller and Mtiller (M&M) synchronizer from Section 6.3.5, 
which uses only the matched filter output samples, taken at the estimated decision 
instants. The M&M synchronizer and other decision-directed symbol synchronizers 
operating at the symbol rate have been introduced in [ 181; these synchronizers and 
some modifications thereof are also considered in Section 2.5.3 in the context 
of baseband PAM transmission. Symbol synchronizers operating at the symbol 
rate are very attractive in those applications where the filtering in front of the 
synchronizer is computationally demanding, so that the number of samples per 
symbol to be produced by this filtering should be kept to a minimum; an example 
is data transmission over the digital subscriber line, where the filtering consists 
of echo cancellation and equalization which are both adaptive. A disadvantage 
of the M&M synchronizer with respect to the DD symbol synchronizer is its 
larger additive noise contribution to the tracking error variance, especially for 
large rolloff. 

The tracking performance can be improved by using two instead of one 
matched filter output samples per symbol, i.e., the samples z(lcT + &!J at the 
estimated decision instants and z(lcT + ST + r/2) halfway between estimated de- 
cision instants. An example of a decision-directed symbol synchronizer operating 
a two matched filter output samples per symbol is the data-transition tracking loop 
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(DTTL,), whose timing error detector output is given by 

)z(kT + E^T + T/2) exp (-js)] 

which is the extension to narrowband communication of the DTTL with [c = 
l/2 from [3], originally intended for communication with rectangular baseband 
pulses. The additive noise contribution to the timing error variance resulting from 
the DTT’L synchronizer (6-204) is only slightly larger than for the DD symbol 
synchronizer, whereas the self-noise contribution is smaller [ 191. 

The feedback NDA symbol synchronizer from Section 6.3.6 also needs the 
samples Z( IcT + U) and z’( IcT + EIT). The implementation of the derivative 
matched filter can be circumvented by using the Gardner symbol synchronizer 
introduced in [20]. The Gardner symbol synchronizer needs two matched filter 
output samples per symbol (i.e., at and halfway between estimated decision 
instants), and uses the following timing error detector output 

xc(k; t?) = Re[(z*(kT + ZT) - z*(kT + T + eT))z(kT + iT + T/2)] (6 205) 

The additive noise contribution to the timing error variance resulting from the 
Gardner symbol synchronizer (6-205) is only slightly larger than for the NDA 
symbol synchronizer, whereas the self-noise contribution is smaller [19]. 

The NDA carrier synchronizer from Section 6.3.4 makes use of the timing 
estimate. Timing-independent NDA carrier synchronizers have been considered in 
[3] in the case of communication with rectangular baseband pulses, but can also 
be used with narrowband baseband pulses. The resulting synchronizers are the so- 
called Mth power synchronizers or Costas loops, and operate in continuous time. 
The feedforward version of the timing-independent NDA carrier synchronizer, 
maximizes with respect to 0 the objective function L(B), given by 

KT 

L(8) = Re 
J 

(~~(t)e-j’)~ dt 

0 1 
This yields the estimate 

6=-& arg(r(r#)“dt) 

(6-206) 

(6-207) 

The feedback version of the 
the phase error detector output ~0 

(6-208) 

The tracking performance of the timing-independent NDA carrier synchronizer for 
narrowband M-PSK has been investigated in [ 1 l] and was found to be worse than 
for the NDA synchronizer from Section 6.3.4, because its additive noise contribu- 
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tion is larger than the Cram&-Rao bound and self-noise is introduced. In a digital 
implementation, rf (t) is replaced by a sequence { t+f (MT,)} of nonsynchronized 
samples taken at a rate l/T, which is sufficiently large to avoid aliasing in the 
synchronizer bandwidth after the Mth power nonlinearity. 

The DD symbol synchronizers from Section 6.3.5 all make use of the car- 
rier phase estimate. A carrier-independent feedforward maximum-likelihood DD 
symbol synchronizer is obtained by maximizing over E the function L(E), given 
by (see eq. 5-85) 

L(&) = 5 i+(kT + &T) (6-209) 
k=l 

where ~(t> is the matched filter output signal; this maximization is to be performed 
by means of a search. This algorithm is well suited for receivers using differential 
data detection, which does not involve a carrier phase estimate at all. It has been 
shown in [ 191 that for moderate and large E, /No, the tracking performance is 
essentially the same as for the DD synchronizer from Section 6.3.5, which makes 
use of the carrier phase estimate. 

6.3.11 Appendix: Self-Noise Contribution to Timing Error Variance 
It follows from (6-77) and (6- 139) that the self-noise contribution to the 

timing error variance is given by 

vaf[el] = j$ c 4~WW) TJ2 
m>O 

where 

r/T 

A(m) = T 
s 

IH,(exp (jwT))12(1 - cos (mwT)) g 

-r/T 

(6-210) 

(6-211) 

Denoting the inverse Fourier transform of IHE(exp (jwT))j2 by &,2(m), and 
taking into account that h,,s(m) = h,,2(-m), (6-211) yields 

44 = &2(O) - &,2(4 (6-212) 

Further, h, ,2( m) can be expressed as 

&,2(774 = c h&J) b(m + n) 

n 

(6-213) 

where {h, (m)} is the closed-loop impulse response. 
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A feedforward synchronizer is equivalent with a feedback synchronizer having 
a closed-loop impulse response given by (6-91). This yields 

&,2(m) = 

{  

(K -  lmW2 b-4 L K 

o 

otherwise 

Hence, for m > 0, 

A(m) = G$!” 
{ 

m 5 K 
otherwise 

(6-214) 

(6-215) 

In most cases of practical interest, K is so large that h’(mT)T m 0 for m > 
Ii. When this holds, the summation in (6-210) is not affected when A(m) is 
approximated for all m > 0 by 

= Kf+(2B1;T)2m (6-216) 

where 2B1;T = h,,z(O) = l/K and KF = 1. 
In the case of a feedback synchronizer, the closed-loop impulse response 

{h, (m)) can be viewed as a sequence of samples, taken at a rate 1 /T, of a causal 
continuous-time function p(t), i.e., h,(m) = p( mT). Combining (6-213) and 
(6-212) then yields 

e-4 = c PwwP(nT) - P@T + mT)l 
la20 

00 

= ; J p(t) b(t) - P@ + mT)l 
(6-217) 

& 
0 

Approximating the above summation by an integral is valid when the loop band- 
width is much smaller than the symbol rate. Because of the small loop bandwidth, 
h, (m) decreases very slowly with m as compared to h’( mT)T. Hence, for those 
integers m yielding values of h’(mT) T that contribute significantly to (6-210), 
the following approximation holds: 

p(t) - p(t + mT) = -p’(t)mT t>o (6-218) 

Inserting (6-218) into (6-2 17) yields 

A(m) N -m J p(t)p’(t) t-h 

0 

= f mp2(0) 

1 
= -z m h:(O) 

(6-219) 
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As h, (0) is essentially proportional to 2B~2’, with the constant of proportionality 
depending on the specific shape of the closed-loop transfer function, A(m) can 
be expressed as 

A(m) = KF(2BLT)2m (6-220) 

where KF depends on the shape of the closed-loop transfer function. 
In the case of a narrowband first-order loop, the closed-loop transfer function 

is well approximated by 

ff&XP (WV N j-& ]uTl < II- (6-221) 

This yields 

h,(O) -N ; 2BLT N $ (6-222) 

Equating (6-219) and (6-220) yields I<F = 2. 

In the case of a narrowband second-order loop with perfectly integrating loop 
filter, the closed-loop transfer function is well approximated by 

IwTl < ?r (6-223) 

This yields 

H,(O) N 2CwnT 2BTzswT L 
4(’ n 

(6-224) 

Equating (6-2 19) and (6-220) yields 

(6-225) 
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6.4 Cycle Slipping 

6.4.1 Introduction 

When the signal constellation is invariant under a rotation of angle p, and 
random data is transmitted, the carrier synchronizer cannot distinguish between 
an angle 0 and an angle 0 + kp, with k = f 1, f2, . . . . As a result, the carrier 
synchronizer has infinitely many stable operating points, which are spaced by p. 
For M-PAM, M2-QAM, and M-PSK constellations, we have p = T, p = 7r/2 and 
P = 2r/M, respectively. 

Similarly, because the received signal is cyclostationary with period T, the 
symbol synchronizer cannot distinguish between the normalized delays t and e+kp, 
with k = fl, f2,. . . and p = 1. Hence, the symbol synchronizer has infinitely 
many stable operating points, which are spaced by p. Most of the time, the 
(carrier phase or timing) estimate exhibits small random fluctuations about a stable 
operating point: the synchronizer is in the tracking mode. Occasionally, noise 
or other disturbances push the estimate away from the current stable operating 
point, into the domain of attraction of a neighboring stable operating point. This 
phenomenon is called a cycle slip. After this, the estimate remains for a long time 
in the close vicinity of the new operating point, until the next slip occurs. This 
is illustrated in Figure 6- 13. 

Cycle slipping is a highly nonlinear phenomenon. An exact theoretical 
analysis is not possible for many cases, so that one must resort to approximations. 
Computer simulations provide an alternative to theoretical analysis; however, under 
normal operating conditions cycle slips should have a probability of occurrence 
which is at least a few orders of magnitude smaller than the decision error 
probability for perfect synchronization, which implies that computer simulations 
of cycle slips are extremely time consuming. 

6.4.2 Effect of Cycle Slips on Symbol Detection 
During a carrier phase slip, the carrier phase error takes on large values, so 

that a burst of symbol errors occurs. After the slip, the receiver’s carrier phase 
reference differs by fp from the carrier phase reference before the slip. During 
a slip of the symbol synchronizer, the timing error is very large, so that a burst 
of symbol errors occurs. After the slip, the receiver’s symbol count is wrong by 
fl symbol (repetition or deletion of a symbol). Obviously, the receiver’s carrier 
phase reference or symbol count has to be corrected. 

The occurrence and the direction of a slip can be detected by monitoring 
a known synchronization word, which is, at regular intervals, inserted into the 
symbol stream to be transmitted. After a carrier phase slip, the known symbols of 
the synchronization word are found to have the wrong phase, as compared to the 
receiver’s carrier phase reference. After a timing slip, the synchronization word 
is found at the wrong position, as compared to the receiver’s symbol count. Once 
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the slip has been detected, the receiver’s carrier phase reference or symbol count is 
corrected before the detection of the symbols following the synchronization word. 
Hence, the effect of a slip extends until the synchronization word which allows to 
detect the slip. On the average, it takes about half the number of symbols between 
synchronization words before a slip is detected and the carrier phase reference or 
symbol count corrected. Hence, each slip gives rise to a large number of decision 
errors. This implies that the cycle slip probability should be at least a few orders of 
magnitude smaller than the decision error probability for perfect synchronization, 
in order to avoid that the error performance is dominated by cycle slipping. 

The effect of a carrier phase slip on the symbol detection can be limited 
to the duration of the actual slip by using differential encoding/decoding of the 
information symbols; in this case the phase of the nth information symbol is the 
phase difference between the (n + 1)st and the nth transmitted symbol. At the 
receiver, the transmitted symbols are detected coherently, and the phase of the 
information symbols is obtained as the phase difference between consecutively 
detected symbols; hence, the incorrect carrier phase reference after a carrier phase 
slip has no effect on the reliability of the recovered information symbols. 

6.4.3 Cycle Slips in Feedback Synchronizers 
Let us denote $ as the synchronization error where II) = 4 for carrier 

synchronization, $ = e for symbol synchronization. In the case of feedback 
synchronization, the (phase or timing) error detector characteristic and the loop 
noise power spectral density are both periodic in $ with period p. In the case 
of symbol synchronization we have p = 1, whereas for carrier synchronization p 
equals the symmetry angle of the signal constellation 0, = 7r for M-PAM, p = n/2 
for M2-QAM, and p = 27r/M for M-PSK). 

Cycle slips in feedback synchronizers occur when the loop noise occasionally 
pushes the estimate away from its stable equilibrium, into the domain of attraction 
of a neighboring stable equilibrium point; the estimate remains in the vicinity of 
this new equilibrium point, until the next slip occurs. 

Fokker-Planck theory is a powerful tool for investigating cycle slips in 
feedback synchronizers. Strictly speaking, Fokker-Planck theory applies only 
to continuous-time systems, whereas nowadays interest has moved from analog 
continuous-time synchronizers to discrete-time synchronization algorithms, which 
can be implemented fully digitally. However, when the loop bandwidth of the 
discrete-time synchronizer is much smaller than the rate at which the carrier phase 
or timing estimates are updated, a continuous-time synchronizer model can be 
derived, such that the estimates resulting from the discrete-time synchronizer model 
are samples of the estimate resulting from the continuous-time model, taken at the 
update rate l/T,; in many cases of practical interest, the update rate equals the 
symbol rate. In the appendix (Section 6.4.7) it is shown that the relation between 
the discrete-time model and the equivalent continuous-time model is as shown in 
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b(k) 

Figure 6-14 Discrete-Time Synchronizer Model 

Figures 6-14 and 6-15, where the subscripts d and c refer to the discrete-time and 
the continuous-time model, respectively. The loop noise power spectral density in 
the continuous-time model equals TU times the loop noise power spectral density 
in the discrete-time model; note that in general this power spectral density is a 
periodic function of the synchronization error. The cycle slip performance of 
the discrete-time synchronizer can, at least in principle, be obtained by applying 
Fokker-Planck theory to the equivalent continuous-time model from Figure 6-15. 

Converting a specific synchronization algorithm into the discrete-time and 
continuous-time models from Figures 6-14 and 6-15 requires the evaluation of the 
(carrier phase or timing) error detector characteristic and the loop noise power 
spectral density as a function of the synchronization error. Deriving an analytical 
expression for these quantities is often a difficult task, especially in the case of 
decision-directed algorithms, where a synchronization error introduces quadrature 
interference or IS1 which affect the decision error probability. Alternatively, these 
quantities can be obtained by means of computer simulations, as outlined in Section 
2.3.7. 

Figure 6-15 Equivalent Continuous-Time Synchronizer Model 
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At moderate and high Ed /No, we expect the cycle slip probability to be 
many orders of magnitude below the decision error probability, so that cycle slips 
can be considered as insignificant. At low E, /NO, cycle slips are much more 
frequent, and might have a serious impact on the performance of the receiver; 
for this mode of operation, an accurate estimate of the normalized cycle slip rate 
is required. Fortunately, at low E,/No, simple approximations exist for both the 
error detector characteristic and the loop noise power spectral density as a function 
of the synchronization error, irrespective of the specific synchronizer algorithm: 

. At low E,/No, the error detector characteristic becomes sinusoidal in the 
synchronization error with period p. The argumentation for this is the same 
as in Volume 1, Sections 3.2.2 and 7.1. 

. At low Es/No, the loop noise power spectral density becomes independent of 
the synchronization error. This is because the loop noise in the absence of a 
useful signal at the input of the receiver depends only on the additive Gaussian 
noise, and the statistics of a phase-rotated sample of the complex envelope of 
this noise depend neither on the angle of rotation nor on the sampling instant. 
In addition, the loop noise power spectral density is essentially flat over a 
frequency interval in the order of the (small) loop bandwidth. 

Hence, as far as the cycle slip performance at low E,/Na is concerned, the carrier 
or symbol synchronizer can be approximated by a PLL with white loop noise 
and a sinusoidal error detector characteristic with period p; the synchronization 
error and the loop SNR (which is defined as the inverse of the linearized tracking 
error variance) are denoted by $ and p, respectively. Defining $’ = 27$/p and 
PI = P2P/(47+ tit can be viewed as the synchronization error resulting from a 
PLL with sinusoidal error detector characteristic having period 2a, operating at a 
loop SNR p’. Consequently, we can borrow from the vast literature on conventional 
PLLs to obtain cycle slip results at low E,/No for any synchronizer. 

Fokker-Planck theory yields closed-form analytical results for the cycle slip 
rate only in the case of first-order loops (see Volume 1, Section 11.1.6). Sophis- 
ticated, series-expansion-based numerical methods are needed to determine cycle 
slip rates for higher-order loops (see Volume 1, Chapter 12). In many applications, 
a second-order loop is used: it has a more favorable response to frequency offsets 
than a first-order loop, while avoiding the potential stability problems of third- 
order and higher-order loops. For a second-order loop with perfect integrator, the 
steady-state performance is independent of the frequency offset. As the integrator 
in the loop filter provides a noisy frequency offset estimate, the second-order loop 
yields a larger cycle slip rate than a first-order loop operating at zero frequency off- 
set. When the damping factor 5 of the second-order loop increases, the frequency 
offset estimate becomes less noisy, and the cycle slip rate decreases toward the 
cycle slip rate of a first-order loop with zero frequency offset. A quantitative 
comparison of cycle slip rates in first-order and second-order PLLs is provided in 
Volume 1, Section 6.3.3. 
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In the case of zero frequency offset, the normalized mean time between slips 
of a first-order PLL with sinusoidal error detector characteristic (with a period of 
27r) and white loop noise is given by 

(period 27r) 

where p’ is the loop SNR of the PLL, BL is the one-sided loop noise bandwidth, 
E[Tsli,] is the mean time between slips, l/E[Tstip] is the cycle slip rate, and 10(z) 
is the modified Bessel function of zero order: 

+r 
1 

&J(x) = - 
2n s 

exp (2 cos 0) ~-26 

--‘K 

For large p’, the following asymptotic approximation holds: 

2BLE[T,lip] 52 ; exp (2P’) (period 27r, p’ >> 1) 

(6-227) 

(6-228) 

It has been verified in Volume 1, Section 11.1.10, that the approximation (6-228) is 
accurate for 2BLE[T,li,] > 10, which is the range of interest for most applications. 

As mentioned before, for a low Es/No the cycle slip performance of any 
carrier or clock synchronizer is well approximated by the cycle slip performance 
of a PLL with sinusoidal phase error detector characteristic (with the appropriate 
period p) and white loop noise. In the case of a first-order loop with zero frequency 
error, the corresponding normalized mean time between slips is given by (6-226) 
or approximated by (6-227) , with p’ replaced by p2p/ ( 47r2) : 

2Br,E[T&] = $1; 

- zexp 
-2 

(period p) 

(period p, p >> 1) 

(6-229) 

This indicates that the cycle slip performance is degraded by 20 log(2?r/p) dB in 
loop SNR, as compared to the PLL with the period 27r sinusoidal characteristic. 
This is intuitively clear: when the distance p between stable equilibrium points 
decreases, cycle slips become more likely. 

Figure 6-16 shows the normalized mean time between slips as a function of 
the loop SNR p, for various values of p. In the case of symbol synchronization, 
the period p of the timing error detector characteristic equals 1, irrespective of 
the signal constellation. In the case of carrier synchronization, the phase error 
detector characteristic has a period p equal to the symmetry angle of the signal 
constellation: p = T, 7r/2, 7r/4, and ?r/8 for M-PAM, M2-QAM, CPSK, and 
16-PSK, respectively. We observe that a reduction of p by a factor of 2 yields a 
deterioration of the cycle slip performance by 6 dB in loop SNR. 
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Figure 6-16 Normalized Mean Time Between Slips 

As the mean time between slips increases exponentially with the loop SNR 
p, and p depends on the normalized loop bandwidth BLT, the mean time between 
slips is very sensitive to the normalized loop bandwidth. This is illustrated in 
Table 6-1, which shows the mean time between slips for p = ?r/2 as a function 
of BLT: a decrease of BLT by a factor of 10 increases the mean time between 
slips by many orders of magnitude. These results have been obtained under the 
assumption that the loop SNR is inversely proportional to the normalized loop 
bandwidth; this assumption is valid when the tracking error variance is dominated 
by the additive noise contribution. When the tracking error variance is dominated 
by the self-noise contribution, the loop SNR might be inversely proportional with 
the second or even a higher power of the normalized loop bandwidth, in which case 
the dependence of the mean time between slips on the normalized loop bandwidth 
is even much stronger than suggested by Table 6-l. 

6.4.4 Cycle Slips in Feedforward Synchronizers 
In the case of feedforward synchronization, the received signal, or a filtered 

version thereof, is segmented into (possibly overlapping) blocks; for each block, 

Table 6-l Dependence of Mean Time Between Slips 
on Loop Bandwidth for p = a/2 

BLT P CdBl E [&lip] /T 1 E[T,lip]@T = 1~ 

1 x 1o-3 

3 x 1o-3 

1 x 1o-2 

3 x 1o-2 

1 x 10-l 

25 1.2 x 1o-2o 

20.2 1.3 x 1o-8 

15 4.1 x 1o-3 

10.2 9.7 x 10-l 

5 9.8 x loo 

3.8 million years 

1.1 minutes 

4.1 ms 

97 ps 

9.8 ps 
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an estimate of the synchronization parameter (carrier phase or symbol timing) is 
determined as the trial value which maximizes some suitable function, such as 
the likelihood function or an approximation thereof. Estimates corresponding to 
different blocks are made independently of each other. The values of the resulting 
estimates are restricted to the basic interval (-p/2, p/2), where p = 1 for symbol 
synchronization and p equals the symmetry angle of the signal constellation in 
the case of carrier synchronization. Because of this restriction, cycle slips cannot 
occur, but on the other hand the feedforward estimates are not always able to 
“follow” the dynamics of the synchronization parameter. For example, in the case 
of 4-PSK with a small carrier frequency offset, Figure 6-17 shows the increasing 
carrier phase 0 to be estimated, along with a typical trajectory of the feedforward 
carrier phase estimate e” which is restricted to the interval (-7r/4, 7r/4) : obviously 
the estimation algorithm cannot handle a carrier frequency offset. 

The feedforward estimates resulting from the successive blocks are to be post- 
processed in order to obtain estimates that follow the dynamics of the synchro- 
nization parameter to be estimated. The task of the post-processing is to “unwrap” 
the feedforward estimates and, optionally, reduce the variance of the unwrapped 
estimates. The structure of the post-processing can range from very simple to quite 
sophisticated, involving Kalman filtering to exploit a priori knowledge about the 
statistics of the synchronization parameters to be estimated, Figure 6-17 shows 
that the estimate 8, resulting from unwrapping the feedforward estimate 8, closely 
follows the true phase trajectory 0. 

The post-processing used for unwrapping is shown in Figure 6-18. The 
output tip) equals e(k) + rnp, where the integer m is selected such that 
1 e”(h) - @(k - 1) I< p/2. Note that the post-processing introduces feedback. - 

& ’ ’ ’ ‘,I& ’ ’ ‘,I& ’ ’ VO,’ ’ ’ v** 

time index k 

Figure 6-17 Trajectories of Feedfoyard Carrier Phase Estimate 8, of 
Unwrapped Carrier Phase Estimate 8, and of True Carrier Phase 0 (4-PSK) 
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l- 8(k)/ (n/2) 
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Figure 6-19 Cycle Slipping at Post-Processor Output (4-PSK) 

Post-processing the feedforward estimates 4 creates the possibility for cycle 
slips to occur. Let us assume that the phase 0 to be estimated is a constant, 
belonging to the interval (-p/2, p/2). Most of the time, the feedforward estimates 
8 and the post-processing estimates e” exhibit small fluctuations about the correct 
phase 0. Occasionally, the noise affects the feedforward estimates in such a 
way that the post-processing structure interprets them as being estimates of an 
increasing (decreasing) carrier phase 0. As a result, the post-processing estimates e” 
increase (decrease) and leave the interval (-p/2, p/2). After this, the feedforward 
estimates 8 again fluctuate in the close vicinity of the true phase 0, but the carrier 
phase estimates e” at the output of the post-processing are now close to 0 + p (or 
close t0 8 - p): a cycle slip has occurred. This phenomenon is obvious from 
Figure 6-19, which shows a trajectory of the post-processing output, in the case of 
4-PSK with a constant carrier phase 8 = 0 and assuming the post-processing from 
Figure 6-18. The mechanism causing the cycle slips is illustrated in Figure 6-20. 

The d:crease from fi( 2) = 0 to 8( 3) gives rise to an increase from f?(2) = j(2) 
fp i(3) =!(3)+p, because 1 !(3)+p-d(2) 1 < 1 8(3)-b(2) I. The_increases from 
e(3) to q4> and 0(4)_to 0(5! = 0 give ree to in_creases from e(3) = 8(3)+p 
~0 o(4) = e(4) + p and q4) = e(4) + p to e(5) = e(5) + p = 6 + p. After this, 
8 remains at 19, whereas 8 remains at B+p. 

Quantitative results on cycle slipping in feedforward synchronizers are hard 
to obtain analytically, because of the highly nonlinear nature of the phenomenon. 
As the post-processing output s” cannot be approximated by the output of a white- 
noise-driven system with only a few (one or two) state variables, Fokker-Planck 
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Figure 6-20 Illustration of Mechanism That Causes Cycle Slipping 

results from the first-order or second-order PLL cannot be adopted. A few research 
results are commented upon in the bibliographical notes (Section 6.4.6). 

6.4.5 Main Points 
. Occasionally, noise causes the estimate resulting from a synchronizer to move 

from a stable operating point to a neighboring stable operating point; this 
phenomenon is called a cycle slip. 

. Cycle slips cause the receiver’s carrier phase reference or symbol count to 
be erroneous after the occurrence of a slip. As a result, a burst of symbol 
decision errors occurs, until the carrier phase reference or symbol count have 
been corrected. The occurrence of a slip and its direction can be derived from 
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. 

. 

monitoring a known synchronization word which has been inserted at regular 
intervals into the symbol stream to be transmitted. 
Cycle slips in feedback synchronizers occur when the loop noise pushes the 
estimate of the synchronization parameter away from a stable equilibrium 
point, into the domain of attraction of a neighboring stable equilibrium point. 
Cycle slipping can be investigated by means of Fokker-Planck theory. The 
mean time between slips increases exponentially with the loop SNR, and, as 
such, is very sensitive to the value of the loop bandwidth. The larger the 
period of the synchronizer’s error detector characteristic, the larger the mean 
time between slips, because the stable equilibrium points are further away 
from each other. 
Cycle slips in feedforward synchronizers occur because of the feedback 
introduced in the post-processing of the feedforward estimates; such post- 
processing with feedback is necessary to be able to follow the dynamics of 
the synchronization parameter to be estimated. Analytical investigation of 
cycle slipping is very complicated, because Fokker-Planck theory is not the 
appropriate tool. Only few results are available; some of them are discussed 
in the bibliographical notes (Section 6.4.6). 

6.4.6 Bibliographical Notes 
The mean time between slips has been evaluated in [l] for various feedback 

carrier and symbol synchronization algorithms operating on narrowband BPSK and 
(O)QPSK, assuming a first-order loop, and, whenever possible, taking into account 
the correct expressions for the error detector characteristic and the loop noise power 
spectral density. In [2], the cycle slipping has been investigated in a similar way 
for feedback carrier synchronizers operating on various (0)QPSK modulations. 

Cycle slips in Mth power feedforward carrier synchronizers have been inves- 
tigated in [3], in the case of M-PSK transmission and assuming the post-processing 
from Figure 6- 18. The mean time between slips was found to depend exponentially 
on the signal-to-noise ratio at the output of the averaging filter of the feedforward 
synchronizer, which implies that the bandwidth of the averaging filter has a very 
large effect on the cycle slip performance. Also, the mean time between slips de- 
creases with the number M of constellation points, The feedforward Mth power 
synchronizer exhibits more cycle slips than its feedback counterpart; in this com- 
parison, the noise bandwidth of the averaging filter of the feedforward synchronizer 
equals the loop noise bandwidth of the feedback synchronizer. 

Several structures for post-processing the feedforward estimates can be envis- 
aged, but only one of them has been considered in Section 6.4.4. Other structures 
can be found in Section 6.5.4; these structures perform not only the unwrapping 
of the feedforward estimates, but also reduce the variance of the unwrapped esti- 
mates. The minimum variance is obtained by applying Kalman filtering, in which 
case the post-processing becomes time-varying. The cycle slipping for first-order 
post-processing has been investigated in [4]. 
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6.4.7 Appendix: Approximating a Discrete-Time 
System by a Continuous-Time System 

Let us consider a discrete-time system with an N x 1 state vector xd( k), 
satisfying the following state equation: 

xd(k + 1) = xd(k) i- G(xd(k)) i- Bnd(@ (6-230) 

where G(s) is an N x 1 vector function, rid(k) is an M x 1 noise vector, and B 
is an N x M matrix; a block diagram of this system is shown in Figure 6-21. 
The system bandwidth is assumed to be very small with respect to the update rate 
l/T!, so that the state vector. changes very little from xd(k) to xd(k+ 1). The 
bandwidth of rid(k) is assumed to be much larger than the bandwidth of xd(k); 
consequently, rid(k) can be considered as a discrete-time process whose power 
spectral density matrix is essentially constant over frequency. This power spectral 
density matrix is given by 

c&(m) ew (-.bT!) z c h(m) (6-231) 
??I m 

where Rd(m) is the M x M autocorrelation matrix of xd(k). Now we show that 
xd( k) can be approximated by the sample, at instant kT, , of the state vector Xd( k) 
of a continuous-time system, which satisfies 

d 
~“4) = $[G(x,(t)) + BQ)] (6-232) 

U 

A block diagram of this system is shown in Figure 6-22. The noise n,(t) has 
a bandwidth which is much larger than the system bandwidth; consequently, its 
power spectral density matrix can be considered as constant over frequency. This 
power spectral density matrix is given by 

+oO +=J 

J 
R,(u) exp (+u) du z 

s 
Rc(u)du 

--oo --oo 

(6-233) 

where R,(u) is the M x M autocorrelation matrix of n,.(t). The power spectral 
density matrix of n,(t) is selected to be T, times the power spectral density 
matrix of r&j(k). From (6-232) it follows that 

kT, +!I’, kTu i-T,, 

xc(kTu+Tu) = xc(kTu) + $ 
J 

G(xc(t)) dt + f 1 Bn,(t) dt (6-234) 

u kT, 
U 

kTu 

As the bandwidth of the discrete-time system from Figure 6-21 is very small with 
respect to the update rate l/T,, the same holds for the continuous-time system 
from Figure 6-22. Hence, the following approximation is valid: 

kT,+T, 
1 

E J 
G (xc(Q) dt = G(xc(kTu)) (6-235) 

kTu 
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Figure 6-21 Discrete-Time Feedback System 

n,(t) 

Figure 6-22 Equivalent Continuous-Time Feedback System 
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Substitution of (6-235) into (6-234) indicates that xd(k) and xe( kT,) exhibit the 
same dynamics. Now let us investigate the M x 1 noise vector N(k), defined by 

kTu+Tu 

N(k) = $- 1 n,(t) dt 
U 

kTu 

(6-236) 

As n,(t) can be viewed as a nearly white process with a power spectral density 
matrix given by (6-233), it follows that N(k) and N(k + m) are essentially 
uncorrelated for m # 0. Hence, the power spectral density matrix of N(k) can be 
considered as constant over frequency, and is given by 

(6-237) 

which, by construction, equals the power spectral density matrix (6-231) of rid(t). 
The conclusion is that the narrowband discrete-time system from Figure 6-21 can be 
replaced by the narrowband continuous-time system from Figure 6-22, by simply 
performing the following operations: 

(i) Replace the discrete-time integrator, with transfer function l/(z - 1) in the 
z-domain, by a continuous-time integrator, with transfer function l/(sT,) in 
the Laplace domain. Formally, this corresponds to substituting the operator 
z by the operator 1 + ST,. 

(ii) Replace the discrete-time noise by continuous-time noise, with the latter 
having a power spectral density matrix equal to Tu times the power spectral 
density matrix of the former. 
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6.5 Acquisition of Carrier Phase and Symbol Timing 

6.51 Introduction 
At the start of signal reception, the synchronizer has no knowledge about 

the synchronization parameter values. After some processing of the received 
signal, the synchronizer is able to deliver accurate estimates of the synchronization 
parameters that are needed for reliable data detection. This transition from a large 
initial uncertainty about the synchronization parameters to a small steady-state 
estimation error variance is called acquisition. 

We will assume that the frequency offset between transmitter and receiver 
is small, so that only the slowly time-varying carrier phase and symbol timing 
have to be acquired. In the case of a large frequency offset, this implies that a 
separate frequency estimation algorithm has acquired the carrier frequency, and 
that frequency correction has been applied to the signal entering the carrier phase 
and symbol synchronizers. 

‘Iwo distinct modes of operation will be considered, i.e., the continuous mode 
and the burst mode. In the continuous mode, data are sent continuously from the 
transmitter to the receiver. The burst mode is typical of time-division multiple 
access (TDMA), where several users share the capacity of the communication 
channel by transmitting bursts of data in nonoverlapping time intervals. A further 
distinction will be made between short burst operation and long burst operation. In 
the case of short burst communication, the number of data symbols per burst is so 
small, that the carrier phase and symbol timing can be considered as constant over 
the entire burst; in the case of long burst communication, the fluctuation of the 
synchronization parameters over the burst cannot be ignored. For a synchronizer 
operating in short burst mode, it is sufficient to produce a single carrier phase and 
timing estimate per burst, and use these parameters for detecting all data symbols 
within the burst. A synchronizer operating in long burst mode has to make multiple 
carrier phase and symbol timing estimates per burst, in order to track the variations 
of the synchronization parameters; in this respect, operation in long burst mode is 
similar to operation in continuous mode. 

During acquisition, the estimates produced by the synchronizer are not accu- 
rate enough to perform reliable data detection, so that information symbols trans- 
mitted during acquisition are lost, Therefore, the transmitter sends a preamble of 
training symbols which precedes the actual information symbols; at the end of the 
preamble, the acquisition should be completed so that reliable data detection can 
start. The content of the preamble affects the acquisition performance; for the 
acquisition of timing, it is advisable that the preamble contains many data symbol 
transitions, so that a lot of timing information is available in the received signal 
during the preamble. Preamble symbols consume bandwidth and power that are 
not used to convey digital information. In order to keep a high efficiency, the ratio 
of the number of preamble symbols to the total number of transmitted symbols 
should be small. 
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In burst mode communication, the synchronization parameters (especially the 
carrier phase) can change considerably between bursts from the same user, so that 
these parameters must be acquired again for each burst. In the case of long burst 
communication, the power and bandwidth efficiency are only marginally affected 
when each transmitted burst contains a preamble whose duration is sufficiently 
long (say, in the order of a hundred symbols) for most synchronizers to acquire 
the synchronization parameters. In the case of short burst communication, the 
information sequence per burst might be only about a hundred symbols long, so 
that for a high efficiency there should be only a very short preamble or preferably 
no preamble at all. Therefore, the acquisition time requirements on synchronizers 
for short burst operation are very stringent. 

In some TDMA applications via satellite, symbol timing is derived from 
a master clock which is distributed to all users; the users adjust their burst 
transmission instants such that they receive their own bursts in synchronism with 
the received master clock. For these applications, the correct symbol timing is 
available at the beginning of each burst, so that only the carrier phase must be 
acquired. 

6.5.2 Feedback Synchronizers 

Feedback synchronizers make use of (phase and timing) error detectors, which 
provide a noisy indication about the sign and magnitude of the instantaneous error 
between the actual synchronization parameter values and their estimates. From the 
error detector output signals, a (small) correction term is derived, and is applied 
to the synchronization parameter estimates so that the magnitude of the estimation 
error is reduced. At the start of signal reception, the estimation error magnitude 
might be large; during acquisition this magnitude gradually decreases because of 
the feedback. Acquisition is completed when the estimation error is close to a 
stable equilibrium point. 

Coupling between Feedback Carrier and Symbol Synchronizers 

Several feedback carrier synchronizers make use of a timing estimate, and 
several feedback symbol synchronizers make use of a carrier phase estimate; this 
is certainly the case for decision-directed synchronizers [because both the carrier 
phase and the symbol timing are needed for (coherent) detection], but also for some 
non-data-aided synchronizers. Consequently, in general the dynamics of carrier and 
symbol synchronizers are coupled. Although for most synchronizers this coupling 
is negligible in the tracking mode because linearization of the system equations 
about the stable equilibrium point yields uncoupled dynamics, the coupling can no 
longer be ignored during acquisition, where estimation errors might be so large 
that linearization does no longer apply. Usually, the effect of a timing error on 
the average phase error detector output and of a phase error on the average timing 
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error detector output is to reduce the magnitude of the error detector output. This 
means that the coupling reduces the restoring force which drives the estimates 
toward a stable equilibrium point, so that acquisition is slowed down. Acquisition 
performance is hard to predict, because the analysis of coupled nonlinear dynamical 
systems that are affected by noise is very difficult; acquisition performance can be 
studied by means of computer simulations, but many simulations would be needed 
to study the effect of the initial condition, as the coupling increases the dimension 
of the state space. 

The coupling between the dynamics of the carrier and symbol synchronizer 
can be avoided by using a carrier synchronizer which operates independently of the 
timing estimate [a candidate algorithm is the discrete-time version of (6-209)] and 
a symbol synchronizer which does not use the carrier phase estimate [candidate 
algorithms are the NDA algorithm (6-150) and the Gardner algorithm (6-205)]. In 
this case, both synchronizers simultaneously operate on the received signal, and 
the carrier phase and symbol timing are acquired independently, The time needed 
to acquire both the carrier phase and the symbol timing is the maximum of the 
acquisition times for the individual synchronization parameters. 

The situation is still favorable when only one of the synchronizers operates 
completely independently of the other. Let us consider the case where the symbol 
synchronizer does not use the carrier phase estimate, but the carrier synchronizer 
needs a timing estimate (this is the case for most carrier synchronizers). The 
acquisition of the symbol timing is not affected by the carrier synchronizer. During 
the symbol timing acquisition, the carrier phase acquisition process is hardly 
predictable, because it is influenced by the instantaneous value of the symbol timing 
estimate. However, when the symbol timing acquisition is almost completed, the 
carrier synchronizer uses a timing estimate which is close to the correct timing; 
from then on, the carrier phase acquisition is nearly the same as for correct timing, 
and is essentially independent of the symbol synchronizer operation. The time 
needed to acquire both the carrier phase and the symbol timing is approximated by 
the sum of the acquisition time for the symbol timing (independent of the carrier 
phase) and the acquisition time for the carrier phase (assuming correct timing). 

When the receiver knows in advance the training symbols contained in the 
preamble, this knowledge can be exploited during acquisition by means of a data- 
aided (DA) instead of a decision-directed (DD) synchronization algorithm. The DA 
algorithm uses the correct training symbols instead of the receiver’s decisions about 
the training symbols (which might be unreliable during acquisition, especially for 
large initial synchronization errors); the magnitude of the average error detector 
output is larger for the DA algorithm than for the DD algorithm, so that acquisition 
is enhanced. On the other hand, a coupling is introduced when both the carrier 
and the symbol synchronizer use DA algorithms, because most feedback DA 
carrier synchronizers (symbol synchronizers) need a timing estimate (a carrier 
phase estimate). 
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From the above, we conclude that when at least one synchronizer operates 
independently of the other, the approximate time to acquire both the carrier phase 
and the symbol timing can be expressed in terms of the acquisition times of the 
individual synchronizers, assuming no coupling. 

Acquisition Performance of Feedback Synchronizers 

In the following, we consider the acquisition of the carrier synchronizer, 
assuming perfect timing; a similar reasoning applies to a symbol synchronizer, 
assuming perfect carrier phase estimation. 

The acquisition performance of a conventional PLL with sinusoidal phase 
error detector characteristic has been investigated in Chapters 4 and 5 of Volume 1. 
Similar conclusions can be drawn for synchronizers with arbitrary (phase or timing) 
error detector characteristics, when there is no coupling between carrier phase 
estimation and symbol timing estimation. We restrict our attention to feedback 
carrier synchronizers having a sinusoidal phase error detector characteristic with 
period 27r/M. This includes the DD synchronizer operating at low Es/No and the 
NDA synchronizer, with 27r/M denoting the symmetry angle of the constellation; 
when the DD synchronizer uses known preamble symbols instead of the receiver’s 
decisions (i.e., DA instead of DD operation), the phase error detector characteristic 
is sinusoidal with period 27r, irrespective of the symmetry angle of the constellation 
and the value of Es/No. The loop SNR is denoted by p, and defined as 
P = l/var[$], where var[$] is the linearized steady-state phase error variance. 
The acquisition performance for a sinusoidal characteristic with period 27r/M (in 
the absence of noise) is briefly summarized below. 

A first-order loop can acquire the carrier phase without slipping cycles when 
the magnitude of the carrier frequency offset fc does not exceed the pull-in 
frequency AU p ; when ] Aw ] > ] Aw, 1, the loop slips cycles continuously without 
ever achieving lock. The 
loop bY 

pull-in frequency J’.‘. is related to the parameters of the 

Ai@- = y (6-238) 

where BLT denotes the loop bandwidth normalized to the symbol rate l/T. The 
pull-in frequency is proportional to the loop bandwidth, and inversely proportional 
to M. When I Aw I< lAwpI, a nonzero frequency offset gives rise to a steady-state 
phase error $s, given by r$s = (arcsin (F/F’))/M. If this steady-state error is 
too large, a second-order loop with a perfectly integrating loop filter could be used; 
this yields zero steady-state error, at 
time for the same loop bandwidth. 

the expense of a somewhat longer acquisition 

The acquisition time in a first-order loop depends critically on the initial phase 
error. When the initial phase error is close to an unstable equilibrium point, the 
average restoring force is very small, and the phase error remains in the vicinity 
of the unstable equilibrium point for an extended period of time; this phenomenon 
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is called hangup. Assuming a uniformly distributed initial phase error, the average 
acquisition time Tacq in the absence of noise is well approximated by 

However, when hangup occurs, the acquisition time is considerably larger than this 
average time. The probability that acquisition has not been achieved within a time 
equal to five times (ten times) the average acquisition time TaCq is about 10m4 
(about 10m8). The presence of noise slightly increases the average acquisition 
time. Hangup can be avoided and the average acquisition time reduced by means 
of the acquisition aid described in Section 5.1 of Volume 1. 

When the carrier synchronizer must handle a carrier frequency offset which is 
larger than Awp from (6-238), a higher-order loop must be used; in the following 
we restrict our attention to the second-order loop with perfectly integrating loop 
filter, for which the pull-in frequency is infinitely large. When the frequency offset 
at the input of the second-order loop is much larger than the loop bandwidth, 
unaided frequency acquisition (pull-in) is a slow process which is susceptible to 
noise; this yields excessively long acquisition times. In the absence of noise, the 
acquisition time Tats for 1 F I>> BL is well approximated by 

acq= rZ(4C2+l)3 1 T 
T [ 1 AwT 2M2 Pm 

256C4 BLT 27r BLT 
(6-240) 

where C denotes the damping factor of the loop; for Aw/27r = 10B~, C = 1, and 
M = 4, (6-240) yields an acquisition time which is 15421 times as large as Tats 
from (6-239). Acquisition performance can be improved by using acquisition aids, 
such as sweeping or a separate frequency error detector (see Section 5.2 of Volume 
1). In the case of sweeping, the loop SNR determines the maximum sweep rate. 
When p > 10M2, the maximum rate .of change of the locally generated carrier 
frequency corresponds to 

T2 d28^ 64c2 
dt2 = Oe4 (1 + 4~2)~ (BLT,'; 

The resulting acquisition time Tats is approximated by 

(6-241) 

- = 5* (1 + 4c2J2 T acq 1 
T 

I AwPdT M 
64c2 BLT BLT 

(6-242) 

For Aw = 10B~, C = 1, and A4 = 4, (6-242) yields an acquisition time which 
is about 31 times smaller than Tacq for unaided acquisition [see (6-240)], but still 
about 490 times larger than Tacq for a first-order loop with 1 Aw I< Awp [see 
(6-239)]. 

In the case of symbol synchronization, the clock frequency is usually known 
quite accurately, so that a first-order loop can be used. Let us assume a sinusoidal 
timing error detector characteristic; this includes all quadratic symbol synchronizer 
algorithms (such as the NDA algorithm and Gardner’s algorithm) operating on a 
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useful signal whose lowpass bandwidth does not exceed l/T. Then the pull-in 
frequency AL+, is given by (6-238) with M = 1. As for carrier synchronization, 
the average acquisition time is approximated by (6-239); hangup occurs when the 
initial timing estimate is close to an unstable equilibrium point. The principle of 
the acquisition aid from Section 5.1 of Volume 1 can also be applied to symbol 
synchronizers. 

From the above considerations and the results from Chapters 4 and 5 of 
Volume 1, it is concluded that the acquisition time is in the order of the inverse of 
the loop bandwidth (say, in the order of a hundred symbols) when the frequency 
offset is small, but might be considerably longer when the frequency offset is much 
larger than the loop bandwidth. Because of the long training sequence required, 
feedback synchronizers are suitable for acquiring the carrier phase and the symbol 
timing only when operating in continuous mode and long burst mode, but not in 
short burst mode. 

Lock Detectors 

During tracking, feedback synchronizers might use different system parame- 
ters (or even a different algorithm) than during acquisition. Therefore, a reliable 
indication is needed about whether or not the synchronizer is in lock: when the 
synchronizer gets locked, it enters the tracking mode, whereas it reenters the ac- 
quisition mode when lock is lost. A few examples of different parameters or 
algorithms during acquisition and tracking are given below: 

. During acquisition, a larger synchronizer bandwidth is used in order to obtain 
fast acquisition. During tracking, the bandwidth is reduced in order to 
suppress the loop noise. 

. Some acquisition aids (such as sweeping) must be switched off during track- 
ing, in order to avoid a steady-state estimation error (see Section 5.2.1 of 
Volume 1). 

. During acquisition, non-decision-aided algorithms are selected for carrier and 
symbol synchronization, in order to avoid strong coupling between both 
synchronizers. During tracking, decision-directed algorithms yielding smaller 
tracking error variance are used. 

An unambiguous lock indication cannot be derived just from the phase or 
timing error detector output. Indeed, although an in-lock condition corresponds to a 
small average detector output, during pull-in or hangup the average detector output 
is small as well. Therefore, an additional circuit, called lock detector, is needed 
for an unambiguous indication. In the following, we give a few examples of lock 
detectors for carrier and symbol synchronizers. We denote by YO( Ic; 6) and yc (Ic; E) 
the lock detector outputs for the carrier and symbol synchronizers, respectively, 
with k indicating the symbol count. A reliable lock indication is obtained by 
lowpass filtering the lock detector outputs. The useful component at the lowpass 
filter output equals E[ye (k; O)] f or carrier synchronization or E[y, (k; i)] for symbol 
synchronization, where E[ .] denotes statistical expectation with respect to noise 
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and data symbols. The variance at the output of the lowpass filter is essentially 
proportional to the filter bandwidth; however, for a small filter bandwidth it takes a 
long transient before the filter output is in the steady state, which in turn increases 
the acquisition time. 

Carrier synchronization: 

1. 

ye (k;fi) = R+;Q exp (-js^)] 

qYs(q] cx cow 
2. 

ys(k;8) = Re[z~exp (+A&?)] 

E[Y+;q] rx cos(M4) 

(6-243) 

(6-244) 

(6-245) 

(6-246) 

Symbol synchronization: 

1. 

yc (k S) = Re[z* (IcT+T/4+sT)%‘(lcT+T/4+E^T)1 

E[y, (k; i)] oc cos (2ne) 

(6-247) 

(6-248) 

y&i) = Re[{z*(M’+T/4+tT) - z*(kT+5?74+i~)) 

x {z(W+3T/4+eT)}] 
(6-249) 

E[yE (k; i)] oc cos (27re) (6-250) 

3. 

y&c; e) = Iz(kT+ay2 (6-25 1) 

E[YC(~; i)] = A + B cos (be) AH, B>o (6-252) 

In the above, 4 and e denote the phase error and the timing error, z(t) is 
the matched filter output signal, and Q is a short-hand notation for z(KZ’ + ZT). 
The results (6-244) and (6-246) for carrier synchronization assume perfect timing; 
in addition, (6-244) assumes that either known preamble signals are used (DA 
operation) or the receiver’s decisions about the data symbols are correct (DD 
operation). The results (6-248), (6-250), and (6-252) for symbol synchronization 
assume narrowband communication, i.e., the equivalent lowpass bandwidth of the 
transmitted signal does not exceed l/T. 
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In the above examples, the average of the lock detector output signals is 
maximum for zero synchronization error, i.e., when the synchronizer is in lock. A 
binary in-lock/out-of-lock indication is obtained by comparing the lowpass filter 
output signal with an appropriate threshold. 

6.5.3 Feedforward Synchronizers for Short Burst Operation 

In this section we consider the case of time division multiple access (TDMA) 
with short bursts of data. Because of the short bursts, it is sufficient to make for 
each burst a single estimate of the carrier phase and the symbol timing. The time 
between bursts from a given user is much longer than the duration of a burst; this 
means that the receiver has a lot of time available for processing a burst, before 
the next burst from the same user arrives. It will be assumed that the short TDMA 
bursts do not contain training symbols, in order not to waste bandwidth and power. 
Because of their long acquisition time, feedback algorithms are not suited for short 
burst operation. Hence, we restrict our attention to feedforward algorithms. 

When operating in short burst mode, feedforward synchronizers yield for each 
individual burst a single estimate of the synchronization parameters, by processing 
each burst independently of the bursts already received. As the synchronizer has 
no memory from burst to burst, the mean-square synchronization error is the same 
for all bursts. Consequently, there is no transient, so that acquisition is said to 
be “immediate.” 

The feedforward carrier phase and symbol timing estimates are obtained 
by maximizing a suitable objective function over the trial values of the carrier 
phase and time delay. When the maximization over at least one synchronization 
parameter can be carried out independently of the other synchronization parameter, 
the joint maximization reduces to two one-dimensional maximizations, instead 
of a computationally more demanding two-dimensional search. The smallest 
computational load is obtained when these one-dimensional maximizations can be 
carried out by means of direct computation instead of a search. A few examples of 
combining various feedforward carrier and symbol synchronizers are given below. 

Using NDA feedforward algorithms for both carrier and symbol synchroniza- 
tion, the receiver could operate as follows: 

. 

. 

The received burst is processed a first time to derive the symbol timing by 
means of an NDA algorithm which does not use a carrier phase estimate. 
Candidate algorithms are the NDA algorithm maximizing the objective func- 
tion (5-48) by means of a search, and the digital filter and square algorithm 
yielding the symbol timing estimate (S-56) by means of direct computation. 
The received burst is processed a second time to derive a carrier phase estimate 
by means of an NDA algorithm which makes use of the timing estimate 
obtained in the previous step. Candidate algorithms are the NDA and V&V 
algorithms, which yield a carrier phase estimate by directly computing (5-155) 
or (S-157), respectively. 
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. The received burst is processed a third time to make the symbol decisions 
(coherent detection), using the carrier phase and symbol timing estimates 
obtained in the previous steps. 

The last two steps in the above algorithm can be replaced by a single step, 
using the feedforward DD carrier synchronizer (which for most Ed/No values of 
practical interest yields a smaller tracking error variance than the NDA and V&V 
carrier synchronizers). The carrier phase estimate and the data symbol decisions 
are obtained by maximizing the function L(B), given by 

L(8) = 2 Re[a;(e)zl,e+ ] 
k=l 

(6-253) 

where %k is the matched filter output sample taken at the estimated decision instant 
kT + tT resulting from the first step of the algorithm, and tik (6) is the receiver’s 
decision of the kth data symbol ok, corresponding to the trial value 8 of the 
carrier phase estimate. The maximization of L(B) is to be performed by means 
of a search. The final data symbol decisions are obtained as a by-product of the 
maximization of L( 19) : they are given by IA (^>>~ ak 6 where 6 is the carrier phase 

estimate maximizing L(e). 
For most Es/No values of practical interest, the timing error variance resulting 

from the above feedforward NDA symbol synchronization algorithms can be 
reduced by using feedforward DD symbol synchronization. For feedforward DD 
joint carrier and symbol synchronization, the objective function to be maximized 
over the trial values t9 and E is 

L(O, E) = 5 Re[ii;(B, +(kT+ET)e+] 
k=l 

(6-254) 

where z(t) is the matched filter output signal, and &(ti, E) is the receiver’s 
decision of the kth data symbol al,, corresponding to the trial values 8 and E. The 
maximization of L(B, e) is to be performed by means of a two-dimensional search. 
The final data symbol decisions are obtained as a by-product of the maximization 
of L(e,E); they are given by {tik(@)}, where 8 and 2 are the synchronization 
parameter estimates maximizing the objective function L(B, e). 

It is possible to avoid a two-dimensional search and still use DD algorithms 
for both carrier synchronization and symbol synchronization by introducing inter- 
mediate decisions obtained from differential detection, The receiver could operate 
as follows: 

l The received burst is processed a first time to derive the symbol timing by 
means of a DD algorithm which does not use a carrier phase estimate. A 
candidate algorithm is the one which maximizes Ip( of Section 5.5. This 
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objective function is given by: 

(6-255) 

where C!&(E) denotes the receiver’s decision about the symbol ak, obtained 
from differential detection (which does not involve a carrier phase estimate) 
and corresponding to the trial value E of the timing. The maximization of 
L(e) is to be performed by means of a search. 
The carrier phase is obtained using 

K-l 

8 = argp(i) = arg C &zzk(E^) (6-256) 
k=O 

which uses the symbol timing and the receiver’s decisions obtained in the 
previous step. 
The received burst is processed a third time in order to make more reliable 
symbol decisions. These decisions are obtained by performing coherent 
detection, using the carrier phase and symbol timing estimates from the 
previous steps. 

The feedforward estimates involving a search can be obtained by discrediting 
the synchronization parameter(s) over which the search is to be performed into a 
finite number of values, evaluating the objective function for all discrete parame- 
ter values, and selecting that value of the carrier phase and/or the symbol timing 
estimate yielding the largest value of the objective function; the discretization step 
imposes a lower limit on the achievable synchronization error variance. Alterna- 
tively, the maximization of the objective function could be carried out by applying 
standard numerical methods, which iteratively look for the synchronization param- 
eter(s) which maximize the objective function. As an example of such an iterative 
method, we consider the maximization of the objective function L(0), given by 
(6-253). Starting from an initial carrier phase estimate 8(O), the estimate 8(i + 1) 
after the ith iteration is given by 

e^(i + 1) = 8(i) + CXZ al-g [&(i$))~k..p (-j@))] 
k=l 

(6-257) 

a!2 : convergence parameter 

It should be noted that an unfortunate choice of the initial estimate e^(O) may give 
rise to unreliable decisions 6; In this case the second term of (6-257) 

has a small deterministic component but a large noise component, so that many 
iterations are needed before satisfactory convergence is obtained: a phenomenon 
similar to hangup in feedback synchronizers occurs. 
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6.54 Feedforward Synchronizers for Long Burst 
Operation and Continuous Operation 

When the TDMA bursts are so long that the synchronization parameters cannot 
be considered as essentially constant over the burst duration, the receiver needs 
several estimates per burst so that the variation of the synchronization parameters 
over the burst can be tracked. The situation is similar in the case of continuous 
operation: here, too, successive estimates are needed to track the fluctuation of the 
synchronization parameters with time. 

Feedforward synchronization for long burst operation and continuous opera- 
tion involves dividing the received signal into (possibly overlapping) blocks, that 
are short enough to consider the synchronization parameters as constant over a 
block. Then a single carrier and symbol timing estimate is made for each block, 
using the same feedforward algorithms as for short TDMA bursts. This means that 
the estimates corresponding to a given block do not take into account the values 
of the estimates corresponding to previous blocks. However, as the resulting feed- 
forward estimates are restricted to a basic interval (181 < n/M for constellations 
with a symmetry angle of 27r/M, and le 1 < l/2), they cannot follow all variations 
of the actual synchronization parameters; for example, a linearly increasing carrier 
phase, corresponding to a small carrier frequency offset, cannot be tracked. In 
fact, the feedforward estimates can be considered as estimates of the synchroniza- 
tion parameters (reduced modulo the basic interval). This problem is solved by 
unwrapping the feedforward estimates, yielding final estimates that can assume 
values outside the basic interval. 

The unwrapping can be accomplished in the following way. Suppose we are 
presented a sequence a(i) 

{ > 
of feedforward carrier phase estimates which are 

restricted to the basic interval [-r/M, n/M); the argument i refers to the block 

count. The unwrapped estimates 1 ) 
e(i) to be derived from 

following equation: 

e”(i) = a(i) + N(i)$ (6-258) 

where N(i) is an integer, to be determined from the following restriction that we 
impose on the unwrapped estimates 

1 1 
B”(i) : 

IS(i + 1) - B(i)1 < n/M (6-259) 

This restriction is motivated by the fact that we expect the differences between 
carrier phases in adjacent blocks to be small. This yields the following solution: 

B”(i + 1) = e”(i) + SAW& + 1) - 8(i)) (6-260) 

where SAW(X) is the sawtooth function with period 2n/M, displayed in Figure 
6-23. The unwrapping is performed by means of the post-processing structure 
shown in Figure 6-24, which operates on the feedforward carrier phase estimates 
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t SAW(x) 

Figure 6-23 Sawtooth Function SAW(x) 

In the case of symbol synchronization, a similar reasoning 
have to substitute 2a/M and n/M by I and l/Z, respectively. 

applies; we only 

It is obvious from Figure 6-24 that the post-processing introduces feedback. 
Because of the nonlinearity SAW(.), a countably infinite number of stable and 
unstable equilibrium points exists. Therefore, we have to investigate the acquisition 
behavior and the possibil$y of hangup. Let us consider the case where g(i) = 
e(i) = &, for i < 0, and e(i) = 8a for i 2 0, with both 0, and &, in the interval 
[-r/M, r/M). Then it follows from (6-260) that 8(i) = 8, for i 1 0, with 0, 
given by 

eb --7+kf 5 eb - 8, < ?rlikf 
e c= eb i- 251rjM eb - e, < -;lr/M (6-26 1) 

eb - hlikf eb - 8, 2 TIM 

;i(i+l) 
* SAW( -) 

8(i+l) 
b 

Figure 6-24 Unwrapping Post-Processing Structure 
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Figure 6-25 First-Order Filtering in Post Processing 

This means that at i = 0 the post-processor output e(i) instantaneously jumps 
from its initial value 19~ to its final value 19~; there is no acquisition transient, and 
hangup does not occur. 

The post-processing structure from Figure 6-24 unwraps the feedforward 
carrier phase estimates by adding a suitable multiple of 2w/M, but does not further 
reduce the variance of the feedforward estimates. This variance can be reduced by 
providing additional filtering in the post-processing. Let us consider the case of 
first-order filtering, shown in Figure 6-25; note that cypp = 1 yields the structure 
from Figure 6-24. 

Linearizing the sawtooth function yields a loop noise bandwidth BL which 
is determined by 2B,32$ = app/(2 - app), where 7’0 is the time interval between 
successive feedforward estimates; in the case of nonoverlapping blocks, To equals 
the duration of a block. Hence, the smaller cypp, the smaller the variance of the 

estimates {e(i) } 
_ _ 

at the output of the post-processing structure. When applying 
a phase step and assuming small opp, it takes a long acquisition time before the 
estimate B”(i) is close to its steady-state value; when the phase step is about r/M 
in magnitude, hangup occurs. Figure 6-26 compares the phase error trajectories at 
the output of the post-processing, resulting from cypp = 1 (unwrapping only) and 

&PP = 0.1 (unwrapping and filtering), assuming 4-PSK modulation. 
For opp = 1, there is no acquisition transient, and steady-state operation is 

achieved immediately; the random fluctuations of the phase error are caused by 
random noise. For cypp = 0.1, an acquisition transient occurs; in the steady-state, 
the random phase error fluctuations are smaller than for lxpp = 1, because of 
the smaller bandwidth of the post-processing structure. Figure 6-27 shows the 
occurrence of a hangup for opp = 0.1, assuming 4-PSK modulation; the initial 
phase error is in the vicinity of n/4, which corresponds to an unstable equilibrium 
point of the post-processing structure. 

It is possible to provide additional filtering in the post-processing and yet 
avoid hangups by using a technique which is called “planar filtering”. Instead 
of operating on the feedforward estimates of the carrier phase or symbol timing, 
the planar filtering structure operates on complex numbers (i.e., phasors in the 
complex plane) that are related to the feedforward estimates. Let us explain the 
planar filtering by considering the NDA carrier synchronizer; a similar reasoning 
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Figure 6-26 Phase Error Trajectories (4-PSK) 

Figure 6-27 Hangup 
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holds for other feedforward carrier synchronizers and for symbol synchronizers. 
The NDA feedforward estimate a(i) corresponding to the ith block can be denoted 
bY 

B(i) = $ a% (4% (6-262) 

where v(i) is the arithmetical average over the considered block of matched filter 
output samples having been raised to the Mth power. Instead of computing e(i) 
and applying it to the post-processing circuit, planar filtering operates on w(i). 
First-order planar filtering yields 

w(i + 1) = w(i) + “&(i + 1) - w(i)) 

where the input and the output of the planar filtering structure are denoted by 
u(i) and w(i), respectively. As (6-263) is a strictly linear operation, there is only 
one stable equilibrium point and no unstable equilibrium points, so that hangup 
cannot occur. The bandwidth BL of the planar filtering structure is determined 
by ~BLTo = c+,,/(2 - opp); hence, for small oypp, w(i) is much less noisy 
than u(i) . However, for small c+, , it still takes a long acquisition time before 
reaching steady-state operation. After planar filtering, provisional carrier phase 
estimates @(a) are obtained according to 

R(i) = (6-264) 

As the estimates f?‘(i) are restricted to the basic interval [-r/M, r/M), they 
have to be unwrapped by means of the structure from Figure 6-24 Iwhich does 
not involve any acquisition transient), yielding the final estimates 0(i). Figure 
6-28 shows the trajectories of Re[w(i)] and Im[w(i ] resulting from (6-263) and 

(--I 3 
compares them with the trajectories of cos MB(z) and sin Mfi(i)) resulting 
from (6-260), that correspond to the hangup shown in Figure 6-27; clearly, hangup 
does not occur when using planar filtering. 

Planar filtering can also be applied when the feedforward estimates B(i) are 
obtained by means of a search rather than the direct computation of (6-262); in 
this case the planar filtering operates on the phasors v(i) = exp (jMl(i)) . 

We conclude that the feedforward estimates resulting from the individual 
blocks must be unwrapped, in order to be able to follow the fluctuations of the 
synchronization parameters. When unwrapping is performed by means of the 
post-processing structure from Figure 6-24, there is no hangup and no acquisition 
transient. When the post-processing is modified to include additional filtering for 
reducing the variance of the feedforward estimates, a nonzero acquisition time and 
the possibility of hangup result. By using planar filtering, hangup is eliminated but 
a nonzero acquisition time remains. Whenever a nonzero acquisition time occurs, 
a preamble is needed to avoid a loss of information symbols during acquisition 
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Figure 6-28 Trajectories Using Planar Filtering 

Until now we have assumed that the algorithms for estimating the synchro- 
nization parameters for a given block are the same as for short burst TDMA 
operation. However, we have pointed out in Section 6.5.3 that a large amount of 
computations per block is required when the estimates are to be determined by 
means of a search rather than direct computation. This amount can be consider- 
ably reduced when the estimates are obtained iteratively, but instead of processing 
each individual block repeatedly until convergence of the estimate, a new block 
is processed with each new iteration; hence, the processing per block is reduced 
to the computation of a single iteration. For example, in the case of carrier syn- 
chronization, the estimate e(a) resulting from processing the signal r(i) of the ith 
block can be represented as 

@a) = &(a) + (f)@(i), Q,(i)) (6-265) 

where O,,(i) is a prediction of the carrier phase for the ith block, based upon 
previous estimates e^(m) with m < i, and (f) (. , .) is an increment computed during 
the ith block. The drawback of this approach is, as for feedback synchronizers, 
the occurrence of an acquisition transient and the possibility of hangup. Hence, 
in order not to lose information symbols during acquisition, a preamble is needed. 
During this preamble, DA algorithms can be used. 
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6.5.5 Main Points 

For the acquisition of the carrier phase and the symbol timing, it is advan- 
tageous that there is no strong coupling between the carrier and the symbol syn- 
chronizers, In the case of feedback synchronization, this coupling slows down the 
acquisition. In the case of feedforward synchronization, the coupling increases 
the computational requirements because a two-dimensional maximization over the 
carrier phase and the symbol timing must be performed. Therefore, it is recom- 
mended that at least one synchronizer operates completely independently of the 
other. As a result, the time to acquire both the carrier phase and the symbol timing 
by means of feedback synchronizers can be expressed in terms of the acquisition 
times of the individual synchronizers, while for feedforward synchronization two 
one-dimensional (instead of one two-dimensional) maximizations must be per- 
formed. 

Feedback synchronizers need very long acquisition times when the frequency 
offset is much larger than the loop bandwidth (pull-in) or when the initial synchro- 
nization error is close to an unstable equilibrium point (hangup); these acquisition 
times can be reduced by using acquisition aids. The acquisition time is in the order 
of the inverse loop bandwidth (say, about a hundred symbols) when the frequency 
offset is small. Because of the long preamble needed, feedback synchronizers are 
suited only for operation in continuous mode or for TDMA with long bursts, but 
not for TDMA with short bursts. 

Feedforward synchronizers operating on short bursts have to provide only one 
carrier phase estimate and timing estimate per burst. The bursts need no preamble, 
and each single short burst is processed individually until its synchronization 
parameter estimates are obtained. As the synchronization error variance is the same 
for all bursts, there is no transient, so that steady-state operation is achieved already 
with the estimates for the first received burst; therefore, acquisition is said to be 
“immediate”. However, the amount of processing per burst depends strongly on the 
types of synchronization algorithms. The least processing is required when at least 
one synchronizer operates independently of the other, and for both synchronizers 
the estimates are obtained by direct computation. The most processing is required 
when the coupling between algorithms is such that a two-dimensional search over 
the carrier phase and the symbol timing is to be performed; this is the case when 
both synchronization algorithms make use of coherently detected data symbols. 
When an iterative method is used to determine the estimate, an unfortunate choice 
of the initial value of the estimate may yield a very slow convergence towards the 
final estimate: a hangup-like phenomenon occurs. 

When feedforward synchronizers operate in continuous mode or long burst 
mode, the received signal is subdivided into short blocks; during each block, the 
synchronization parameters can be considered as being constant. The feedforward 
synchronizers then provide one carrier phase estimate and one symbol timing 
estimate per block, in much the same way as for short burst operation, In 
order to be able to follow the dynamics of the actual synchronization parameters, 
the estimates resulting from the successive blocks must be unwrapped. This 
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unwrapping can be accomplished by means of a post-processing structure which 
necessarily introduces feedback. When the post-processing does not reduce the 
variance of the individual feedforward estimates, acquisition is immediate and 
hangup does not occur, in spite of the introduced feedback. When the post- 
processing also performs additional filtering in order to reduce the variance of the 
individual feedforward estimates, the feedback gives rise to an acquisition transient, 
and hangup might occur; because of the nonzero acquisition time, a preamble is 
needed. The hangup can be eliminated by using planar filtering; however, planar 
filtering still yields a nonzero acquisition time. A nonzero acquisition time with 
the possibility of hangup also occurs when the estimates are computed iteratively 
as for short burst operation, with the only difference that for each new iteration 
a new block is processed, instead of processing the same block repeatedly until 
convergence occurs. 

6.5.6 Bibliographical Notes 

Here we briefly mention some results from the literature that are related to 
the acquisition of the carrier phase and the symbol timing. 

An interesting discussion on hangups in a PLL can be found in [ 11, [2], 
[3]. For a continuous phase error detector characteristic, hangup is caused by the 
restoring force near the unstable equilibrium point being very small; loop noise 
does not cause prolonged stays around the unstable equilibrium point. On the other 
hand, for a phase error detector characteristic with a discontinuity at the unstable 
equilibrium point (such as a sawtooth characteristic), the restoring force near the 
unstable equilibrium point is large, but hangup still occurs when noise is present. 
This can be explained by observing that, in the presence of noise, the average 
phase error detector output is no longer discontinuous at the unstable equilibrium 
point (see also Section 3.2.2 from Volume 1); the larger the noise, the smaller the 
slope at the unstable equilibrium point, and the smaller the restoring force. PLLs 
with a discontinuous phase error detector characteristic determine the instantaneous 
phase error by measuring the time between the zero crossings of the input signal 
and the voltage-controlled oscillator (VCO) signal. An alternative explanation of 
hangups in PLLs with a discontinuous phase error detector characteristic is the 
following: because of noise, the zero crossings of the input signal fall randomly 
to either side of the discontinuity when the initial phase error corresponds to the 
unstable equilibrium point, so that the average restoring force is small. 

Lock detector performance for BPSK has been investigated in [4]. The 
considered lock detectors take the difference of either the square or the absolute 
value of the in-phase and quadrature components after phase rotation. The 
probability of lock detection has been determined, taking into account the random 
fluctuations of the carrier phase estimate when the synchronizer is in lock. These 
random fluctuations affect the performance of the lock detector: for a loop SNR of 
15 dB, a degradation of 1.5 dB in E,/Nc occurs, as compared to the performance 
corresponding to infinite loop SNR. 



418 Performance Analysis of Synchronizers 

Post-processing of the feedforward carrier phase and symbol timing estimates 
for reducing their variance has been discussed in [5] and [6]. When the parameters 
to be estimated can be modeled as a Gauss-Markov process, the use of a Kalman 
filter is proposed; in the case of a first-order Gauss-Markov process, this yields 
the post-processing structure from Figure 6-25, with cypp not constant but varying 
with time. In a practical implementation, app could be restricted to only a few 
values, e.g., a larger value during acquisition and a smaller one during tracking. 
Planar filtering for avoiding hangup has been proposed in [5]; this involves 
filtering phasors instead of the synchronization parameter estimates, and taking 
the argument of the phasor after planar filtering for obtaining the synchronization 
parameter estimate. In [7], it is shown that a decision-directed feedforward estimate 
of the phasor (cos 0, sin 0) is sufficient for detecting M-PSK symbols; the resulting 
receiver makes no explicit carrier phase estimate. 
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Chapter 7 Bit Error Rate Degradation 
Caused by Random Tracking Errors 

7.1 Introduction 

For coherent detection of digitally modulated signals, the receiver must be 
provided with accurate carrier phase and symbol timing estimates; these estimates 
are derived from the received signal itself by means of a synchronizer. The bit 
error rate (BER) performance under the assumption of perfect synchronization 
is well documented for various modulation formats [l-5]. However, in practice 
the carrier phase and timing estimates exhibit small random fluctuations (jitter) 
about their optimum values; these fluctuations give rise to a BER degradation as 
compared to perfect synchronization. It is important to know this BER degradation 
in terms of the accuracy of the estimates provided by the synchronizer, so that the 
synchronizer can be designed to yield a target BER degradation (which should not 
exceed about 0.2 dB for most applications). 

For various linear modulation formats (M-PSK, M-PAM, and M2-QAM) we 
evaluate the BER degradation caused by random carrier phase and timing errors. 
In Section 7.7 we show that the results also apply for the practically important 
case of coded transmission. For nonlinear modulation and coded transmission we 
refer to the bibliographical notes in Section 7.9. 

7.2 ML Detection of Data Symbols 

Figure 7-l conceptually shows how a maximum-likelihood (ML) decision 
about the symbol sequence {ak} is obtained. The matched filter output is sampled 
at the instant IcT + iT where .C denotes the estimate of the normalized time delay 
~0. The matched filter output samples are rotated counterclockwise over an angle 8 
which is an estimate of the unknown carrier phase 0. The receiver’s decision about 
the transmitted sequence is the data sequence which maximizes the ML function 
[eq. 4-841 when the trial parameters E, 0 are replaced by their estimates 

L ( ‘f 1 a, c,e > [ = - H-la 1 (7-l) 

The last equation shows that in general the ML symbol &a cannot be obtained by 
a symbol-by-symbol decision but that the entire sequence must be considered due 
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420 Bit Error Rate Degradation Caused by Random Tracking Errors 

Figure 7-l Conceptual Receiver Performing Maximum-Likelihood Decision 

to intersymbol interference (nondiagonal H). The decision rule also applies when 
in addition the data sequence is convolutionally encoded. If the real-valued pulse 
g(t) is selected such that g(t) and g(t-mT) are orthogonal (Nyquist condition), 
then the matrix H becomes diagonal and a symbol-by-symbol decision is possible. 
Using the normalization of Section 4.3.6 the matrix H is the identity matrix. The 
receiver’s decision & about the transmitted symbol ak then is the data symbol 
which has the smallest Euclidean distance to the sample Zke-” at the input of 
the decision device 

Assuming perfect synchronization, the BER performance of the ML receiver is 
we11 documented in the literature for various modulation formats [l-5]. However, 
in the presence of synchronization errors, the BER performance deteriorates. In the 
following we determine the BER degradation caused by random synchronization 
errors. 

7.3 Derivation of an Approximate Expression 
for BER Degradation 

In this section we derive an expression for the BER degradation caused 
by synchronization errors, which is valid irrespective of the specific modulation 
format. We first restrict our attention to either carrier phase errors in the presence of 
perfect timing recovery, or timing errors in the presence of perfect carrier recovery. 
At the end of this section, we consider the BER degradation when both carrier 
phase errors and timing errors are present. 

Let us introduce the notation $ for the synchronization error: $J = 4 = 00 - 4 
in the case of a carrier phase error, whereas $ = e = EO - 2 in the case of a timing 
error. The BER degradation D (detection loss), measured in decibels, is defined as 
the increase of E, /NO, required to maintain the same BER as the receiver without 
synchronization errors. Hence, the BER degradation D at a bit error rate value 
BERo is given by 

D = 10 log (&r2) [dB] (7-3) 
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where a2 and a$ are determined by 

BERo = P(0; ~a) = &[P($; u)] (7-4) 

In (74 w; > P 0 re resents the conditional BER, corresponding to a synchro- 
nization error $, at E, /No = 1/ (2a2), and E+ [v] denotes averaging over the 
synchronization error I/J. Brute force numerical evaluation of the BER degradation 
can be quite time consuming, because of the averaging over the synchronization 
error $J, the computation of P(+; 0) for many values of $, and the iterations re- 
quired to obtain u at a given value of 60. However, in most applications the BER 
degradation caused by synchronization errors should not exceed about 0.2 dB; in 
the following we will derive an approximate expression for the BER degradation, 
which is very accurate for small degradations. 

For small synchronization errors, P(@; 0) can be 
Taylor series expansion around $J = 0. This yields 

approximated bY a truncated 

E#($;u)] = Ezi, P(0; a) + $P(+)(o; u) + ; ti2p(++) o; a) ( 1 
= [P(O; u)] + 5 var[$] P(++)(O; a) 

V-5) 
where P(@)(.; .) and P(q$)(.; .) d eno e t single and double differentiation with 
respect to $, and var[$] is the variance of the synchronization error $; the second 
line of (7-5) assumes that $J is a zero-mean random variable, i.e. Eq [+I = 0. For 
small degradations, the second line of (7-5) can be approximated by a truncated 
Taylor series expansion about u = 60. Keeping only linear terms in (u - UO) and 
var[$], we obtain 

qo+f4 go)1 = qwo) + ( U-Uo) P(“)(O; 60) +i var[$] P(3@)(0;uo) 
2 

(7-6) 

where Pc”) (.; .) denotes differentiation with respect to u. Taking (7-6) into 
account, (7-4) yields 

U 
1 

1 P(+qO; u(j) -= -- 
00 2uo pqo; uo) ~~M (7-7) 

Hence, for small var[$], the BER degradation is well approximated by 

D= -20 log( u/u()) 

10 P(+J)(O; UfJ) 
= ln(10) uf-JP(qo;uo) vaM PI 

(7-W 

which indicates that the (small) BER degradation, measured in decibels, is essen- 
tially proportional to the tracking error variance var[$] , and independent of the 
specific shape of the probability density of the synchronization error $. 
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When both carrier phase errors and timing errors are present, a similar 
reasoning can be followed to obtain an approximate expression for the BER 
degradation. Assuming that the carrier phase error and the timing error are 
uncorrelated, it turns out that the BER degradation, measured in decibels, equals 
the sum of the BER degradations caused by carrier phase errors and timing errors 
individually. 

7.4 M-PSK Signal Constellation 

In the case of M-PSK, the data symbols ak take values from the alphabet 
A = (exp(j2rm/M)lm = 0,. . . , M - 1). The ML receiver from Figure 7-l 
decides tin: = exp (j27rm/M) when the argument of the sample zk c-j’ at the 
input of the decision device is in the interval ((2m- 1) r/M, (2m+ l)?r/M). 

The BER for M-PSK depends on how the transmitter maps blocks of log@ 
bits onto constellation points. The minimum BER is achieved when blocks of 
log&f bits that are mapped onto constellation points being nearest neighbors in 
the Euclidean sense, differ by one bit only; this is called Gray mapping. Figure 
7-2 shows an example of Gray mapping for 8-PSK. 

In the case of Gray mapping, the conditional bit error rate P($; U) is well 
approximated by 

the approximation being that each symbol error gives rise to one bit error only; 
this approximation is accurate at moderate and large E,/Nc, where the major part 

: 
Makl 

I 
011 

010 0 0 001 

Figure 7-2 Gray Mapping for 8-P% 
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of the erroneous decisions of the receiver corresponds to a detected symbol being 
a nearest neighbor of the transmitted symbol. For M-PSK, the conditional symbol 
error rate is given by 

Prob(& # ck 1 4) = Prob(& # 1 1 ak = 1, $) 

= Prob(arg (&‘) $ (-$, ;) I@ = 1, $!J) (7-1o) 

because of the rotational symmetry of the constellation and the constant magnitude 
of the data symbols. Let us decompose the sample zke-” at the input of the 
decision device as 

Zke-ji = s(+) + wk (7-11) 

where wk is the Gaussian additive noise component, with zero-mean independent 
real and imaginary parts, each having a variance a2 = Na/(2E,), and s( $) is the 
signal component, corresponding to a synchronization error $ and a transmitted 
symbol ak = 1; note that s( 0) = 1 because the matched filter output is normalized 
to h(O) = 1. As a result, the conditional symbol error rate is approximately given 
bY 

where E, [*I denotes averaging 
contribute to s($), and where 

over all data symbols a, (with n # k) that 

Q(X) = T-& exp ($) du 

X 

(7-13) 

is the area under the tail of the Gaussian probability density function, while 

(7- 14) 

and 
d2W) = -1mW) exp (-+/WI (7- 15) 

equal the distances of the signal point s($) to the decision boundaries at angles 
-T/A! and T/M, respectively, as indicated in Figure 7-3. 

The result (7-12) is exact for M = 2, and a close upper bound for M > 2 
at moderate and large Es/No. Assuming that the probability density of the 
synchronization error $ is an even function, it can be verified that dl($) and 
d2($) have identical statistical properties. In this case the average bit error rate 
E+ Cp($; a)] is not affected when dz($) is replaced by dl($) in (7-12). Hence, 
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t 
Im[zkl 

Figure 7-3 Illustration of dr ($) and dz($) 

as far as the evaluation of E+ [P($; a )] is concerned, the following expression can 
be used for P($; a): 

%%4 = & fC”) Ea[Q(F)] (7-16) 

with 
4+) = Im[s($> exP (@@ql (7-17) 

and 
(7-18) 

As s( 0) = 1, the bit error rate in the absence of synchronization errors is given by 

P(0; CT) = --I- f(M) Q( 
sin (7r/M) 

1% M 0 > 
(7- 19) 

The expressions (7-16) and (7-19) are correct for M = 2 and M = 4, and a good 
approximation at moderate and large E8 /No for other values of M. 

Substituting (7-16) in the general expression (7-8) for the BER degradation, 
and making use of 

(7-20) 
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one obtains 

(7-21) 

where 
A = -& E, [4($+)(o)] B = &[ (d’d’(0))2] (7-22) 

and the superscripts r,l~ and $I+!J denote single and double differentiation with respect 
to the synchronization error $. 

Although the BER degradation formula (7-21) for M-PSK has been obtained 
in a rather formal way, an interesting interpretation is given below. 

Considering complex numbers as phasors, the average BER for M-PSK equals 
f( M)/log,M times the probability that the projection of the sample Xk e-j’ on 
j exP (-ww is negative. The projection of the noise component wk of xk: e-j’ is 
zero-mean and Gaussian with a variance a2; the projection of the signal component 
s(+) of zge-jJ equals d(q), which for small $ can be expanded in a truncated 
Taylor series expansion: 

d($)=d(O) + $J d(@)(O) + 1 +2 cw)(O) 
2 

(7-23) 

The first term in (7-23) is the projection of the signal component in the absence 
of synchronization errors. The second term is a zero-mean disturbance, with a 
variance equal to B var[$] [see (7-22)-j; this second term adds to the projection 
of the noise component wk of Zke-j’, yielding a total disturbance with variance 
equal to u2 + B var[$]. The third term has a mean equal to -Ad(O) var[$]/2 
(see [7-22)] which reduces the effect of the first term of (7-23); for small I/J, the 
fluctuation of this third term can be neglected as compared to the second term of 
(7-23). When a2 >> B var[$], the total disturbance is approximately Gaussian, in 
which case the average BER for M-PSK is given by 

f(W Q 40)(1 - (A/2) va441) 
(7-24) 

where the square of the argument of the function Q( .) in (7-24) equals the signal- 
to-noise ratio of the projection of .be-j’ on j exp (-jr/M). Taking into account 
that 

P(0; uo) = & f(M) Q(z) (7-25) 

it follows that the BER degradation D, defined by (7-3) and (7-4), is obtained 
by simply equating the arguments of the function Q(e) in (7-24) and (7-25). For 
small values of var[$] this yields 

q2 N 1 2- 
60 

(7-26) 
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so that the BER degradation in decibels is approximated by 

D= 
(7-27) 

10 
Yqiq PBI 

which is the same as (7-21). Hence, we conclude that the BER degradation caused 
by synchronization errors is due to the combined effect of a reduction of the useful 
signal (this is accounted for by the quantity A) and an increase of the variance (this 
is accounted for by the quantity B) at the input of the decision device. The latter 
effect becomes more important with increasing E,/No, i.e., at smaller values of 
the ideal BER. 

In the following, we evaluate the quantities A and B from (7-22), in the cases 
of carrier phase errors (1c) = 4) and timing errors ($ = e), respectively. 

7.4.1 Carrier Phase Errors 
When the synchronization error 1c) equals the carrier phase error 4, and timing 

is perfect, we obtain 
44) = exP (j$> 

= cos qb + j sin fj 
(7-28) 

44) = sin (4 + (+w) 
= cos q5 sin (7r/M) + sin 4 cos (r/M) 

Using the above in (7-22) yields 

(7-29) 

A= 1 B= cos2 (n/M) (7-30) 

Note that B = 0 for M = 2. 
It follows from (7-28) that a carrier phase error affects the signal component 

~(4) at the input of the decision device by a reduction of the signal component 
(cos 4 5 1) and the introduction of a zero-mean disturbance j sin 4. The useful 
component and the disturbance are along the real axis and imaginary axis, respec- 
tively. The BER degradation is determined by d(4) from (7-29), which is the 
projection of s(4) on j exp (-jr/M). 

7.4.2 Timing Errors 
When the synchronization error II) equals the timing error e, and carrier 

synchronization is perfect, we obtain 

d(e)=Im 

[( 

h(eT)+ c c&-m h(mT-eT) eXp jr 1 01 M (7-3 1) 
m#Q 
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Using the above in (7-22) yields 

c (h’(mT)q2 M= 2 
A= - h”(0) T2 B= 

;E (h’(mT)q2 M>2 
(7-32) 

m 

where h’(x) and h” (x) denote the first and second derivative of h(z), respectively. 
For M = 2, the value of B is twice as large as for M > 2, because E [a;] = 1 
for M = 2, but E [ui] = 0 for M > 2. 

Equation (7-31) shows that a timing error yields a reduction of the useful com- 
ponent (h( eT) 5 1) at the input of the decision device, and introduces intersymbol 
interference (ISI), which acts as an additional disturbance. 

7.5 M-PAM and k&QAM Signal Constellations 

In the case of M-PAM, the data symbols ak are real-valued and are 
denoted as ck =cR,k+jO. The symbols c&k take values from the alphabet 
A=(fA, f 34,. . a, 

EL 1 
f (M - l)A}, where the value of A is selected such that 

‘i,k = 1. Taking into account that 

2 M/2 

M 
c (2m-1)2 

m=l 

= 5 (M2-1) 

it follows that 

(7-33) 

A= jQq \i 
3 

(7-34) 

Based upon the sample zke -je^ at the input of the decision device, a decision tiR,k 
about the symbol c&k is made, according to the following decision rule: 

(2m- 1)A for (2m-2)A < Re[zke-je] < 2mA; 

‘R$= 

i 

-(M/2-1) < m < M/2 
(M-l)A for (M-2)A < Be[zke-js] 

(7-35) 

(M-1)A for Be[zke-je] < -(M-2)A 

In the following we will assume that blocks of log2M bits, which are mapped 
onto constellation points being nearest neighbors, differ by one bit only (Gray 
mapping); Figure 7-4 illustrates the Gray mapping for 4-PAM. 

-3A -A A 3A 
I I I b 

00 01 0 11 10 a R,k 

Figure 7-4 Gray Mapping for 4-PAM 
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In the case of M2-QAM, the data symbols are complex-valued and are 
denoted as ak=aR,k+jaI,k ; a&k and aI,& are the in-phase symbols and quadrature 
symbols, respectively. The symbols a&k and al,l, are statistically independent, 
and both take values from the M-PAM alphabet; this yields a square M2-QAM 
COnStellatiOn for the Complex symbols ak. 
gives rise to 

The requirement that E [ Iak I”] = 1 

A= 
3 

J 2&P-- 1) 
(7-36) 

yielding E a [ k,k] =E Ia:,,] - -l/2. The decision rule for the in-phase symbols 
a&k is the same as for M-PAM; the decision rule for the quadrature symbols al,k 

is the same as for the in-phase symbols a,, but with Re zk e-j’ replaced by [ 1 
Im %ke-je’ . In the following we will assume that blocks of 2 log2M bits that are 

[ I 
mapped onto constellation points being nearest neighbors, differ by one bit only 
(Gray mapping); Figure 7-5 illustrates the Gray mapping for 16-QAM. Under this 
assumption, the in-phase decisions tiR,k and quadrature decisions til,k yield the 

0000 l 0100 l --3A l 1100 l 1000 

0001 l 0101 l --A . 1101 . 1001 

I 

-3A 
0011 l 

I I I w 

-A A 3A a R,k 

0111 . ---A l 1111 0 1011 

0010 l 0110 l 

t 

-3A . 1110 l 1010 

Figure 7-5 Gray Mapping for 16-QAM 
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decision &~,k. 
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equals the bit error rate of the M2-QAM transmission 
to consider only the bit error rate resulting from the 

Taking the Gray mapping into account, the conditional bit error rate for both 
M-PAM and M2-QAM is approximately given by 

(7-37) 

1 2”/2 =-- c P,(v% 0; 37-z- 1) 
log2 M M m=l 

the approximation being that each symbol error gives rise to one bit error only. 
In (7-37), 

P&b; a; 2m- 1) = PrOb[k,k#W,k 1 a~,k=(2m-+; $1 (7-38) 

denotes the symbol error rate, conditioned on the transmitted in-phase sym- 
bol and on the synchronization error. Equation (7-37) takes into account that 
P,(?j; a; 2m-l)=P,($; a; -2m+l), so that we can restrict our attention to pos- 
itive in-phase symbols. 

Let us denote by s( $J; 2m- 1) the signal component of the sample zke-je^ at 
the input of the decision device, corresponding to a synchronization error TJ and a 
transmitted in-phase symbol a~,$ = (2m- l)A; the additive noise component u& 
of ~ke-j’ is Gaussian, with zero-mean independent real and imaging parts, each 
having a variance tr2 = No/(2E,). Hence, 

P,($; cr; 2m- I> = E, 
d($; 2m- 1) 2A-d($; 2m-1) 

u 
(7-39) 

u 

for m = 1,2 ,..., M/2-1, and 

Pb(~;a;M-l) = Ea[Q(d’“‘;-l’)] (7-40) 

where, as shown in Figure 7-6, 

d($;2m-1) = Re[s(q!q 2m-l)] - (2m-2)A (7-41) 
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d(\y; 2m-1) 2A - d(\Cr; 2m-1) 

Figure 7-6 Illustration of cZ($; 2m- 1) 

In (7-39) and (7-40), &Je] denotes averaging over all in-phase and 
quadrature symbols that contribute to s( $; 2m- 1), with the exception of 
the in-phase symbol a~+, = (2m-1)A. Note that Q(0; 2m-l)= A, because 
~(0; 2m-1) = (2 m- l)A. The bit error rate in the case of perfect synchroniza- 
tion (i.e., 1c) = 0) is obtained from (7-37), (7-39), and (7-40) as 

P(O;a) = & 2(Mi1) Q( > $ 
Evaluating the BER degradation in decibels, given by (7-Q, one obtains 

where 

WI 

(7-42) 

(7-43) 

A= (Mll)a Ea [-d(q0; M-l)] (7-44) 

’ B=- 
M-l 

(d(“)(O; M-l))‘]+FEIEa[ (d(‘)(O;2m-1))2] 
m=l 

and the superscripts V/J and J,!J$ denote single and double differentiation with respect 
to the synchronization error 4. Using a similar reasoning as for M-PSK, it can be 
verified that the quantities A and B reflect the reduction of the useful component 

and the increase of the variance of Re zk e-j’ , respectively. [ 1 
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In the following, we evaluate the quantities A and B from (7-44) and (7-45), 
in the cases of carrier phase errors ($J = #) and timing errors ($=e), respectively. 

7.5.1 Carrier Phase Errors 
When the synchronization error $ equals the carrier phase error 4, and timing 

is perfect, we obtain 

d(qi,2m - l)= [; 
m-l)Acos4-(2m-2)A M-PAM 
m - 1)A cos 4 - (2m - 2)A - ol,k sin # M2 - PAM 

(7-46) 

Using (7-46) in (7-44) and (7-45) yields 

A= 1 B= 0 M-PAM 
+ M2-PAM (7-47) 

In the case of M-PAM, a carrier phase error yields only a reduction of the 
useful component at the input of the decision device (cos 4 5 1), whereas for M2- 
QAM also a zero-mean quadrature interference term -ol,k: sin 4 occurs, which 
acts as an additional disturbance. 

7.5.2 Timing Errors 
When the synchronization error T/J equals the timing error e, and carrier 

synchronization is perfect, we obtain 

d(e; 2m - 1)=(2m - l)Ah(eT)+ ~aR,+mh(mT - eT) - (2m - 2)A 
m#O 

(7-48) 
Using (7-48) in (7-44) and (7-45) yields 

c (h’(mT)T)2 M - PAM 
A=-h*(0)T2 B = 

rc (h’(mT)T)2 M2 - PAM 
(7-49) 

m 

The difference between M-PAM and M2-QAM with respect to the value of B 
comes from the fact that E ai b = 1 for M-PAM and E [ 1 

It is clear from (7-48) tha; a timing error reduces 
input of the decision device (h( eT) 5 1) and additionally introduces ISI. 
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7.6 Examples 

Let us first check the accuracy of the approximate expression (7-8) for the 
BER degradation, by considering a specific case. Restricting our attention to carrier 
phase errors, we compute from (7-3) and (7-4) the true BER degradation for 4- 
PSK, and compare it with the result obtained from (7-21) and (7-30). The average 
bit error rate E~[P(~;B)] for 4-PSK is given by 

4P(4;~)l=J% & [ [ 
cosqS-sin+ 

fi 
u 11 (7-50) 

In order to carry out the statistical expectation indicated in (7-50), an assumption 
must be made about the probability density function ~(4) of the carrier phase 
error. We consider two probability density functions, i.e., the Tikhonov probability 
density function and the uniform probability density function, The Tikhonov 
probability density is the density of the modulo 27r/M reduced phase error of 
a PLL with sinusoidal phase error detector characteristic (with period 27r/M) and 
white loop noise (see Volume 1, Section 11.1.6), and is given by 

P(4) = Ml @IO (plM2)) ev ( (dM2) c&W)) Ml < * * otherwise 
(7-5 1) 

where l/p is the linearized phase error variance (p is the loop signal-to-noise ratio 
of the PLL) and 10 (x) is the zeroth-order modified Bessel function: 

+a 
1 

I&t?) = - 
2a J 

exp (z co9 4) d$ 

--II 
(7-52) 

For large p, the actual variance var[4] is very close to l/p. The uniform probability 
density function (which is most unlikely to result from any practical synchronizer!) 
is given by 

Ml< #o 
otherwise 

(7-53) 

where 40 is selected such that the Tikhonov probability density function (7-51) 
and the uniform probability density function (7-53) yield the same phase error 
variance var[$]; hence, 40 and p &e related by - 

+*/M 

J 
M 

92 2?rIo(p,AP> exp 
6 cos (MC))) dqi = ; c#$ (7-54) 

-a/M 

10s6 
Figure 7-7 shows the actual BER degradation at BERo = 10e2 and BERo = 

for 4-P%, corresponding to the Tikhonov and the uniform phase error 
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BER degradation [dB] 

loop SNR p [dB] 

Figure 7-7 BER Degradation for 4-PSK (in dB): (a) resulting from 
uniform phase error distribution, (b) resulting from Tikhonov phase 
error distribution, (c) approximate BER degradation 

probability densities; also shown is the approximate BER degradation resulting 
from (7-21) and (7-30), with var[q5] replaced by l/p. We observe that for large 
p the actual BER degradation becomes independent of the specific shape of the 
phase error probability density function and converges to the approximate BER 
degradation, which is inversely proportional to p. 

In the following, we use the approximate formula (7-8) to evaluate the 
BER degradation in decibels, caused by carrier phase errors and timing errors, 
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at BERe = 10W2 and 10m6, in the case of the following constellations: M-PSK 
(with M = 2,4,8,16), M-PAM (with M = 2,4), and M2-QAM (M = 2,4). The 
corresponding values of Es/No [= 1/(2~,“)] and Es/No, where E, and &, denote 
the received energy per symbol and per bit, respectively, are shown in Table 7-l. 
The 2-PSK (or BPSK) constellation is identical to the 2-PAM constellation, and 
the 4-PSK (or QPSK) constellation is identical to the 4-QAM constellation. The 
M2-QAM constellation needs the same &,/No as (or 3 dB more E, /No) than 
the M-PAM constellation in order to achieve the same BERe. The shape of the 
baseband pulse h(t) at the output of the matched filter affects the BER degradation 
in the case of timing errors; in the sequel it will be assumed that h(t) is a cosine 
rolloff pulse. 

Figures 7-8 and 7-9 show the BER degradation caused by carrier phase errors, 
at BERa = 1O-2 and 10-6, respectively, as a function of p = 1 /var@] ; the 

BER degradation [dB] at BEFk* 

- P-PSK; P-PAM; 4-PAM 
- - - CPSK; 4-QAh4 

---- a-PSK 
------ l&PSK 

- 18QAM 

ld5 1 
15 

I I 
20 

I 1 
25 

I I I I , I 1 
30 35 40 45 50 

p=l hM41 WI 

Figure 7-8 BER Degradation (in dB) due to Random Carrier Phase Errors 
(BERo = 10-2) 
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Table 7-l Values of Es/No and E,/No Yielding BE& = 10m2 and 10B6 

BER 0 = 1o-2 BERo = 1O-6 

&/No [dB] Es/No [dB] G/No [dB] Es/No [dB] 
2-PSK, 2-PAM 4.32 4.32 10.53 10.53 

4-PSK, 4-QAM 4.32 7.33 10.53 13.54 

8-PSK 7.29 12.06 13.95 18.72 

16-PSK 11.42 17.43 18.44 24.44 

4-PAM 7.88 10.89 14.40 17.41 

16-QAM 7.88 13.90 14.40 20.42 

ld2 1- 

e3 1- 

lo4 :- 

BER degradation [dB] at BER=lde 

16’ J- \ 
\ \ 

\ \ . 
\ . 

\ \ 
\ \ 

- - - CPSK; +QAM 

w----w 16PSK 
- 16QAM 

18 j 
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20 
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25 

I I I L I I I I I 
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p=l/vafl4] [dB] 

Figure 7-9 BER Degradation (in dB) due to Random Carrier Phase Errors 
(BERo = i0-6) 
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BER degradation [dB] at BEFbid* 

18 i 
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p=l/var[e] [dB] 

Figure 7-10 BER Degradation (in dB) due to Random Symbol Timing Errors 
(BERa = 10V2, rolloff = 50%) 

BER degradation caused by timing errors is shown in Figures 7-10 and 7- 11, 
for BERe = 10B2 and 10e6, respectively, as a function of p = l/var[e] and 
assuming a 50% rolloff. 

The following observations are made: 

For given values of BERc and p, the larger constellations, which need larger 
values of Eb/No to achieve a given bit error rate of BERc, give rise to larger 
BER degradations. Indeed, when the number of constellation points increases 
under the restriction E [ lak 12] = 1, the Euclidean distance between them 
decreases, and the constellation becomes more sensitive to synchronization 
errors. 



7.6 Examples 437 

BER degradation [dB] at BER=l Oa 
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Figure 7-11 BER Degradation (in dB) due to Random Symbol Timing Errors 
(BERc = 10B6, rolloff = 50%) 

. In the case of carrier phase errors, M-PAM yields a smaller BER degradation 
than M2-QAM, although both constellations need the same &/No to achieve 
the same BE&. This is explained by noting that a carrier phase error gives 
rise to quadrature interference in the case of M2-QAM, but not for M-PAM. 

. In the case of timing errors, M-PAM and M2-QAM yield the same BER 
degradation. Indeed, when carrier synchronization is perfect, the real and 
imaginary parts of the sample at the input of the decision device for M2- 
QAM have the same statistical properties as the real part of the sample at 
the input of the decision device for M-PAM, assuming that both modulations 
have the same Eb and, hence, the same value of BERc. 

l The BER degradation increases with decreasing BERc (or decreasing c$, 
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Table 7-2 Values of &ms and erms Yielding 0.1 dB BEb Degradation 

BERo = 1O-2 BERo = 1O-6 

2-P%, 2-PAM 

4-PSK, 4-QAM 

8-PSK 

16-PSK 

4-PAM 

16-QAM 

hms [deg .I ermti [%I &me [deg.] erm8 [%I 

8.64 4.60 8.64 2.63 

3.41 4.60 1.78 2.63 

1.62 3.05 0.76 1.51 

0.83 1.74 0.37 0.79 

8.64 2.53 8.64 1.25 

1.71 2.53 0.82 1.25 

BER degradation [dB] 

16200 
0.4 0.6 0.6 1 

rolloff 

Figure 7-12 BER Degradation (in dB) due to Random 
Symbol Timing Errors (4-PSK, p=30 dB) 
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because the synchronization errors yield an increase of the variance at the 
input of the decision device, which becomes relatively more important when 
the variance of the additive noise decreases. However, for M-PAM, the only 
effect of a carrier phase error 4 is a multiplication by cos 4 of the useful 
component at the input of the decision device, so that for M-PAM the BER 
degradation caused by carrier phase errors depends neither on BERc nor on 
M. 

For the various constellations, Table 7-2 shows the root-mean-square (rms) 
phase and timing errors, each yielding a O.l-dB BER degradation; the results for 
the rms timing error assume a 50 percent cosine rolloff pulse at the output of the 
matched filter. 

Finally, we investigate the effect of the rolloff on the BER degradation caused 
by timing errors. Figure 7-12 shows the BER degradation in the case of 4-PSK, 
for operating BER values of 10B2 and 10V6, and assuming that p = 30 dB. When 
the rolloff increases, the following two effects occur: the useful component h(eT) 
decreases (which tends to increase the BER) but also the IS1 decreases (which tends 
to decrease the BER). From Figure 7-12 it follows that the latter effect dominates. 

7.7 Coded Transmission 

Today most practical communication systems employ some form of coding. 
This raises the question of how random carrier phase and timing errors affect 
coded systems. 

As for uncoded transmission, 
coded transmission is twofold: 

the effect of random synchronization errors on 

1. The useful component of zke-j’ is reduced by a factor of 1 - A/2 var($). 
This reduction is exactly the same as for uncoded transmission. 

2. The samples of .ke-j’ are affected by an additional interference, consisting 
of quadrature interference (caused by phase errors) or IS1 (caused by timing 
errors). This additional interference is the same function of the data symbols 
as for uncoded transmission. However, as the statistics of the data symbols 
are determined by the specific code used, the statistical properties of this 
additional interference are not exactly the same as for uncoded transmission. 

From the above considerations it follows that the BER degradation for coded 
transmission depends on the specific code used. However, a first estimate of this 
BER degradation is obtained by simply assuming that the statistics of the additional 
interference are the same as for uncoded transmission. Under this assumption, the 
BER degradation for coded transmission is independent of the code, and equals 
the BER degradation of an uncoded system with the same constellation and the 
same E,/& (with E, denoting the energy per coded symbol). 
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Figure 7-13 BER Degradation for Coded Transmission 

Notice in Figure 7-13 that for a given E,/Na the same degradation D causes 
a much larger BER increase in the case of coded transmission. 

Some references dealing with the effect of synchronization errors on coded 
transmission are mentioned in Section 7.9 

7.8 Main Points 

. In the presence of random synchronization errors, a BER degradation occurs 
as compared to perfect synchronization. This degradation is caused by a 
reduction of the useful component and an increase of the variance at the input 
of the decision device. 

. For a small estimate variance, the BER degradation (in decibels) caused 
by random synchronization errors is essentially proportional to the estimate 
variance, and independent of the specific synchronization error probability 
density. 

. In general, the BER degradation increases with the size of the constellation 
and decreases with the operating BER. 

. The BER caused by timing errors depends on the shape of the baseband 
pulse at the matched filter output. Assuming a cosine rolloff pulse, the BER 
degradation decreases with increasing rolloff, because of the reduced ISI. 

7.9 Bibliographical Notes 

In the following, we give an overview of a representative literature selection 
on the BER degradation caused by synchronization errors. 
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Perfect Synchronization 

Exact and approximate expressions of upper and lower bounds on the BER 
for various modulation formats in the case of perfect synchronization can be found 
in many textbooks and articles, e.g., in [l-5]. 

Carrier Phase Errors 

In the case of carrier phase jitter, several authors have evaluated the average 
BER by taking the expectation of the conditional BER (or its approximation) with 
respect to the carrier phase error [ 1, 6-101; in most cases, the carrier phase error is 
assumed to have a Tikhonov or a (truncated) Gaussian probability density function. 
Using a somewhat similar reasoning as in Section 7.3, an approximate expression 
for the BER degradation for BPSK and QPSK has been derived in [6]. 

For M-PSK, M-PAM, and M2-QAM, the BER degradation caused by carrier 
phase errors does not depend on the shape of the baseband pulse. This is no 
longer true when using offset QPSK (OQPSK), where the quadrature symbols are 
delayed by half a symbol interval with respect to the in-phase symbols. The BER 
degradation for OQPSK has been investigated in [6] and [9, lo] in the case of 
rectangular (NRZ) and square root cosine rolloff transmit pulses, respectively. 

Timing Errors 
Various authors [ 1 l-14] have considered the BER in the presence of a fixed, 

not necessarily small timing error. When the timing error is not small, the truncated 
Taylor series expansion method from Section 7.3 is no longer accurate, so that the 
conditional BER has to be evaluated in a different way. As timing errors give rise 
to ISI, we are faced with the more general problem of computing the BER in the 
presence of additive noise and ISI. This problem has received considerable attention 
in the literature, and various bounds on and approximations of the BER have been 
proposed [ 1 l-151, which avoid the time-consuming brute force averaging in (7- 12), 
(7-39), or (7-40) over all symbols that contribute to the ISI. 

The BER in the presence of random timing errors has been obtained in [ 1, 161 
by computing the expectation of (a bound on) the conditional BER with respect 
to the timing error, assuming a Tikhonov probability density function. 

Nonlinear Modulation and Coded Linear Modulation 
Until now, we have restricted our attention to uncoded linear modulation. 

Several authors have investigated the effect of carrier phase errors on the BER in 
the case of continuous-phase modulation (CPM), which is a nonlinear modulation 
[17], and of trellis-coded M-PSK. 

The BER for CPM in the presence of a fixed carrier phase offset has been 
considered in [ 181. 

The BER for trellis-coded M-PSK has been investigated in [ 191 for a fixed 
carrier phase error, in [20] for a random carrier phase error and without interleaving 
of the data symbols, and in [21] for a random carrier phase error and interleaving 
of the data symbols. 
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Chapter 8 Frequency Estimation 

8.1 Introduction / Classification of Frequency Control Systems 

In this chapter we are concerned with frequency estimation. We could have 
studied this problem earlier in Chapter 5 by including an additional parameter Q 
in the set 8 = (0, E, a}. The main reason why we choose to include a separate 
chapter is that for a sizeable frequency offset St we must first compensate this 
frequency offset before the other parameters (0, E, a} can be estimated. This 
implies that frequency offset estimation algorithms must work independently of 
the values of the other parameters. The operation of the algorithms is nondata 
aided and nonclock aided. The only exception occurs for small frequency offset 
(SX?) < 1. In this case, timing-directed algorithms are possible. 

This chapter is organized as follows. We first discuss in Section 8.1.1 
the channel model modifications necessary to include the estimation of R. In 
Section 8.2 we derive estimators which work independently of the other parameters 
(0, E, a}. In a familiar way we obtain feedback algorithms by differentiating the 
likelihood function with respect to the parameter R (Section 8.3). The algorithms of 
the first two sections operate on samples {rf (ICT,)} which are sufficient statistics. 
If the frequency offset is restricted to small values, roughly IL?ZTI < 0.15, timing 
can be recovered prior to frequency compensation. Given the timing, frequency 
estimators are developed which work at symbol rate l/T. These algorithms 
have superior tracking performance compared to the algorithms operating with 
samples {Y~(IZT,)}. D irect frequency estimators are discussed in Section 8.4. The 
corresponding error-feedback algorithms are studied in Section 8.5. In Section 
8.6 frequency estimation for MSK signals is studied. In summary, the rate-l/T8 
algorithms can be regarded as coarse acquisition algorithms reducing the frequency 
offset to small fractions of the symbol rate. If necessary, timing-directed algorithms 
with improved accuracy can be employed in a second stage running at symbol rate 
l/T. 

8.1.1 Channel Model and Likelihood Function 

We refer to the linear channel model of Figure 3-l and Table 3-1. The 
equivalent baseband model is shown in Figure 3-3. The input signal to the channel 
is given by zl(t)e jeT(‘) . In the presence of a frequency offset Q we model the 
phase process &(t) as the sum 

e,(t) = Rt + 0 W) 

445 

Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing
Heinrich Meyr, Marc Moeneclaey, Stefan A. Fechtel

Copyright  1998 John Wiley & Sons, Inc.
Print ISBN 0-471-50275-8 Online ISBN 0-471-20057-3



446 Frequency Estimation 

(0 constant phase offset). The input signal to the channel is then given by 

We require that the frequency response of the channel C(f) and that of the prefilter 
F(f) are flat within the frequency range 

when B is the (one-sided) bandwidth of the signal u(t), and f&,,, is the 
maximum frequency uncertainty (see Figure 8-l). Only under this condition the 
signal sf (t , Q) can be written as 

Sf cc 0) = u(t) ejstt 69 [c(t) @ f(t)] 

= u(t) Qp c(t) @ f(t) ejSlt 

Thus, sf (t, Q) is the frequency-translated signal sf (t) ejat: 

sf (t, R) = Ne an g(t - nT - cT)ejcsltts) 
n=O 

(g-4) 

(8-5) 

with g(f) = ST(i) Q3 c(t) 0 f(t) 

We recognize the signal previously employed for estimating & and 0 is 
multiplied by e jnt . We should be aware that the model is valid only under the 
condition of a flat wideband channel C(w) and prefilter F(u). If this condition 
is violated, the frequency estimator algorithms presented here produce a biased 
estimate. This issue will be discussed when we analyze the performance of the 
frequency estimators. 

Assuming a symmetrical prefilter IF(w) 1’ about 1/2T, and Nyquist pulses, the 
normalized likelihood function is given by eq. (4-157). Using the signal definition 

’ wm 
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Figure 8-l Frequency Translation and Passband of 
the Channel G(w) and Prefilter F(w) 
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(8-5) the matched filter output in the presence of a frequency uncertainty is given by 

To obtain .z~(&, n> the signal is first multiplied by e-jnT81c. This operation must 
be performed for each realization Ra of the trial parameter 0. Subsequently each 
signal is filtered by the matched filter. The sampling rate (see Figure 8-l) must 
obey the inequality 

IQnax I &>B+- 
2cT (8-7) 

8 

8.1.2 Classification of Algorithms 
The typical chain of signal processing operations in the presence of a fre- 

quency offset fi is shown in Figure 8-2. The received signal is first multiplied by 
exp(-jWT,) which results in a frequency translation of G! of the signal. Sub- 
sequently the signal flow is the same as discussed in the absence of a frequency 
offset. 

The only exception to the signal flow diagram shown in Figure 8-2 occurs if 
the frequency offset is small, lOT( < 1. In this case it may be advantageous to 
first recover timing and perform frequency estimation in a timing-directed mode 
(compare Figure 8-3). 

Decimator 

I FF 

Timing dependent 

Phase 

II e @Tn 

Frequency 
Translator 

Figure 8-3 Classification of ML Frequency Estimation 
Algorithms: Alternative Signal Flow for IRTl < 1 
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Then, as we will see in Section 8.4, it is convenient to introduce a mathemat- 
ically equivalent formulation of (8-6). Equation (8-6) can be written in the form 

00 
zn(izr Q) = e-jnnT C rf(kT,) gMF(nT + 67 - kT,)e-jhl(kT8-nT) (8-8) 

k=-co 

The sum describes a convolution of the received signal rf (Ha) with a filter with 
impulse response 

gf2(lcT,) = gMF(kTs)ejnTsk (8-9) 

and frequency response 

(8- 10) 

The approximation of gn (kT, ) by gMF( IcT,) as it is suggested in Figure 8-3 is 
discussed later on in Section 8.4. 

Besides the above distinction between timing-directed (DE) and non-timing- 
directed (ND&), the algorithms employed in the frequency synchronization unit 
can be further classified as discussed earlier (NDA, DA, DD). 
Remark: Before we are going into further detail of the frequency synchronization 
schemes, it should be emphasized that in practice (8-7) and the relationship 
l~rnaxl/2~ < Bjl - B determine the maximal resolvable frequency offset that 
any structure (Figures 8-2 and 8-3) can cope with. The value Bfl stands for 
the (one-sided) frequency range of the analog prefilter, where the signal passes 
undistorted. If the key parameters (prefilter shape and sampling rate) are fixed, 
the pull-in range - determined by the maximal manageable frequency offset - can 
only be increased by an additional control loop for the analog oscillator in front 
of the analog prefilter. 

8.1.3 Main Points 
. The typical signal processing chain is to correct the frequency offset in 

front of the matched filter. 
. The frequency estimation algorithms can be classified as DE, ND&, DA, 

and NDA. 
0 There are open-loop (FF) and closed-loop (FB) structures. 

8.2 Frequency Estimator Operating Independently 
of Timing Information 

Starting point of our discussion is the low signal-to-noise ratio (SNR) approx- 
imation of the likelihood function [eq. (548)] 

L(&, R) = 2 l%(ZT + ET, sy2 (8-l 1) 
k-L 
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for the joint estimation of (E, 0). We will show in this section that there exists an 
unbiased estimator of R which requires no knowledge of E. In other words, we 
can first estimate the frequency offset St, compensate for 52, and then estimate the 
remaining synchronization parameters. 

To qualitatively understand why this separation is possible we recall the main 
result of the section on timing parameters estimation via spectral estimation, (see 
Section 5.4). In that section, we expanded the timing wave ]z( Kf + ET, 0) I2 
into a Fourier series. Due to the band-limitation of ]z(lT + ET, !G!) I2 only three 
coefficients (c-1, cc, cl} of the Fourier series have a nonzero mean. Therefore, 
only these three coefficients need to be estimated while the remaining terms of the 
Fourier series contribute to the random disturbance only 

2 I%(lT$ &T, fql” = CO + 2 Re[clej2”“] + c cn ejannr (8-12) 
I- L -- InI>2 

random disturbance 

As will be shown, the expected value of CO depends on Q but is independent of 
E. Furthermore, E[cc] is shown to be maximum if Q assumes the true value 520. 
Hence, the value fi which maximizes the coefficient co(Q) is an unbiased estimate: 

6 = arg mix co(a) (8-13) 

Remark: Despite the fact that E[lci)] is also a function of Q, we may seek the 
maximum of the likelihood function (8-11) by maximizing c,-,(R). This, of course, 
is possible only because (8-13) alone provides an unbiased estimate of a. 

(9 

We maintain that under the following conditions: 

The sampling rate fulfills l/777 > 2(1 + a)/T (twice the rate required for 
the data path). 

(ii) The ratio T/T3 = Ma is an integer. 
(iii) i.i.d. data {an}, 

the following sum 

(8-14) 

defines an unbiased estimate. It is remarkable that no conditions on the pulse g(t) 
are required in order to get an unbiased estimate. But be aware that our derivation 
requires that the transmission pulse g(t) be known at the receiver. 

Much of the discussion that follows is similar to that on timing parameters 
estimation via spectral estimation (Section 5-4). The reader is therefore urged to 
reconsult Chapter 5 in case the following discussion is found to be too concise. 
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The matched filter output z( IT,, s2) in the presence of a frequency offset C! 
is given by 

co 
%(ZT,, i-2) = c r#T,) e-jnTak gMF(zTs - ICT,) (8-15) 

k=-00 

Replacing in the previous equation the received signal samples rf (/CT,) by 

N 

rr(kT,) = c a,g(kTS - nT - eoT) ejnoTak + n(kT,) (8-16) 
?a=- N 

we obtain 

z(ZT, , n> = 5 a, [ 2 g(kT, - nT - eoT) ej(Slo-SZ)T8k 
?I=- N k=-co (8- 17) 

XSMF(& - C) + m(C) 
I 

where m(ZT, ) is a filtered noise process. Notice that we follow our usual 
convention to label the true parameters by index zero (i.e., ~0, Q-J), while the 
trial parameters are denoted by E and a. Using 

h(lT, - EOT - nT, Ast) 

= 2 g( ICT, - nT - COT) ej(Slo-n)Tek gMF( ZT, - ICT,) 
k=-co 

loo =- 
T, s 

g(x - nT - EOT) ~?j(‘~-‘)~ gMF(ZTs - x) dx 

-CO 

(8-18) 

we can write for Z( IT,, 0) 

z(ZT,; Q) = 5 a,h(ZT, - nT - EOT, An) + m(ZT,) (8-19) 
p-&Z- N 

with AR = & - a. 
Squaring x(ZT, , a) and subsequently taking expected values with respect to 

i.i.d. data and noise, we obtain 

E[I~(zTJI)~‘] = E[I~,.J~] 5 Ih(ZT, - nT - eoT,AQ)12 + J’, (8-20) 
?I=-- N 

with Pn 2 0 additive noise contribution. If the number of symbols (2N + 1) is 
sufficiently large, then the error committed by running the sum over an infinite 
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interval is negligible. The expected value then is a periodic function 

h,(t, AC!) = 2 (h(t - nT - eoT, A!2)12 (8-21) 
n=--00 

which can be represented by a Fourier series 

hp(tr AtI) = 2 di ej2=tilT 
i=-00 

(8-22) 

The coefficients da are related to the spectrum of (h(t - EOT, As2) I2 by the Poisson 
theorem 

+oO 
di = $ 

J 
Ih(t - EAT, AR)12 e-j2?ritlT dt 

-CO 
(8-23) 

+=J 
1 

E-e -j %iaoT 

T J Ih(t, A!2)12 e-jaritlT dt 

-Xl 

From the definition of h(t, AQ) the spectrum of h(t, ACI) is found to be 

H(w, An) = G(w) G*(w - AQ) G(w) is band - limited to B [Hz] 

(8-24) 

B= 

(a excess bandwidth). Since squaring the signal h(t, Ai2) doubles the bandwidth, 
the spectrum of Ih(t, As1)12 is limited to twice this value 

Blhl a = $(l+a) (8-25) 

From this follows that only the coefficients d-1, do, dl are nonzero in the Fourier 
series. Hence, the expected value of E [ Iz(iTs, AC!) 12] can be written in the form 

E [Iz([T., ~~1~1 = do + 2 Re [dlej2T’/Mn] (8-26) 

where the coefficients do, dl are defined by (8-23), and M, = T/T8 is an integer. 
We have now everything ready to prove that the estimate of 6 of (8- 12) is 

indeed unbiased. First, let us take expected value of the sum (8-14) 

LM,-1 

c +m f-912] 
I=-LM, 

(8-27) 
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Next, replace E [ ]z(zT~, AO)~~] 
of (8-26) 

in the previous equation by the right-hand side 

LM,-1 LM,-1 

c E[lz(ZTs,i2)121 = c {do +2Re[dl ejZn’lMs]} 
I=-LM, - I=-LM. - 

= (2LM,) di-, 

since 
LM,-1 

c 
$2nllM, = 0 

I=-LM, 

The coefficient do is a function of s2 but independent 

+oO 

of & 

(8-28) 

(8-29) 

do = ; J Ih(t, Aa)12dt (8-30) 

-CO 

Using the Parseval formula, the integral can be expressed as 

+m 

J Ih(t, An)12dt = & T[H(-, AS2)12dw 

--oo -CO 

= & J IG(w - Ai2)j2 IG(w)12dw 

(8-3 1) 

The last equality results from replacing H(w, ASI) by the right-hand side of 
(8-24). From the Schwarz inequality it follows that do (8-31) is maximum for 
Ail = S&J - R = 0. Hence 

LM,-1 

C? = arg rnax c l4Ts 7 912 (8-32) 
I=-LM, 

is an unbiased estimate (Figure 8-4). 

Regarding the manageable frequency uncertainty Rc we refer to Section 8.1.1 
and the relation (8-7) and obtain 

I%laxl 1 B 
-<2T,- 2n 

(8-33) 

Note that, employing this structure, the magnitude of the frequency offset we can 
cope with is only limited by the analog prefilter shape and the sampling rate. 

We noticed [see eq. (8-30)] that the joint estimation of (E, Q) can be decou- 
pled. In a first stage 52 is obtained by maximizing the sum (8-14) with respect to 
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kTs 
x- 

rf W,) 

a&%J - ,(.),2 5 x ==? 
L 

- II - - I 

Figure 8-4 Maximum-Searching NDA Frequency Estimator 

G!. The timing parameter & can subsequently be found as 

LM,-1 

.t = arg C 
I=-LM, 

(2 (IT,, 6) I2 e+2.rr1’M8 

( fi - directed estimator 
) 

(8-34) 

Remark; In order for i to be unbiased, g(t) must be real and symmetric [compare 
with eq. (5-77)]. No conditions on the pulse shape are imposed for an unbiased 
fi. But keep in mind that our derivation requires that the transmission pulse g(t) 
be known at the receiver. 

8.2.1 Frequency Estimation via Spectrum Analysis 
Consider the estimation rule of (8-14): 

l=L M, 

sz 
= arg %? c (z(K, Q>12 (8-35) 

1=-L M, 

introduced in the previous section. A mathematically equivalent form leads to a 
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different realization of the estimator. We write z(lT, , s2) in the form 

where gn( ICT,) is the impulse response of 

gn(kT,) = gMF(kT,) ejnkT8 w G* 
( 
ej(W-n)Ts 

> 
(8-37) 

A block diagram corresponding to (8-35) and (8-36) is shown in Figure 8-5. The 
samples .znj (/CT,) are obtained as output of a freque,ncy translated matched filter, 
G* (ej (w-aj )LTB) , where Qj is the jth trial value. The number of parallel branches 
in the matched filter bank is determined by the required resolution AR = v. 

. > . 

- G,F(,j(*nl)kTs) -i 

to 

Figure 8-5 Block Diagram of the Estimator 
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Since 

(8-38) 

the multiplication of the output zaj (aT, ) by a complex exponent e-jnzTa can be 
avoided. The squared absolute value lznj (ICT,) 1 2 is averaged and the maximum 
of all branches is determined. 

The above estimator structure can be interpreted as a device that analyzes the 
power spectral density of a segment t E { -TE/~, TE/~} of the received signal 
rf (LT,). We assume that the estimation interval is so large that 

TE/~ 

Then the Parseval theorem (approximately) applies 

TE/~ - .  

J 
lznj (t) I2 dt 

-TE/~ (8-40) 

where RT~(w) is the spectrum of the signal segment 

TE/~ 

RTE(w)= 
J 

v(t) e 
-jut & (8-41) 

-TE/~ 

and G(w - flj) is the baseband part of the frequency response of the jth filter. The 
expression for Xj equals the energy of the signal segment l”r, (t) passed through 
the frequency translated matched filter G(w - C?j). The energy is maximum (on the 
average) for that value of Rj for which the signal spectrum best fits the passband 
of G(w - aj), 

Since Figure 8-5 is merely a different implementation of the algorithm de- 
scribed by Figure 8-4 the maximum manageable frequency uncertainty 00 is again 
given by 

Pmaxl 1 B 
-3iy 2n 

(8-42) 

compare with (8-33). 
In a digital realization Xj is computed using the FFT (Fast Fourier Transform) 

algorithm. The number NFFT of samples r(kTs) is determined by the specific 



456 Frequency Estimation 

rf (kTs) 
- - 

complex 
coefficients 

real 
decision 
variables 

Figure 8-6 Block Diagram of the DF’I’ Analyzer, Xj [compare (8-40) and (8-44)] 

frequency resolution 

Af = Ts iF,, 
(8-43) 

To obtain a reliable estimator the result of several DFT (Discrete Fourier Trans- 
form) spectra must be averaged. The resulting structure is shown in Figure 8-6. 

The operation required to generate a frequency estimate is illustrated in Figure 
8-6. 

(i) N, spectra are generated by the DFT using NaV nonoverlapping sequences 
{ rf (ICT,)} of length NFFT. 

(ii) These N,, spectra are accumulated in the next operation unit. 
(iii) In the spectrum analyzer an estimate of Ro is generated via 

fij = arg rnax 
3 

n’=zT’2 
m=-(&FT/2-1) 

I&& Af)l’jG(m Af - (j Af))l” 

(8-44) 

It can be easily verified that the implementation of Figure 8-6 is much simpler 
than that of Figure 8-5. 

Provided an unlimited resolution of the spectrum analyzer the above structure 
provides an unbiased estimate; this is proven using the same reasoning as for 
the structure of Figure 8-4. Nevertheless, the performance of the above structure 
should not be measured in terms of an estimate variance or estimation bias alone. 
A performance measure for a maximum seeking algorithm is the probability that 
an estimation error exceeds a given threshold. 

Table 8-l shows some simulation results. Parameters are NFFT, iv,, , the ratio 
T/TJ, and the SNR defined as E, /No. The numbers in the right-hand columns 
denote how often the estimation error As2 exceeds a given threshold as a function 
of the SNR. The results obtained for SNR=200 dB indicate that the above algorithm 
suffers from self-noise phenomena, too. The self-noise influence can be lowered 
by increasing the number of the F’FT spectra to be averaged. This, in turn, means 
that the estimation length and the acquisition length, respectively, are prolonged. 
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Table 8-l Number of Trials where (i2T;foT 1 > 12.5%, The 
total number of trials is 10,000 for each entry. 

8.2.2 Frequency Estimation via Phase Increment Estimation 
Up to now we were concerned with maximum-seeking frequency estimators. 

The basic difference of the present estimator compared to the maximum-seeking 
algorithms is that we directly estimate the parameter 0 as the argument of a rotating 
phasor exp(jRi). We discuss a non-data-aided, non-timing-directed feedforward 
(NDA-NDE-FF) approach. 

We start from the basic formulation of the likelihood function introduced in 
Chapter 4: 

L(L?,B,e,a) = 2 2 Re{rf(kT,) s;(kT,)} (8-45) 
k=-00 

where of (I&?,) is given by 

Sj(kT,)= ej(nkTe+e)&J g(kT,-c-&T) (8-46) 
n 

and rj (ICT,) is given by 

?-j(C) = Sj(ms) + n(leT,) (8-47) 

Neglect for a moment the influence of the modulation in (8-46). We recognize 
that the phase, 0(lcT,) = 0 + 02lcT,, is increased by an amount of LM( bT’) = SIT’ 
between two sampling instants. Planar filtering of a phasor exp(j A 0(kTS)) yields 
an unbiased estimate of G?, as will be proved below. 

Now let us conjecture the following approximation: 

Sj(M-3) M PTa Sj((k - 1)7-y,) (8-48) 

Obviously, the larger the ratio T/T’ is, the better this approximation becomes. 
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Also, for high SNR we have 

(8-49) 

Inserting (8-48) and (8-49) into (8-45) we get 

L1(R, 8, E, u) = 2 Re{ e-jnTa rj(kT,) r;((k - l)T,)} 
k=-co (S-SO) 

with 

y = c q&T,) r;((k - l)T,) 
k=-ca 

(8-51) 

Since the expression Y is independent of the trial parameter C?, the maximum of 
(8-50) is obtained via 

00 

fiT, = arg c r#‘s) rj((k - W’s) (8-52) 
k=-co 

Equation (8-52) defines a very simple estimation rule, where neither a search 
operation nor any determination of the other elements of the parameter set is 
required. 

In a practical realization the summation is truncated to LF symbols 

A block diagram of the estimator is shown in Figure 8-7. 
In the sequel we analyze the performance of the algorithm (8-53). We start 

by proving that the algorithm has (for all practical purposes) a negligible bias. 
Rather than averaging fiT we take the expected value of the complex phasor 
rf(kT,) ri((k - l)T,). If the argument of E[rf(kT,) ri((k - I)T,)] can be 

c 
M&F 

) w(-) -=G 

Figure 8-7 Block Diagram of the Direct Estimator Structure 
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shown to be equal 0eT, then it follows that the algorithm is unbiased. Writing 
‘J (ICT,) as the sum of useful signal plus noise we obtain after some straightforward 
algebraic steps 

Mc q’f(m $((k - l)T,)] 
k=-hcf,LF 

M,LF 

= 
c 

fPT, 2 E[la,12]g(~~-nT)g’((le-l)T,-nT) + %$C9) 
k=-ibf.LF la=- N 

(8-54) 
where Rn(T,) is the correlation function of the complex noise process n(lcT,), 
(ELF + 1) is the number of symbols in the observation interval, and 2N + 1 the 
number of symbols transmitted. 

For a properly designed prefilter F(w) the noise samples are uncorrelated, 
so R,,(T,) = 0. It remains to evaluate the first term. Interchanging the order of 
summation we obtain 

g(kT, - nT)g*((k - 1)X - nT) (8-55) 
n=- N - - k=-hcf,LF 

In all reasonable applications the number of transmitted symbols is larger than 
the estimation interval, i.e., N >> L F . Therefore, the correlation-type algorithm 
suffers from self-noise caused by truncation of the estimation interval. This effect 
was previously discussed in Section 5.2.2. If the number D of symbols which 
essentially contribute to the self-noise is much smaller than LF (i.e., D << LF), 
these contributions to the self-noise effects are small. The summation over ICT, 
then equals approximately 

co 

Cg(kTd-nT)g*((lc-l)T,-nT) M $ / 9(t) 9* (t - T.9 > & 
k s (8-56) 

= h,(q) 
This expression is clearly independent of the other estimation parameters 

{ 0, E‘, a}. Provided h,(t) is real, which is the case for a real pulse g(t), the algo- 
rithm (8-53) yields a (nearly) unbiased estimate for a sufficiently large estimation 
interval. Simulation results confirmed the assertion. If g(t) is known, the condition 
on g(t) can be relaxed [compare with the Remark following eq. (8-34)] because 
the bias caused by a particular filter shape g(t) is known a priori and therefore 
can be compensated. 

Our next step is to compute the variance of the estimate: 
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It proves advantageous to decompose the variance into 

var fiT [ 1 = 4,s + 4xN + &N (8-58) 

which reflects the fact that the frequency jitter is caused by (signal x signal), 
(signal x noise), and (noise x noise) interactions. Using similar approximations 
as outlined in Section 8.3.2, the expectations of (8-57) can be calculated. For 
BPSK and QPSK modulation we get the expressions listed below. 

Example 

1. (signal x signal) nonzero only for QPSK, asxs = 0 for BPSK: 

wT,)2 
-A- 

usxs = 2(27r>” T,” h;(T’) L, 
(( 1 - ;) - (I1 + 2 12)) (8-59) 

2. (signal x noise) for QPSK and BPSK: 

OTS I2 
aSxN = (2n)2 T,” h$(T,) L, 

mi- (1 - T, f+@Z)) & (8-60) 
9 

frequency estimate variance: BPSK 

E theory 
rolloff =O.S 

lxxl simulation 
rolloff =0.5 

Es/No WI 

Figure 8-8 Estimation Variance of hT/27r for BPSK Transmission, 
T/E = 4, Estimation Length LF; 
dotted lines: S xN, NxN contribution for LF = 128 and cy = 0.5 
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3. (noise x noise) for QPSK and BPSK: 

(T/5q3 1 1 2 

ONxN = 2 (27r)2 T,” hi(T,) L, ( > E,/No 

where 11 is given by 

T52 
(1+a)P 

II= 7 J H,(w) H&) cos (2wT,) dw 
0 

and 12 is given by 

T2 
(l+a)DT 

I2 = A- 
27 J Hg(w) H,(w + 27r/T) sin (2wT,) du 

0 

461 

(8-61) 

(8-62) 

(8-63) 

where H,(w) is the Fourier transform of h,(t). Figures 8-8 and 8-9 show some 
simulated variances for various estimation lengths and various rolloff factors. The 
transmission pulse was a root-raised cosine filter whose energy was normalized to 

frequency estimate variance: QPSK 
m a: theory, rolloff =0.35 

10' 

--.- 
-5 - Nx’M \ Sad-, . . -\ 

Figure 8-9 Estimation Variance of fiT/27r for QPSK 
Transmission,T/T, = 4, Estimation Length LF; 
dotted lines: SX S, SxN, NxN contribution for LF = 800 and a = 0.9 
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unity. The good agreement between analytically obtained curves and the simulation 
proves the approximations to be valid. 

Further simulations not reported here confirm that the estimate properties are 
independent of the parameter set (0,) EO}, as was predicted from our theoretical 
considerations, and that the estimator can be applied to higher-order modulation 
schemes such as 8-PSK and M-QAM. 

The maximal frequency offset Ifi,, 1 the estimator can cope with is upper 
bounded by 

I~maxl 1 
2lr <zT, U3-64) 

Strictly speaking, the maximum frequency offset I!&,, I is the minimum of IS&,,, I 
given by (8-64) and Is1,,, I fulfilling (8-7). For example, if the analog prefilter has 
a frequency range Bfl where the signal passes undistorted, the maximal permissible 
frequency offset is limited to 

Pmaxl < Bf 
27r 1 - $1 + o) (8-65) 

in the case of a root-raised cosine transmission pulse with rolloff o. If a larger 
offset must be handled, the analog prefilter bandwidth as well as the sampling rate 
must be increased. This has the effect that the variance is increased for two reasons: 
First, because the variance of the noise contribution in the sampled signal rf (KC’) 
is directly proportional to the bandwidth of the analog prefilter; second, because 
of the prefactor (T/T,) in (8-57). Possibly the estimation interval becomes too 
large if the variance of the estimate has to be smaller than a specified value. An 
appropriate solution for such a problem is illustrated in Figure 8-10. 

The basic idea is that the frequency offset to be estimated is lowered step by 
step. In the first stage of Figure 8-10 a coarse estimate is generated. Although 
this coarse estimate may still substantially deviate from the true value, the quality 
of this first estimate should guarantee that no information is lost if the frequency- 
adjusted samples of (ICT,) e-JSlkT* are fed to a digital lowpass filter. Note that the 
decimation rate T,, /Y& and the bandwidth of the digital lowpass filter have to be 
properly selected according to the conditions on sufficient statistics. In the second 
stage the same frequency estimator can operate in a more benign environment than 
in the first stage with respect to the sampling rate and the noise power. 

The last comment concerns the behavior of the estimator if, instead of statis- 
tically independent data, periodic data pattern are transmitted. Simulation results 
show that the estimation properties remain intact in the case of an unmodulated 
signal or a dotted signal [a, = ( -l)m]. This is an interesting result since the 
NDA-ND-FB as well as the NDcA-De-FB algorithm discussed in [l] fail in such 
cases. 
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8.3 Frequency Error Feedback Systems Operating 
Independently of Tlming Information 

To obtain a frequency error signal we follow the familiar pattern. We 
differentiate the log-likelihood function of Section 8.2 [eq. 8-131 with respect to 
s2 to obtain (neglecting an irrelevant factor of 2): 

- 
a=nklk-1 

(8-66) 

Recall that we have shown that (8-4) is independent of &. Therefore, z(lcT,) is 
independent of e also. 

The derivative of the matched filter (MF) output equals 

The time-weighting of the received signal can be avoided by applying the weighting 
to the matched filter. We define a time-invariant frequency matched filter (FMF) 
with impulse response: 

gFMF(kTd) = gMF(kT,)jkT, (8-68) 

The output of this filter with of (ICT,) as input is 

= &%(kT,, s-2) + jkT, %(kT,, n) 
(8-69) 

The last equality follows from the definition of d/aQ( z(lcT,, Q)) and of z( IcT,, a). 

Replacing 

in (8-66), we obtain the error signal 

z(~cT,) = Re{z(kT,, Q)[z~MF(~TJ~ Q) + jkT,z*(kT,, n)l) 
= Re{z(kT,,Q) ~~~~(6T3,n)+j~~It(leT,,n)l~} 

= Re{z(kT,, 0) &I&T,) n)} 

(8-71) 
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Figure 8-11 Frequency Response of the Digital Frequency Matched Filter 
GFMF (ejwTs) for a Root-Raised Cosine Pulse G(w), LY = 0.5 

The descriptive term “frequency matched filter” was introduced by [l] and is 
readily appreciated when we consider the frequency response of the filter: 

(8-72) 

= &GMF (ejwT8) 

Thus, the frequency matched filter gFMF( &) is the derivative of the frequency 
response of the signal matched filter. A dual situation was found for the timing 
matched filter which is the time derivative of the signal matched filter in the time 
domain and weighted by (jw) in the frequency domain. 

Example 
The frequency response of the frequency matched filter GFMF(~~~~.) is shown in 
Figure 8-l 1 for a root-raised cosine signal pulse. 

The operation of the frequency matched filter is best explained if we write 
the error signal in the mathematically equivalent form of a power difference. 

= Iz(kT,, fi) + zFMF(&, n)l” - I+%, fi) - zFMF(&, fi)j” 
(8-73) 

= Irf ( kT,)e-jnTsk @ [i?MF(kTs) + gFMF(kTs)] I2 

- (q(kT,)e -jnTEk @ [gMF(k%) - gFMF(kT,)112 

The first term in the difference equals the signal power at the output of the filter 
with impulse response gMF( kT$) + gFMF( 6T,) and input of (Us) e-jnTm Ic. The 
second term equals the output power of a filter gMF( kT,) - gFMF( kT, ) when the 
same signal is applied. 
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* FMF Filter 

_ (RRCF+FMF) Filter 

- (RRCF-FMF) Filter 

Figure 8-12 Frequency Response of the Filters Performing the 
Power Difference of (8-73), CY = 0.5 
(RRCF stands for root-raised cosine filter, and FMF for 
the corresponding frequency matched filter) 

For the sake of a concise explanation we consider a root-raised cosine pulse. 
The two filters in (8-73) differ in the rolloff frequency range only, see Figures 8-11 
and 8-12. The power difference remains unchanged if we replace the two filters by 
filters with a frequency response which is nonzero only in these regions (compare 
Figure 8-13). Furthermore, the two filters may be simplified appropriately. The 
simplified filter HP ( ejwTa) passes those frequencies which lie in the positive rolloff 
region, while the filter HN (ejwTa) passes the negative frequencies. 

Let us see now what happens when a signal rf (t) shifted by 00 is applied to 
these filters. Due to the symmetry of the filter frequency response and the signal 
spectrum, the output of the two filters is identical for sic = 0. 
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For all other values of IQ, 1 < 2B an error signal is generated. The maximum 
frequency uncertainty Ist,, 1 the algorithm can cope with is thus 

with rolloff factor a, 
minimum of IQ,,, I 

l%naxI = ;(l+ a) (8-74) 

Strictly speaking, the maximum frequency uncertainty is the 
given by (8-74) and 

l%aa,l 1 B 
-<2T,- 2T 

(8-75) 

[compare (8-7)]. 

- Hp Filter 

power difference 

Figure 8-13 Frequency Response of the Power Equivalent 
Filters HN (ejwTn) and Hp (ejwTn). 
The frequency error signal equals the difference of the shaded areas. 
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An S-curve expression is obtained by taking the expected value of the error 
signal with respect to the random data and the noise, 

For the case that all filters are tailored to a root-raised cosine transmission pulse 
it can be shown from (8-76) and (8-73) that the error signal has a piecewise 
defined structure. The location of the piece boundaries, and even the number of 
pieces depends upon the excess bandwidth factor a which is obvious from the 
above interpretation of the frequency error detector in the frequency domain. The 
formulas in Table 8-2 are valid for a 5 0.5. 

The expressions in Table 8-2 and the simulation results of Figure 8-14 present 
the error signal for the case that the transmission pulse energy is normalized to 
unity and all normalization of the MF and FMF was performed in such a way that 
the fully synchronized output of the MF holds z(n) = a, + N(n), with a, the 
transmitted symbol and N(n) the filtered noise with variance var[N(n)] = No/E, . 

From the foregoing discussion it is clear that the filters H~(ej**.) and 
HP (ej**#) defined by the signal and frequency matched filter can be approximated 
by a set of simple filters which perform a differential power measurement. The 
resulting algorithms are known as dualJilter and mirror imagecfilter in the literature 
[ l]-[3]. They were developed ad hoc. Again, it is interesting that these algorithms 
can be derived systematically from the maximum-likelihood principle by making 
suitable approximations. Conditions on the filter HN (ej**n) and Hp (ej**e) to 
produce an unbiased estimate, and, preferably, a pattern-jitter-free error signal will 
be discussed later on. 

Table 8-2 S Curve of the NDE FED; S Curve Is Odd 
Symmetric about Zero, Afl = St0 - fi = 27rAf 

OLAfT<a ( ~{sin2(~)+$(l-~)sin(~)} 

cr<AfT< f 
l-a, 

1-Q 
AfT< 1 

I { 
7 1 l+sin2(%[afT-1])-%(l+F)sin ( I[/lfr-11)) 

l<AfT< 
l+a 

cos2 (s[AfT-11) - ; 1- F 
( 

) sin (z[AfT-I])} 
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S-Cutve of NDA NED Frequency Control Loop 

Figure 8-14 S Curve of the NDA NDe Frequency Control Loop for 
a = 0.5 and E [lci2] = 1; Data of Table 8-2 

8.3.1 Tracking Performance Analysis 

In this section we analyze the tracking performance of the algorithm. In a first 
step, we discuss the self-noise phenomena. Self-noise phenomena are the reasons 
why estimates are disturbed although thermal noise is absent. As a result, this 
leads to an irreducible degradation of the estimate properties. Such an impact can 
only be mitigated if the algorithm itself is modified. 

The algorithm of Figure 8-15 serves as an example of how to analyze self- 
noise effects of a tracking loop. The first step was carried out in the previous 
section by the determination of the S curve. We next determine the variance of 
the estimate. We follow the methodology outlined in Section 6.3 where we have 
shown that the variance can be approximated by 

(8-77) 

where Kn is the slope of the S curve at the origin, 2l3~T is the equivalent two- 
sided loop bandwidth, and SZ (ejzrjT) stands for the power spectral density of 
the frequency error output. The approximation in (8-77) is valid for a small loop 
bandwidth and a nearly flat power spectral density about f = 0. 
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Figure 8-15 (a) Block Diagram of a NDA-NDE Frequency Control Loop, 
(b) Equivalent Linearized Model 

In Figure 8-16 the variance of self-noise agxs is plotted versus the normalized 
bandwidth ~BLT. We observe that the variance increases approximately linearly 
with ~BLT. This implies that the spectrum of the self-noise and thus the entire 
spectrum S3: (ej 2*fT) is nearly flat within the loop bandwidth. This observation 
was used to analytically assess the self-noise contribution. 

In Figure 8-17 the total variance ai is plotted versus E,/iVo. Also indicated 
are the analytical results of the self-noise variance aiXs. (The details of its 
calculation are delegated to Section 83.2.) We observe that the algorithm suffers 
from strong self-noise disturbances in the moderate and high SNR region. It 
should therefore only be used to acquire initial frequency lock in the absence of a 
timing information. In the tracking mode, timing-directed algorithms as discussed 
in Sections 8.4 and 8.5 are preferable since they can be designed to be free of 
self-noise (pattern jitter). 

Finally we concisely touch the question of acquisition time. As for any 
feedback loop, the time to acquire lock is a statistical parameter depending on the 
frequency uncertainty region and the SNR. 

To get a rough guess about the time to acquire, the acquisition length L, 
can be assessed from a linearized model of the tracking loop where the frequency 
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Self -Noise in NDA Frequency Estimation 
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Table 8-3 Acquisition Length L,, 

2BLT I 3.13x 1o-2 I 1.5x 1o-2 I 6x 1O-3 I 3.13x 1o-3 

L, (symbols) 150 300 750 1500 

detector characteristic in Figure 8-14 is stepwise linearized. In Table 8-3 we 
have summarized the acquisition lengths, measured in required symbol intervals, 
for different loop bandwidths. The calculations and the simulation, respectively, 
were performed for an acquisition process in the noiseless case where the initial 
frequency offset was set to &T/27r = 1, and we defined the acquisition process to 
be successfully terminated if the difference between the estimated frequency offset 
and the true frequency offset AfT = (l/fL?r)Jfi~T-fIT( was less than 0.01. These 
results should give only a rough guess about the order of magnitude of the length 
of the acquisition process. The exact analysis of the loop acquisition time requires 
more sophisticated mathematical tools as mentioned in Chapter 4 of Volume 1. 

Only if Ifl,,,JT < 1 and the time to acquire is uncritical should feedback 
structures be employed. For the case of a burst transmission, open-loop structures 
are to be used. Here for a given estimation interval the probability of exceeding a 
threshold can be computed. The time to acquire lock is then constant and identical 
to the estimation interval. 

8.3.2 Appendix: Calculation of the Self-Noise Term 

It can easily be verified that the output of the frequency error detector X( lT, ) 
is a cyclostationary process, because its statistics are invariant to a shift of the 
time origin by multiples of the symbol interval T. Therefore, the power spectrum 
density at the origin is 

k=ca 

(8-78) 

where the autocorrelation function R,,(k) is given by the time average of the 
correlation function 

7’12 

&&) = f J E[z(t + K&o)] dt (8-79) 
-T/2 

To get a manageable expression, we replace in the above expression T by LT, 
where L is an integer, and we approximate the above integral by 

R,,(k) 2 & 
[CL- 1wwf~ 

c E[+T, + C) +“.s)] (8-80) 
s I=-[(L-1)/2]M, 



8.3 Frequency Error Feedback Systems Operating Independently 473 

where we assumed that L is sufficiently large and MS = T/T’. Thus we have 
to find 

Ss(ej2*fT) Ifzo = S, = $ 2 
KJ5-1>/21~8 

C E[z(lT, + kT,) @J 
3 k=-co I=-[(L-1)/2]M, 

(8-81) 
Changing the variables, k’ = I + k, we get 

1 s”‘~ 2 
KJ5-1ww4e 

c Wk’T,) 4T,)l 
’ k’ z-m I=-[(L-1)/2]M, 

(8-82) 

E[z(kT,) +C)] 
’ k=-co 1=-[(L-1)/2]M, 

where we have suppressed in the second line the apostrophe (k’ ---f k) for the sake 
of simplifying the notation. 

For the frequency error detector signal 

z(lT,) = Re 

I 

c a, h(lT, - mT) 
m,N 1 

= C aQ,rn h(lT, - mT) 
m,N 

output signal we get 

- C aI,m h(lT, - mT) 

)( 

C aQ,rn j&&C - mT) 

n-0 m,N 

B(k) 
(8-83) 

m=(N-1)/2 

where the operator c is the short-hand notation for c and am = 
m,N m=-(N-l)/2 

aI,m + j aQ,m. 

Inserting (8-83) in (8-82) we have to take the expectations of four different 
product terms PI, P2, Ps, and Pd. 

Considering the expression 

(8-84) 



474 Frequency Estimation 

we demonstrate exemplarily how the expressions can be numerically calculated. 
We start with 

Pl =2 c D[E c c c LMJ 
l,(LM*) k,a ~I,N ma,N ms,N mr,N 

x aQ,ml h(lT, - mlT) aI,rnz h$MF(K - mzT) 
(8-85) 

x aQ,m3 h(kT, - m3T) aI,rn, h&vp(kTs - wT) 
I 

where we introduced the variable set {ml, na2, ms, rnd} to indicate the link be- 
tween a particular sum sign and its sum term. Next, we exploit the com- 
mon property of uncorrelated symbols with E[al,m a~,,] 3 0 for all m, n and 
E[aI,m al,,] # 0 only for m = n, and E[aQ,m a*,,] # 0 analogously, After 
interchanging the order of summation we arrive at 

x c h(lT, - mlT)h$MF(IT, - m2T) 
l,(LM,) 

(8-86) 

X c h(kT, - mlT)h$MF(kTs - mzT) 
k,m 

Defining the function 

hF,FMF(nT) = T, c h(lT, - md’) h&&G - m2T) (8-87) 
l,LM* 

we get 

Pl = j+ c c E [‘?I,rn,l E [a?,m,] + hkF,FMF((ml - m2)T) 
’ ml,N ma,N 

(8-88) 
The next step toward a closed-loop expression is to employ the Poisson sum 
formula given by 

g Y(t +nT) (8-89) 
?a=-00 

In doing so we have to assume that N in (8-88) is sufficiently large. Then we get 

Pl =$- c E[a$]E[a;] & + 
’ ma,N s 

X z{ GIF, FMF(t) )Ifzo + z{ hL~, FMF(~)} ~f=lp e(2a’T)maT (8-go) 

+ $1 hkF, FMF@)},++T e-(2*‘T)maT 
> 
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where we make use of the fact that the spectrum of $&, FMF(t) vanishes for 
f 2 +9 and finally we obtain 

Pl z-1 N E[u;]E[u;] $ f 
L w s 

> 

(8-91) 

x g{ &F, FMF@)}J~~~ + 2 ~@tIF,Fd)),j,l,~ 

z( .) gives the Fourier coefficient of (.). At a first glance the numerical value 
of (8-91) depends on the length of the transmitted symbol sequence. But we 
conjecture that N/L = 1 which coincides with the interpretation that an observation 
interval of length (M, L)TJ contains approximately L = N relevant symbols if we 
neglect all side effects at the boundary of the observation interval. 

If all other terms of (8-85) are calculated analogously, then a closed-form 
expression for the estimate variance can be obtained. The analytical Sx S con- 
tributions in Figures 8-16 and 8-17 were obtained via the above calculation. If, 
additionally, additive white Gaussian noise should be taken into account, exactly 
the same procedure can be applied. Besides the Sx S the variance comprises Sx N 
and N x N contributions. But it is left to the reader to analyze them. In Section 
8.5 we demonstrate for a different frequency control loop how such terms can be 
analytically assessed. Therefore, here we have restricted ourselves to the analysis 
of the Sx S contribution. 

8.3.3 Discussion of NDA and NDE Algorithms 

Non-data-aided and non-timing-directed frequency estimators operate in a 
poor noise environment. This is because the noise variance is proportional to 
the (one-sided) bandwidth Bf of the prefilter which, typically, is considerably 
wider than the signal bandwidth. Roughly, the SNR at the prefilter output is 2BfT 
times smaller than at the matched filter output. As a consequence, these algorithms 
demand long averaging intervals. Also, the resolution is limited and the algorithms 
presented here suffer from self-noise. These drawbacks can only be mitigated by 
a considerably increased implementation complexity and long averaging intervals. 
In [4] Andrea and Mengali discuss strategies to minimize self-noise. They propose 
a design criterion on frequency error detectors which allows the minimization of 
the part of the power spectrum of the self-noise contribution which lies within the 
loop bandwidth. If the S x N and the N x N contributions are minimized, too, 
the advantage of such a structure is that only one algorithm is required for both 
the acquisition and the tracking task. 

A different remedy to the problem is to employ a two-stage approach as 
depicted in Figure 8-10. The advantage of the two-stage structure is that for 
each stage an algorithm can be tailored to the specific task performed in this 
particular stage. The first stage has the task to rapidly acquire a coarse frequency 
estimate. During acquisition an algorithm with a large acquisition range and a short 
acquisition time is required whereas the tracking behavior is of no concern. The 
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second stage is then optimized for tracking performance, since a large acquisition 
range is no longer required. Frequency algorithms suited for the second stage of 
a two-stage acquisition scheme are introduced in Section 8.4. Common to these 
algorithm is that they need correct timing. Timing can be recovered even in the 
presence of a residual frequency offset [5]. 

8.3.4 Main Points 

Frequency estimation algorithm which operate independently of correct timing 
are discussed. 
NDe algorithms can be derived from the ML theory. 
The maximum manageable frequency offset is determined by the analog 
prefilter shape and the sampling rate. 
There are FF and FB structures. Their tracking performance is comparable. 
Generally, NDA algorithms require statistically independent symbols. The 
phase increment estimator (Section 82.2) also works with an unmodulated 
carrier and a dotted signal. 
A real and symmetric pulse is required for the algorithm in Section 8.2.2 
to obtain an unbiased estimate 6. The other algorithms impose no such 
conditions 
The low-SNR approximation [eq. (8-35)] 

(8-92) 
1=-L 

is the basis for all algorithms discussed. 
The joint (E, 0) estimation can be decoupled as follows: 

ST2 = arg 

2 = arg 

LM,-1 

mp c I+% WI2 
I=-LM, 

(8-93) 

(a-directed timing recovery). The estimates (fi,Q are unbiased. 
Conditions: random data, real, and symmetric pulse g(t) [not necessary for 
R alone to be unbiased, but g(t) has then to be known]. 
In Section 8.2.1 the estimate 6 [eq. (8-32)] is obtained by filtering the received 
signal with a frequency-translated matched filter GMF (ej(“-nl)T8) where 
521 is the trial parameter. 
corresponds to 6. 

The filter with maximum energy at the output 

In Section 8.2.2 6 is obtained by estimating the phase increment (RT,): 

(8-94) 
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The estimate is unbiased for a real and symmetric pulse g (t ) . The estimator 
variance contains a term due to self-noise. The algorithm works for random 
data and unmodulated or dotted signals. 

. A frequency error-tracking system is obtained in the usual way by differenti- 
ating the log-likelihood function (Section 8.3). Error signal: 

(8-95) 

The frequency matched filter response GFMF (ejwTs) equals 

GFMF ( ejwT8) = ; GMF (ejwTe) (8-96) 

The error signal can be interpreted as differential power measurement output. 
Simple approximations of the frequency matched filter can be used to produce 
the error signal. The error signal z(lcT,) is unbiased. It contains self-noise. 
Conditions: random data, real, and symmetric pulse g(t). 
All NDA ND& algorithms discussed suffer from self-noise. Therefore, they 
should be employed to rapidly acquire a coarse estimate. These estimates can 
serve as input to a second stage which is optimized for tracking performance: 
see the next Section 8.4. 
If the transmission pulse shape is unknown it is worthwhile to note that the 
condition for obtaining an unbiased estimate via one of the following methods 
- the direct estimation scheme or any type of a power difference measurement 
system - are the same. This is because the requirement that h,(e) has to be real 
(condition for the direct estimator via eq. 8-52) corresponds in the frequency 
domain to the requirement that the power spectrum of the transmitted signal 
has to be symmetric about the origin (condition for the estimators via the 
power difference measurement). 
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8.4 Frequency Estimators Operating with Timing Information 

In this section we consider frequency estimators which operate on samples 
taken at symbol rate l/T. We assume that timing has been established prior to 
frequency synchronization. This implies that the frequency offset must not be 
arbitrarily large because the allowed frequency offset range is now no longer 
determined solely by the capture range of the frequency estimation algorithm 
itself but also by the capability of the timing synchronization algorithm to recover 
timing in the presence of a frequency offset. Therefore, the structures derived in 
this section are useful when the frequency offset is limited to about IM’/27rl 5 
0.15. This is not a severe restriction because the normalized frequency offset is 
commonly less than 0.1. If this cannot be guaranteed a coarse frequency estimate 
of a first stage operating independently of timing information (see Sections 8.2 
and 8.3) is required. 

In the next section we first derive different estimators classified according 
to the common classes of data-aided, non-data-aided, and decision-directed algo- 
rithms. Then the problem of the joint estimation of the frame position and the 
frequency offset is shortly addressed. In Section 8.4.2 we discuss the performance 
of the algorithms in presence of additive white Gaussian noise and finish up with 
the presentation of the entire feedforward carrier synchronization structure com- 
prising a phase and a frequency estimator. 

8.4.1 Derivation of the Frequency Estimation Algorithm 
We use for our derivation the second formulation (8-8) of the matched filter 

output function. Since we assume timing to be known, we resort to a simplified 
notation Z, (a) instead of Z, (2, Q) : 

The expressions in the sum of (8-97) equals the output of the frequency-translated 
matched filter 

00 

with 

&a(Q) = c q(ms) SC&T - us) (8-98) 
k=-co 

ga(kT,) = $MF(kT,) ejnkT8 (8-99) 

The tilde has been used to highlight the different meaning of & (L?) and zn (s2) : 

%a(fi) = ~~($2) ejnSIT (8-100) 

Using this formulation we get for the log-likelihood function 

Re{rfTsj}=Re a; ,-j0 e-jnTn~n (8-101) 
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For small frequency offsets we approximate gn(lcT,) by the matched filter 
gikO(~T,) = ii’MF(kG). w e will discuss the validity of this simplification later on. 

First, we consider the data-uided case. Data-aided operation means we have 
known symbols, for example, from a preamble. They are denoted by {a~,~}. The 
ML function requires the joint estimation of {R, 61, 

n=(N- 1)/2 

= arg msla;ix c 4i,n e 
-je e -jnTSI 

zn (8-102) 
I 

n=-(N-1)/2 

However, the two-dimensional search over {Q, 0) can be reduced to a one- 
dimensional search: 

n=(N- 1)/2 

arg %$x Re c d,n e -je e -jnTS1 
&a 

> 
?a=-(N-1)/2 (8-103) 

=arg ~7 
I 

IY ($2) IRe{ e-j(s-argfy(‘)})} 

with the obvious notation 
n=(N- 1)/2 

Y(Q) = c G,n e 
-jnTSi 

%n (8- 104) 
n=-(N-1)/2 

The joint maximum is found by first maximizing the absolute value of Y(R) 
which is independent of 8. The second factor Re{ e-j(e-ars(Y(S1)))} is maximized 
by choosing 

b=arg(Y(A)) (8- 105) 

(An analogous result was found in the case of joint (0, e) estimation discussed in 
Section 5.5.) Thus for frequency estimation we only need to maximize 

(8-106) 

Maximization of (Y(Q) I ’ IS e q uivalent to the maximization of (Y (52) Y*(R)). A 
sufficient condition for the maximum is that the derivative of IY (a) I with respect 
to R equals zero: 

)( 

n=(N- 1)/2 
* 

%n c aE,n e 
-jnTfl 

&a 

n=-(N-1)/2 11 

n=(N-1)/2 

e-jnTa zn c a:,, e-jnTn 
n=-(N-l)/2 

n=(N-1)/2 

=2 Re c a:,, (-jnT) e-jnT’ Y*(O) 
n=-(N-1)/2 I 

(8-107) 
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After some obvious algebraic manipulations of (8-107) we get 

o= 

= (-jnT) zn e-jnTA 

(8-108) 
ej arg (Y’(h)) 
\ 1 

,-jf4 
/I 

Since jY(Q)l # 0, we need only to consider the Re{ .} expression of (s-108). By 
reordering the terms of the sum in (8-108) and introducing the short-hand notation 

we get 
b 1) 1 (8-109) 

0 = Re e -j’jb, a~ n+l zn+l e-j(n+lP’fi - a*o,n h e 
-jnTh 

, 

= Re 2!Le 
. - 

jbnagln ,Zn, -JnTn e-j’ aii n+l (IX,, h+l z;T. e -jhT _ 

The expression before the bracket can be simplified. For high SNR the matched 
filter output equals approximately 

&a N ao,n e jeo $%Tn 

Using this result we obtain for 
. - 

a;,n ,Zn, -fnTn ,-ji 3-e 

,j(%-fi)nT ,j(eo-i) w 1 

Thus 

n=(N-1)/2 

0 = Re c jbn 
at ntl 
) z,+l 2: e -jTh _ 

n=-(N-1)/2 a;;,, 

(8-111) 

(g-112) 

1 

11 
(8-l 13) 

n=(N-1)/2 

= Im c 
b, ,-jTA 

n=-(N-1)/2 

(2 %n+l%;)] 

From this equation a frequency estimate is directly obtained by 

fl=(N-1)/2 

fiT = arg 
a;, nt1 c b, ) hl 4J 

n=-(N-1)/2 a2;,n 

(8-l 14) 
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The algorithm performs a weighted average over the phase increments 
arg (zn+l 2;) of two successive samples. The weighting function b, is 
maximum in the center of the estimation interval and decreases quadratically 
toward the boundaries. The maximum phase increment that can be uniquely 
attributed to a frequency offset is 7~. A larger positive phase increment cannot 
be distinguished from a negative one of value 27r - fiT. Thus, the capture 
range of the algorithm equals 

PTI 1 
27r 3 

(8-115) 

This algorithm can be viewed as belonging to either the class of the rotational 
frequency detector described by Messerschmitt [l] or to that of the cross-product 
detector described by Natali [2]. It is similar to the algorithms proposed by 
Tretter [3], Classen [4], and Kay [5] for estimating a single frequency in a noisy 
environment. 

The decision-directed variant of the estimator coincides with (8-l 14) if the 
known symbols are replaced by (tentative) decisions. 

Taking the complex number (u:++~ /u:,~) (zn+l 2;) to the Mth power yields 
the NDA version of the algorithms for M-PSK: 

hT= $ arg 
n=(N-1)/2 

c bn (G3+1 zr*y (8-116) 
?I=-(N-1)/2 

We will later see that the following generalization, which resembles the gener- 
alization proposed by Viterbi and Viterbi [6] for a carrier phase estimation rule, 
is useful: 

‘I 
(8-l 17) 

,,jM(arg(2n+m+l)-argt~r+m}) 

1 

where dm is an arbitrary filter function, F( 1~~1) an arbitrary nonlinearity, and L 
is the estimation length with L < N. The frequency offset which the estimation 
algorithm can cope with is upper bounded by lQT/27rI 5 &. A block diagram 
of the algorithm is shown in Figure 8-18. 
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Figure 8-18 Block Diagram of the Feedforward Frequency Estimation Structure 
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8.4.2 Performance in the Presence of Noise 
In this section, mean and variance of the frequency estimate are analytically 

investigated and the results are verified by simulation. The variances are compared 
with the Cramer-Rao bound. First estimators employing the optimal filter with 
coefficients b, are dealt with and then other filter functions which are easier to 
implement are addressed. 

It is conceptually useful to split Z, into a useful part and a random part. The 
useful part consists only of the unknown parameter set { 00, no> and the symbol 
a, corresponding to the sample interval nT 

z, = e j(n0 nT+Bo) 
%a h@T) + c al ej”“(‘-“)Thn((l - n)T) + n(nT) 

l#n >- 
\ noise 

v 
IS1 random 

(8-118) 

where ha(nT) is here defined as hn(nT) = E g(kT,) ejSlokTs gMF(nT - C). 
k=-oo 

Recall that Zn (Q) was approximated by xn (a = 0) for small frequency offset, 
see remarks following eq. (8-101). The product of two consecutive samples is 

* zn 2,-l = ej noT (a, ha(O) u~-~~;LE(O) 
(8- 119) 

+ J$dQ-@T), an-lhn(OT), ISI, noise}) 

where F(s) is the abbreviated notation for the remaining contributions. 

The mean of the estimate i&obtained by taking the argument of the expected 
value of the phasor (2, z:- r ) 

E[AClT] = + WS{Cbn E[(zn zZ-l)“]} (8-120) 

It can be shown from (8-l 19) and (8-120) that the noise does not introduce bias. 
A bias can arise only from the IS1 term caused by the mismatched filter. This 
bias can be analytically assessed if we average over the random data an which 
we assume to be statistically independent. However, it seems to be more efficient 
to resort to simulation. Figure 8-19 shows the difference between the estimated 
frequency offset and the true value versus the frequency offset A f. Each point has 
been obtained by averaging over lo* statistically independent frequency estimates. 
The curves are parametrized by the estimation interval length L, the SNR=E,/No, 
and the rolloff factor of the pulse shape. The simulation verifies that the bias is 
very small (less than 10 -3 for ]SloT/2nl = IAfT < 0.1) and diminishes with a 
larger rolloff factor. It is found that the estimate is nearly unbiased as long as the 
influence of the mismatched filter is not too strong. 

We evaluate and discuss the variance for Af = &/2?r = 0, and verify that 
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Figure 8-19 Simulated Frequency Error %$T (BPSK Transmission) 
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the properties for Af # 0 remain unchanged by means of simulations. We get 

var k&T M [ 1 (8-121) 

This latter approximation is valid since the imaginary part of C b, (z, .zi- 1) M 

has zero mean (a condition which coincides with the demand toLbe unbiased) and 
because the variances of both imaginary and real part are small compared to the 
squared real mean. 

Applying this approximation we obtain the following expression after a 
straightforward calculation:’ 

12 1 12 1 Lq-1 1 
var [ 6T I = m + - - - 

L(L2-- 1) 2E,/No 5 L L2 - 1 (2~%/&)~ 
(8- 122) 

’ The MF was tailored to a root-raised cosine transmission pulse in such a way that for the synchronized 
MF output holds z(nT) = an + N(n) with an as transmitted symbol with E [ [anI = 1 and N(n) 
is the filtered noise with variance var[N (TX)] = No/E, . 
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which is valid for the unmodulated, the data-aided, and decision-directed cases 
(provided that all decisions are correct). 

Analytical results for modulated transmission can be obtained only at great 
effort. Exemplarily, we mention the results for BPSK for which we find the 
following expression 

[ fiT 1 
12 1 1 

var = - L(L2 - 1) 2J%/No + (2E,/No)2 

12 1 L2+ 1 4 8 4 
+ rg-zr 

- l (24%/JJo)2 + (2J%lN0)3 + (2&lN0)4 

(8-123) 
Figure 8-20 shows both analytical and simulation results for the unmodulated cases, 
and Figure 8-21 for the BPSK and QPSK cases. The results show that the behavior 
of the frequency estimate variance is well approximated by the above expression 
also in the presence of a frequency offset A f T = 0.1. 

The solid line in Figures 8-20 and 8-21 is the leading term of the Cramer-Rao 
bound (CRB) (6-22) for frequency estimation. 

We observe: 

1. The CRB is only met at high SNR. The algorithm is thus asymtotically 
efficient. 

2. The region of practical interest, however, are at low to moderate SNRs. Here 
we see a very large deviation from the CRB. For the data-aided case (8- 122) 

Frequency Estimate Variance 
Optimal Filter 

Figure S-20 Frequency Estimate Variance var $$ ; I 1 
unmodulated carrier, C!oT/27r = A f T = 0.1, & = b ,2, SNR=E, /No 
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Frequency Estimate Variance 
Nonzero Offset: normalized frequency offset 10% 

. 

Figure 8-21 Frequency Estimate Variance var $$ ; [ 1 
optimal filter, SNR=E, /No 

the dominant term in the variance decreases quadratically with ( 1/SNR)2. 
The situation is far worse for MPSK modulation, due to the nonlinear oper- 
ation performed on the noise. For BPSK the dominant term decreases with 
(l/SNR)4 while for QPSK the algorithm is no longer applicable. 

3. Unfortunately, at low SNR the dominant term decreases only linearly with L 
thus requiring large estimation intervals. 

4. A remedy for this behavior is to consider a multiple of the phase increment, 
(DRT), as discussed in Section 8.4.3 (D-spaced estimator). 

The performance of the estimator can be improved by choosing an appropriate 
nonlinearity F ( Izn I). If we select the nonlinearity F( 1 zn I> = 1, the simulations 
(Figure 8-21) reveal that the variances (shown for BPSK and QPSK) now cling 
more tightly to the Cram&-Rao bound. 

Applying (8-121) when an integrate and dump filter is employed (instead of 
the filter function b,), for the unmodulated case we find 

[ fiT 1 
2 1 2 1 

var =-- 
L2 2E,/N,, + ‘L (2Eb/No)2 

and for BPSK 

(8-124) 

Var LhTl = $ (A + (&o)2) 
(8- 125) 

8 

+ z (zE,;N,)a + (2Es;No)3 + (2 E.;No)~ 
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Frequency Estimate Variance 
Offset and Rolloff 
BPSK, SNR= 1 Ode, L= 17 
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Figure 8-22 Influence of the Rolloff and of ]G?aTI on the 
Estimate Variance var 

A comparison between (8-122) and (8-124), (8-123) and (8-125), respectively, 
reveals that all expressions decrease with l/L for low SNR and large L. Only at 
high SNR the optimal filter prevails against the integrate and dump filter. Since the 
implementation of the integrate and dump filter is significantly less complicated 
compared to that of the optimal filter with the coefficients bn, and since the 
performance improvement is small, an integrate and dump will be used in practice. 

A last comment concerns the influence of the mismatched filter in case of a 
frequency offset. Strictly speaking, all analytically obtained variance expressions 
are only valid for the case fit = 0. The simulation results and especially the 
simulations reported in Figure 8-22 indicate that the applied approximations do 
indeed hold. The variance is influenced mainly by the degradation of the expected 
value of the real part of c b, (z, .zi _ r ) M in (8- 12 1). This value becomes smaller 

L 
in the case of lnaT # 0 because Fbn(OT) decreases with increasing frequency offset. 
But for frequency offsets which are small in comparison to the symbol rate the 
degradation remains very small. An intuitive explanation of why the influence of 
the IS1 terms [compare (8- 11 S)] is so small is that these contributions are averaged 
out if the estimation length is properly chosen; see Figure 8-19. 

8.4.3 Miscellaneous Modifications of DA Estimators 

Joint Frame and Frequency Synchronization 

Common to all NDA frequency estimators is their poor performance for low 
and medium SNR values. The reason is that due to the nonlinear operation required 
to remove the modulation the noise is strongly increased. 
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For TDMA applications with short data packets, the acquisition time length of 
common frequency estimation structures may be too long (for a large modulation 
index M > 4 and moderate E,/Na <7 dB) if the algorithm has to operate 
solely on random data. To overcome this problem associated with non-data- 
aided (NDA) frequency estimation a typical packet format used for burst mode 
transmission employs a preamble at the start of the packet. Besides a unique 
word (WV) used for frame synchronization such a preamble typically incorporates 
a clock recovery acquisition sequence and an unmodulated carrier sequence for 
assisting the carrier frequency estimation. This preamble is followed by the random 
data part. However, in order to increase the transmission efficiency a separate 
acquisition preamble for each of the synchronizers is inefficient. 

A remedy to this problem is to employ a data-aided (DA) frequency estimation 

C [&a+1 z;] (aE,n+l aO,n 

LF 

where the data from the UW are used for both frame synchronization and frequency 
estimation as well. But DA operation is only possible after frame synchronization 
has been established, because the relative position of the sequence {Ua,n) to the 
sequence {zn} must be known exactly if we want to make use of the known 
symbols ce,n. For this reason, frame sync must be performed prior to the DA 
operation or at least simultaneously. 

This requirement can be relaxed if the symbols of the preamble exhibit 
some kind of periodicity. For example, if an unmodulated sequence or a 
(+ 1, - 1, + 1, . . . ) modulated BPSK preamble is employed, then the exact position 
of the preamble within the received sequence is not required, since the product 

Of C”E,n+l Q,n ) is constant and known a priori. Not being required to know the 
exact position leads to a reduction in the channel transmission efficiency since now 
the preamble must contain a specific carrier acquisition sequence. 

The following approach overcomes this deficiency. The symbols of the 
unique word are differentially encoded in such a way that the resulting sequence 
Id,) = {G+l a,} possesses the property of commonly used sequences for frame 
detection. Now frequency estimation can be performed simultaneously with frame 
detection as follows: 

(8-127) 

2. The frequency estimate is then determined by 

hw 
it!’ = art!, c [+I &ml (8-128) 

I=1 

The performance of this simple correlation rule for obtaining the frame start 
position is not optimum from the point of view of separate frame synchronization. 
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But the approach is a robust method to limit the required training symbol sequence 
length. 

D-Spaced Estimator 

The performance of the frequency estimate can be significantly improved if 
the product 

CL %P,+l $+I- 1 ] dr) is replaced by ( [ ++I Z;+I-.D] 4) : 

hT = -$ arg 
Luw 
c [%,,-I ~f-,-~ 
I=1 IP =P 

(8-129) 

The underlying hypothesis is that the variance of the estimate does not depend on 
the magnitude of the frequency value to be estimated. Therefore, the idea is to 
generate an estimate of a virtual frequency offset DRo which is a multiple of the 
frequency offset s2c. The value D must be a_ positive integer and (Di&T < r) 
has to be fulfilled. The estimate variance of S2T is given by 

(Note the sequence {a,) belonging to the UW now has to be chosen in such a 
way that (a;++1 UO,n+l-D } = WH 

Without having increased the implementation effort we have thus reduced the 
estimate variance by at least a factor of D [compare (8-130) and Figure 8-231. 
The performance of the frame detection remains unchanged. 

The same principle can be applied to NDA estimators provided that the 
frequency offset obeys lRoTl < 1/(2MD). 

8.4.4 Example of an All-Feedforward Carrier 
Synchronization Structure 

Figure 8-24 shows the block diagram of a complete synchronizer chain for 
small frequency offset 1 iIT/ < 0.15. Timing is recovered in the presence 
of a frequency offset employing the square and filter algorithm of Section 5.4. 
Next, the frequency offset is estimated and compensated for by means of a timing- 
directed algorithm (see Section 8.4.3) operating at symbol rate. The carrier phase 
is recovered by a generalized form of the ML FF algorithm (see Section 5.10.1): 

B, = -!- arg M ‘~Fl%n+i I p (w (h+r)-(n++q + i2” 
M (8-131) 

1=-L V 
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Frequency Estimate Variance: D-Spaced Estimator 
Data Aided, UW 51 symbols 

m A fT=o.ls 
E AfT=O.l 

Figure 8-23 Variance of the Estimated Frequency var [hT/2r] 

Note that the phase estimation algorithm has to cope with a residual frequency 
offset. Therefore, the estimation length has to be optimized with respect to the 
expected phase fluctuation resulting from the residual frequency offset As2 = 

(%- ^> s2 or from oscillator imperfections. Under high SNR approximation the 
optimal length Lp for a given Af can be shown to be bounded by 

2Lp + 1 < 
1 

2MAfT 
(8-132) 

$!!!%4 
sample ’ 

Decoder 
and other 
units 

Frame 
Detection 

L,=51 

Figure 8-24 Demodulator Block Diagram; 
L(, 1 denotes estimation interval 
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10-2 

Phase Error Variance 
BPSK transmission, SNR 4 dB, 

I frequency offs@ AfT = 10m2 

- analysis 

0 simulation 

5.0 10.0 15.0 

length Lp 

Figure 8-25 Phase Estimate Variance, Af T = 10B2 

where M is the modulation index. (For low SNR the result [6, eq. A131 should 
be used.) Figure 8-25 shows the dependence of var b [I on the parameter Lp for a 
given SNR and a fixed frequency estimate error LJ f. The minimum of the curve 
indicates the “best” Lp. The theoretical results were obtained by using the results 
of [6, eq. A13]. 

The post-processing structure shown in Figure 8-24 is necessary to perform 
the phase unwrapping, which is necessary as a result of the restricted interval 
[-r/M, X/M] of the phase estimator; see Section 5.10.1. A detailed analysis of 
the above synchronization structure is found in [7]. 

Simulation Results 
For an AWGN channel the bit error rate (BER) performance of differentially 
encoded QPSK transmission is shown in Figure 8-26. The degradation of the 
BER is not due to synchronization imperfections but results from the mismatched 
filter (difference between MF bound and the ++ curve). 

The effect of the mismatched filter is twofold. First, the magnitude of the 
samples taken at the optimal sampling instant is reduced. Second, IS1 is created 
[compare (8- 11 S)] which is the main source of the degradation of the BER. If 
the degradation is intolerable (i.e., if (ReT/27rJ > 0.1 and the rolloff CY < 0.5) 
a separate decoder path is required where the frequency offset of the samples is 
compensated before they enter the matched filter. The BER curve -+ in Figure 
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Bit Error Rate 

100 7 QPSK transmission, rolloff 0.35, AfT=O.lS 

- 
system without 
separate decoder path 

m simulated system 

Eb/No [dB] 

Figure 8-26 Bit Error Rate of the Demodulator of Figure 8-24 

8-26 demonstrates that by an appropriate choice of the synchronization parameters 
the performance of the demodulator is near the theoretical optimum for Eb/Nc 23 
dB. 
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8.5 Frequency Error Feedback Systems 
Operating with Timing Information 

In this section we are concerned with timing directed frequency feedback 
tracking systems running at symbol rate l/T. A frequency error signal is obtained 
in the familiar way by differentiating the log-likelihood function 

gj c Iz(nT+eT,Q)12 
N 

(8-133) 

The derivation is analogous to that given for non-timing-directed frequency error 
feedback system. The resulting frequency tracking loop is shown in Figure 8-27. 
The signal and frequency matched filters of Figure 8-27 are the same as in Section 
8.3; see eq. (8-68). There are, however, fundamental differences compared to the 
non-directed frequency control loop of Section 8.3. First, the impulse response 
of the filters gMF (ET,, E) and gFMF( IcT,, E) and consequently the error signal 
z(nT; &) are a function of the timing parameter E. Second, an error signal is 
produced only at symbol rate l/T. Both properties have a profound influence on 
the loop behavior as will be shown below. 

In the tracking mode we may assume that timing is nearly perfect, E  ̂N eo. 
This is not the case in the acquisition mode where no knowledge about the correct 
timing parameter is available. Therefore, understanding of the loop behavior as a 
function of an arbitrary value of the timing error A& is necessary. In Figure 8-28 
the S curve is plotted as a function of Ae. All filter functions correspond to a 
transmission pulse having a root-raised cosine spectrum shape with cy 5 0.5. The 
pulse energy of g(t) is normalized to 1. 

From Timing Estimator 

I I I I 
Frequency 

2 m”T3 Error - 
Detector 

x(nT) 

Loop 
Filter 

Figure 8-27 Block Diagram of a NDA De Frequency Control Loop 
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S-Curve: Different Timing Errors S-Curve: Different Timing Errors 
QPSK QPSK 

Figure 8-28 S curve for Different Timing Errors E, Es = 1 

For all values of AE displayed in Figure 8-28 the sign of the error signal is 
correct in the mean and its magnitude is larger than zero. There exist no false 
lock points and the loop will always pull into the only equilibrium point. The 
S curve for AE = 0.5 requires special attention. Using Table 8-4 it is readily 
verified that the slope of the S curve at the origin becomes zero. Thus, the loop 
will not pull in for this value of AE. However, the timing recovery scheme which 

Table 8-4 S Curve of the DE FED; S curve Is Odd Symmetric about Zero 

O L AfT < ’ T ${sin2 (w) + f(l- q) sin (F) (l+ cos (F))} 

asAfT< + 
1-O 

l-a< 
AfTd 

$ 
{ 

I+sin2 (&[AfT - l]f ;(I+ F)sin(I[AfT- 119 

l<AfT< 
l+a cos2 (&[AfT - 11) - 2 1- y ( 

) sin (E[AfT-I])} 
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runs concurrently with the frequency synchronization unit will be able to settle 
to equilibrium even in the presence of a small frequency error. Subsequently, the 
frequency control loop will be able to pull in and complete the acquisition process. 

8.5.1 Performance in the Presence of Additive Noise 
Before we analyze the performance in the presence of noise we derive 

conditions on the pulse shape g(t) for the algorithm to be free of self-noise. We 
assume perfect timing, noise-free conditions, and $20 = 0. Under these conditions 
the matched filter output equals 

(N-1)/2 
t(nT) = c %q(m - n)T) (8-134) 

m=-(N-l)/2 

with 

The frequency matched filter output equals 

(N- 1s 
ZFMF(nT) = c UlhFMF ((I - n)T) 

I=-(N-1)/2 

(8-136) 

with 

hFMF((l- n)T) = 2 g(kT, - nT)gFMF(lT - &) (8-137) 
k=-cm 

The error signal 

Z(nT) = Re{%(nT) %&&nT)) (8-138) 

becomes identically zero if at least one of the terms of the above product vanishes. 
Since the matched filter output is unequal to zero, the only hope of avoiding self- 
noise is that the frequency matched filter output is identically zero at all times nT. 
This is the case if we can show that 

hw(IT) = 0 v z (8-139) 

[besides the trivial solution ~FMF (t) E 01. 
Now 

AIT 

bw+Q) = $ J HFMF (ejWT) ejwT1 CL (8-140) 
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The only solution is the trivial one HFMF (ejUT) E 0 for all w. The spectrum of 
the sampled filter response ~FMF(U’..) can be expressed as 

1 OQ 
HFMF (ejuT) T c =- m=-mhF(W- $ m> (8-141) 

If the time-continuous frequency response HFMF (w) possesses odd symmetry about 
a/T, 

H (8- 142) 

and vanishes outside the baseband (Iw/27r1 < l/T), then h(lT) q 0 for all 1. The 
frequency response HFMF(W) is the product of 

HFMF(W)=G(W) @'ME'(W) (8- 143) 

- RRCF Filter 

L 

_ FMF Filter 

. product of 
- RRCF and FMF Filter 4 

4 
fT . 

L .., , 1 .., , , , 

Figure 8-29 Transfer Function of GRRC , GFMF , and HFMF with cy = 0.5 
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It can easily be verified that (8-142) is fulfilled for a root-raised cosine filter 
characteristic (see Figure 8-29). 

The performance of the loop in the presence of noise is evaluated next. We 
assume perfect timing and a root-raised cosine pulse. 

The error signal in the presence of noise equals 

z(nT) = Re n(kTs) gMF(-kTs + 

(8- 144) 

The expected value with respect to noise equals zero, as required for an unbiased 
estimate. Since the frequency error is free of self-noise, the variance comprises 
the two terms azx N and agXN, The variance is given by 

S2T 
var -5F 1 1 = F Sz(ejwT) Iwzo (8-145) 

After some lengthy and tedious algebra we find exemplarily for QPSK 

1 1 fiT a2 

Var 5 = 
(8-146) 

where 1Cg is the slope of the S curve in the origin, SNR=E,/Nc and cy is the 
rolloff factor. Simulation results in Figure 8-30 closely agree with the analytical 
result. Similar results can be obtained for higher order modulations. 

8.52 Appendix: Computation of var{O} as a Function of Es/No 
We consider the case of M-PSK and M-QAM transmission and assume perfect 

timing and fis = 0. Under these conditions the matched filter output in the 
presence of noise2 equals 

z(nT) = %z + 2 n(kTs) gMF(nT - /CT,) (8-147) 
k=-co 

2 The normalization of the MF and the FMF were tailored to a root-raised cosine transmission pulse 
in such a way that the synchronized MF output holds z(O) = a, + N(n) with an as transmitted 
symbol with E [ ian 12] = 1 and N(n) is the filtered noise with variance var[IV(n)] = No/E,. 
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Frequency Estimate Variance 
QPSK 

4*1o-s - 

5.0 7.5 10.0 12.5 15.c 

Es/No [dB] 

Figure 8-30 Simulated Variance Parametrized by the Loop Bandwidth; 
T/T3 = 4 and MF and FMF with 41 Taps Each (QPSK transmission) 

and the frequency matched filter output 

ZFMF(nT) = 0 + 2 n(kT,) gFMF(nT - kT,) (8- 148) 
Ii?=-cm 

The output of the frequency error detector is given by 

(8-149) 

The variance is determined using a linearized model of the frequency control loop 
and is given by 

(8-150) 
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Figure 8-31 Linearized Model of the Frequency Control Loop 

where Ka is the slope of the S curve in the origin, ~BLT is the equivalent two- 
sided loop bandwidth of the transfer function of the loop in Figure 8-3 1, and 
S, (ejzrfT) is the power spectral density of the frequency error output. Generally, 
(8-77) is only valid if the power spectral density is flat about the origin. 

The power spectrum density S, (ejzrfT) f-o can be calculated from the sum 

of the autocorrelation functions II,, via 
I- 

S, (ejasfT) ljzo = e R,,(iT) 
i=-m (8-151) 

where the autocorrelation function of the frequency error detector output x(ZY’) 
is given by 

R,,(i) = E[x(ZT + iT) z(ZT)] (8-152) 

The tedious determination of many values of the autocorrelation function must be 
performed if, as in our case, we cannot assume in advance that the power spectrum 
is flat, i.e., R,,(iT) 2 0 V i # 0. Below, we will see that it is the Nyquist 
properties of the transmitted pulse and the property of the frequency matched filter 
which lead to the self-noise-free characteristic results in a comfortable flat spectrum 
and thus confirm that our approach in (8-77) is valid. 

Using (8-149) we start from the following expression of the frequency error 
detector output: 

247377 = z(n)Z$MF(n> + Z*(~>~FMF(~) 

= an (1) 

+ 2 n(kT,) gMF(nT---IcT,) 2 n*(kT,) g;MF(nT--T!) (2) 

k=-oo k=-m 
00 

+ a1”, c +T,) gFMF(nT - hT,) (3) 
k=--60 

k=-oo k- ---00 
(8-153) 
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Inserting (8-153) into (8-152) we get 16 terms. Most of them vanish due to 
the assumed independency between the noise and the transmitted symbols. 

As an example we will now consider the expressions which determine the 
Sx IV part. We have to take the expectation of the following expressions with 
respect to the data and the noise: 

J%xN = q+q c((n + +qsxr\r (8-154) 

whereby only the expressions (1) and (3) in (8- 153) give a contribution to Esx~. 
For all i # 0, the above equation equals zero since we assumed the transmitted 
symbols to be uncorrelated. For i = 0 we obtain 

1 
ESXN = 4 {c lgFmj2(nT - LT,) (2Re{ aC2n2} + 2]~]~1n]~)} (8-155) 

The numerical value of (8-155) can easily be calculated in the frequency domain 
using the Poisson sum formula. 

Applying the above approach to all of the other terms we find that all 
contributions to R,, (iT) are equal to zero for i # 0. Therefore we can conclude 
that the power spectral density SC (ejarfT) is flat and the expression for a2 = 

var fiT/27r in (8-77) is valid. [ 1 

8.53 Main Points 

Frequency estimation algorithms which require correct timing are discussed, 
Both DA and NDA types exist. 
There are two basic types of frequency detectors. The first is based on the 
examination of the power spectrum (Section 8.5) of the received signal, and 
the second estimates, in essence, the phase increment between two subsequent 
samples (Section 8.4). 
For small frequency offsets all synchronization operations can be performed 
behind the matched filter. 
Removing the data dependence by a power operation is not recommended for 
high-order modulation schemes. 
Performance: The algorithms are asymptotically efficient. But at SNR regions 
of practical interest there exist large deviations from the CRB. The estimate 
is (nearly) unbiased for small (aT’]/27r < 0.15. 
There exist sufficient joint frame and frequency algorithms. 

8.6 Frequency Estimators for MSK Signals 

The MSK signal [eq. (3-3)] contains a term which is proportional to the 
frequency offset R 

s(t) = exp{j[Qt + $(t - ET)]} (8-156) 

with 
4(t) = 2nh c w#(t - nt) (8-157) 
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The MSK signal is not band-limited. The analog prefilter must therefore be wide 
enough in order to pass most of the energy of the signal s(t) in the presence of 
a frequency uncertainty Q. 

The received signal is sampled at rate l/T3 to obtain rf (ICT,). By lVJ = T/T3 
we denote the integer relating symbol and sampling rate. We introduce the double 
notation 

Q+ = 4 L(bM,+a)T. (8-158) 

with 0 5 i < AIs - 1. The phase increment over one symbol T is obtained by 
multiplying rk,i by r;-I,a 

ck,i = Tk,ir;-l,i (8-159) 

ck,i is a function of the random data sequence {a}, the timing parameter E, and 
the frequency offset Q. To remove the data dependency, ck,i must be processed in 
a suitable nonlinearity. Here squaring of ck,i is sufficient as will be seen shortly. 
The sampled Signal rk,a iS 

rk,i = e j[$(kT+(i/M,)T -EoT)+Slo(kt(ilMB))TtBol + nk , 
1% 

(Qc, Q) : true, unknown parameter values 
(8-160) 

To verify whether Ck,; produces an unbiased non-data-aided (NDA) estimate we 
have to take the expected value of (ck,i)’ with respect to data and noise. The 
noise samples at symbol rate l/T are assumed to be white Gaussian noise with 
variance 0: = -$nkj’] = E,/IVo. The data are assumed to be independent and 
identically distributed (Lid.). 

Inserting the sampled signal Tk,d into (ck ,i)2 yields 

c& = e j2Ad’k,, ej2aoT + terms with noise (8-161) 

with the phase increment A4k,a = +(lcT - AQT) - $((lc - 1)T - AQT) and the 
timing error 

A&; = &o - $- 
8 (8- 162) 

= &o - &i 

Since the frequency pulse of the MSK signal is of duration T, only three symbols 
are present in the phase increment A4k,a: 

A&i = %h{(l/2)~k-2 - ak-zq((l - A#) + ak-lq((l - A&a)T)}, A&i > 0 

= 2di{(1/2)C&..l - ak-&--A&~~) + ukq(-A&$-‘)}, Aei < 0 
(8-163) 

Taking the expected value with respect to noise and data a straightforward cal- 
culation shows that all terms of (8-161) involving noise vanish. With i.i.d. data 
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symbols we obtain the following result: 

E{ c;,i} = (l/4) [e-h + e-y ej2SloT 

+ (l/4) [,j4rh[2q((l-Aci)T)-1/2] + ,-j4rh[2,((l-Ac;)T)-1/2]] $2SloT (8-164) 

Using in the previous equation 

q(t) = 
h = l/2 

OltlT 
(8-165) 

we finally obtain 

E(cE,il = -( 1/2)[1+ cos (27rA~)]e~~“~~ (8-166) 

We observe: 

1. The absolute value of the expected value is independent of s2c. Its maximum 
is obtained for IA&i] + min 

2. The argument of E c& 
1 > 

is a function of the frequency offset fit only. 

From these observations we deduce that the (E, 0) estimation can be decou- 
pled. The estimator has the following structure. The preprocessed signal ~2,~ at 
rate T, = T/M,, 0 5 i 5 Al, - 1 is demultiplexed in Ma parallel data streams 
c&J, “‘> c;,M,-l. The expected value operation is approximated by a time aver- 
age in M, parallel filters 

1 
L-l 

Uk,i = - 
L c 4,i O<i<M,-1 

n=O 

(8-168) 

From (8-167) follows that the sample position i which produces the maximum of 
]vk i I is the estimate of ec with the minimum residual timing error A&i. The index 
i thus plays the role of a quantized trial parameter A&i. Due to the quantization 
the estimate e is in general biased with a maximum bias of 

E[h] L &- 
J 

(8-169) 

The argument of the filter output Vk, i where i is the position with minimum residual 
timing error is an unbiased estimate for the frequency offset R: 

fiT = 112 arg {l/k,i} 

i : location of IA&i (min 
(8-170) 

Figure 8-32 shows the structure of the (E, Q) digital feedforward demodulator 
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8.6.1 Performance Analysis 
Using standard techniques the variance of the frequency estimate can be 

analytically obtained under the following idealized conditions: 

1) s2c = 0 

2) A&i = 0 (8-171) 

3) matched filter reception 

The estimate 6 is given by 

(8 172) 
1 

=- 
2 arg $ c Re(&) + j Im(&) 

k 

If the timing error is zero, the mean of the real part of vk,i is much larger than 
the mean and the variance of the imaginary part. Then, the same following 
approximation as introduced in Section 8.4 [eq. (8121)] holds: 

( > 
1 E{ e4%))2} 

var fiT M - 
4 E{Re(qi)}2 

(8-173) 

After some tedious algebraic operations one finds 

-(E) = (k)2{ &&+ (2E,;Noy] 

8 1 

[ 

2 1 
+- 

L (2J%/Nl>2 + (2J5s/~o>3 + (2E,/&)4 I) 
(8-174) 

It is interesting to note that the expression (8-174) coincides with the results ob- 
tained for the BPSK NDA estimator in Section 8.4, eq. (8-125). But be aware 
that in the above calculation we did not take into account the IS1 effects which 
arise if the analog prefilter cuts away the spectrum of the MSK signal beyond 
w  > 27rB, and we neglect that the noise taken at symbol rate is correlated in case 
of a matched filter reception of an MSK signal. 

Additional Remarks 
The bit error performance of the demodulated structure of Figure 8-32 for differ- 
entially coherent reception is discussed in [l] taking into account the distortion 
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Figure 832 Feedforward Estimator for Timing and Frequency Offset 

caused by the analog prefilter for small BT products as well as the imperfect 
timing estimate. The paper addresses the AWGN and Fading channel. 

Main Points 

. Exemplarily it was shown that the same methods - which were derived 
for linear modulated signals - can be applied to MSK signals. 

. For MSK signals the (e, 0) estimation can be decoupled. 

. Whereas the frequency offset is unbiased, the timing estimation suffers 
from a bias. 

8.7 Bibliographical Notes 

Multi carrier systems are of great practical interest for transmission over frequency- 
selective-fading channels [2, 31. A good introduction into the subject can be found 
in the paper by Bingham [4]. Additional references are listed below, 

Exact frequency estimation is of particular importance. The Ph.D. dissertation 
of Ferdinand ClaI3en [5] thoroughly discusses the algorithm design and performance 
analysis of a digital OFDM receiver. It includes a bibliography containing major 
references. 
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Chapter 9 Timing Adjustment 
by Interpolation 

In this chapter we focus on digital interpolation and interpolator control. In 
Section 9.1 we discuss approximations to the ideal interpolator. We first consider 
FIR filters which approximate the ideal interpolator in the mean square sense. 
A particularly appealing solution for high rate applications will be obtained if the 
dependency of each filter tap coefficient on the fractional delay is approximated by 
a polynomial in the fractional delay. It is shown that with low-order polynomials 
excellent approximations are possible. 

In Section 9.2 we focus on how to determine the basepoint m, and fractional 
delay Pi, considering either a timing error feedback system or a timing estimator. 

9.1 Digital Interpolation 

The task of the interpolator is to compute intermediate values between signal 
samples z(lcT,). The ideal linear interpolator has a frequency response (Section 
4.2.2): 

HI (ejwT6, pT,) = w - Fn, pT,) (9-l) 
9 

with 
HI@, pT’) = { ~exdjw~T.) lw/24 < 1/2T, 

elsewhere 

and is shown in Figure 9-l. 

P-2) 

Figure 9-1 Frequency Response of the Ideal Interpolator 
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Figure 9-2 Impulse Response of the Ideal Interpolator 

The corresponding impulse response (Figure 9-2) is the sampled si( z) function 

h~(nT,, j..iT,) = si 
[ 
+T,+pT,) 1 (n= ..‘) -1,OJ ,...) (9-3) 

s 

Conceptually, the filter can be thought of as an FIR filter with an infinite 
number of taps 

b&J) = hr(nT,, I-G) 

= si [+T,+ST,)] (n= . . . . -1,OJ ,.‘.) 
(9-4) 

s 
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. . . . . . 

Figure 9-3 FIR Filter Structure of the Ideal Interpolator 

The taps are a function of p. For a practical receiver the interpolator must be 
approximated by a finite-order FIR filter 

In Figures 9-3 and 9-4, the FIR filter structures of the ideal and the fourth-order 
interpolating filter, respectively, are shown. 

The filter performs a linear combination of the (11 + 12 + 1) signal samples 
X( nT8) taken around the basepoint ?-r&k : 

Y(mk~ + Pz) = c x[(mk - n)Z] h,&) 
n=- I1 

(g-6) 

9.1.1 MMSE FIR Interpolator 
The filter coefficients h,(p) must be chosen according to a criterion of 

optimality. A suitable choice is to minimize the quadratic error between the 

Figure 9-4 Fourth-Order Interpolating Filter 
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impulse response of the ideal interpolator and its approximation. 

2xB 

e2(14 = 

Jl 

ejwTBp _ 5 hn(p)e-jWTan 2cZ~ + min. (9-7) 

-27rB 7a3- I1 

where B is the one-sided signal bandwidth. The optimization is performed within 
the passband of the signal x(t). No attempt is made to constrain the frequency 
response outside B. 

The result of the optimization for p = 0 and ~1 = 1 are immediately evident. 
For 1-1 = 0 the integrand becomes zero in the entire interval for 

L(O) = {; 
n=O 
else 

For ,Q = 1 we obtain 

h,(l) = {A n = -1 
else 

From (9-6) we learn that for these two values the interpolated function equals the 
sampled values of the input signal as was to be expected: 

(9- 10) 

How should the intervals 11 and 12 be chosen? It seems plausible that maximum 
accuracy is obtained when interpolation is performed in the center interval. From 
this it follows that the number of samples should be even with 11 = N and 
I2 = N - 1. The reader interested in mathematical details is referred to the paper 
by Oetken [ 11. 

Example: MiWE FIR Interpolator with 8 Taps 

Table 9-1 Coefficients of the MMSE interpolator with B = 1/4T, and N = 4 

n\P I 0.1 0.2 0.3 0.4 0.5 

-4 -0.00196 -0.00376 -0.00526 -0.00630 -0.00678 

-3 0.01091 0.02118 0.02990 0.03622 0.03946 

-2 -0.03599 -0.07 127 -0.10281 -0.12758 -0.14266 

-1 0.10792 0.22795 0.35522 0.48438 0.60984 

0 0.968 19 0.90965 0.82755 0.72600 0.60984 

1 -0.06 157 -0.10614 -0.13381 -0.14545 -0.14266 

2 0.01481 0.02662 0.03480 0.03908 0.03946 

3 -0.00240 -0.00439 -0.00582 -0.00663 -0.00678 
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The values for ~1 > 0.5 are obtained from those for p < 0.5 from 

h1(1- cl) = h-l(P) (9-11) 

A plot of the tap values for p = 0.1, 0.25, and 0.5 is shown in Figure 9-5. The 
plot can be combined to Figure 9-6. 

Figure 9-5 Plot of Tap Coefficients hn(p) for Various 
Values of p. Parameter BZ’, = 0.25 
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Figure 9-6 Combined Plot of Coefficients h,(p), Where 
II&) = h(t/T,) at t = (n-t p)T, 

The values &(p) equal the function h(t/T,) taken at t = (7~ + p)T,. The 
normalized delay error 

(9- 12) 

and the normalized amplitude error 

eA(w, p) = 1 - l&t (ejwT8, P) 1 (9- 13) 

are plotted versus o and p in Figure 9-7. 
We observe level plateaus for the frequency range of interest. Since no attempt 

was made to constrain the out-of-band response, a steep error increase can be 
observed for w  > 27rB (B = 1/4T,). 

The accuracy of the interpolation is a function of the interpolator filter as well 
as the signal spectrum. Let us consider the stochastic signal z(nT,) with power 
spectrum S, ( ejwTn) . The mean square error between the output of the ideal and 
approximate interpolator, given z(nT,) as input, is 

21rB 

s I ejwT#fi - Hopt (ejwTs, p) I2 Ss (ejwTa)dw (9- 14) 

-2nB 

For a flat power spectrum the variance a&,) becomes 

27cB 

J I ejwTsp - Hopt (ejwTg, p) 12dw (9- 15) 

-2nB 
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Figure 9-7 (a) Normalized Delay Error; (b) Normalized Amplitude Error 

where a$ is the variance of the input signal. The function has been numerically 
evaluated to obtain the fractional delay p max corresponding to the worst-case 
~$-nax * In Figure 9-8 we have plotted the number of filter taps 2N for various 
values of o:,,,~ as a function of the useful bandwidth B. 

From Figure 9-8 it is possible to select the order of the FIR interpolating 
filter to meet a specified error requirement. This seems an appropriate performance 
measure for communication applications. Since the values of p are equiprobable 
the variance a: averaged over all possible values of p is also of interest: 

TF2 
a; l 2rB 

e =- 
47rB JJ I pjwT,p - Hopt (ejwTn, p) 12du dp (9-16) 

0 -27rB 

A plot of this quantity is shown in Figure 9-9. 
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CT2 e,max 
2 

=X 

= const. 

0.1 0.2 0.3 

bandwidth BTs 
0.4 0.5 

Figure 94 Number of Taps versus Normalized Bandwidth for Constant oz,max 

8- 

6- 

bandwidth BT, 

Figure 9-9 Number of Taps versus Normalized Bandwidth for Constant 3: 
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The 2N coefficients of the FIR filters must be precomputed and stored in 
memory for a number of L possible values ~1 = l/L . As a consequence, the 
recovered clock suffers from a maximum discretization error of L/2. 

Assume the coefficients hn(pl) are represented by a word length of W bits. 
For each interpolation these 2N words must be transferred to the filter structure. 
The complexity of the transfer thus can easily become the limiting factor in a VLSI 
realization. An alternative in high-speed applications is to use a bank of parallel 
filters where each filter corresponds to a different quantized value of p. 

Implementation complexity depends upon the structure parameters, viz. order 
of filter 2 N, time discretization L, and word length W. 

9.1.2 Polynomial FIR Interpolator 
We approximate each coefficient hn(p) by a (possibly different) polynomial 

in p of degree M(n): 

M(n) 
hn (P) = C cm(n) Pm (9- 17) 

m=O 

For a 2 Nth order FIR filter the 

coefficients 

1 27rB 

JJ 
0 -2rB 

(9-18) 2N + Nc M(n) 
?a=- N 

are obtained by minimizing the quadratic error: 

2 

ejwTsp _ Cm(?l)jJm e-jnwT8 dw dj.4 -+ min. (9-19) 1 
Notice that we optimize the quadratic error averaged over all fractional delays p. 
Compare this with (9-7) where a set of optimal coefficient was sought for every 
p. We impose the following constraints on (g-19), 

h,(O)={; zien=’ h,(l)={: been=-’ (9-20) 

Since we restrict the function hn (p) to be of polynomial type, the quadratic error of 
the polynomial interpolator will be larger than for the MMSE interpolator discussed 
previously, although it can be made arbitrarily small by increasing the degree of the 
polynomial. Since the polynomial interpolator performs worse, why then consider 
it at all? The main reason is that the polynomial interpolator can be implemented 
very efficiently in hardware as will be seen shortly. 

For simplicity (though mathematically not necessary) we assume that all 
polynomials have the degree of M(n) = A4, Inserting for h, (CL) the polynomial 
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expression of (9-17) the FIR transfer function reads 

N-l 

= cm(n) pm z-” 

I 

Interchanging summation we obtain 

H(%,/.i) = 5 /.Jrn 
m=O 1 

For every degree m of the polynomial the expression in the 
describes a time-invariant FIR filter which is independent of p: 

Hm(%) = g Cm(lZ)Z-n 

n=-N 

squared brackets 

(9-21) 

(9-22) 

(9-23) 

The polynomial interpolator can thus be realized as a bank of A4 parallel FIR filters 
where the output of the mth branch is first multiplied by pm and then summed 
up. This structure was devised by Farrow [2]. 

The Farrow structure is attractive for a high-speed realization. The (M + 1) 
FIR filters with constant coefficients can be implemented very efficiently as VLSI 
circuits. Only one value for p must be distributed to the M multipliers which can 
be pipelined (see Figure 9-10). The basic difference of the polynomial interpolator 
with respect to the MMSE interpolator is that the coefficients are computed in real 
time rather than taken from a table. 

Example: Linear Interpolator 
The simplest polynomial interpolator is obtained for M = 1 and N = 1. The four 
coefficients are readily obtained from the constraints 

(9-24) 

The interpolator (Figure 9-11) performs a linear interpolation between two samples, 

(9-25) 

The coefficients Cm(n) for a set of parameter values of practical interest are 
tabulated Section 9.1.4. 
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x[(k+l &I 

v 

z-1 

C,(4)= 1 

t 
c, (0) = -1 

2” C&-l) = 0 

Co(O) = 1 

b 
Y(‘$ 1 

Figure 9-11 Linear Interpolator 

The number of taps of the polynomial interpolator versus normalized band- 
width is plotted in Figure 9- 12 for various values of a:. 

A number of interesting conclusions can be drawn from this figure. For a 
given signal bandwidth BT, there is a trade-off between signal degradation and 
signal processing complexity, which is roughly estimated here by the number of 
taps 2N and polynomial degree M. It can be seen that for a signal bandwidth 
BT, = 0.25 already 2N = 2 taps (independent of the polynomial order) will suffice 
to produce less than -20 dB signal degradation. For BT, = 0.45 and -20 dB 
signal degradation the minimal number of taps is 2N = 6 with a polynomial order 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

bandwidth BTs 

Figure 9-12 Number of Taps versus Normalized Bandwidth for Constant Fz 
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M > 2. In the plotted domain (2N 5 10) almost no difference between results for 
the third- and fourth-order polynomial has been observed. The independence of the 
linear interpolator of the number of taps 2N is a consequence of the constraints 
(9-24). 

In Figure 9- 13 the variance ??:/a: is plotted versus the excess bandwidth cx for 
a random signal with raised cosine spectrum. For most cases a linear interpolation 
between two samples will be sufficient. Doubling the number of taps is more 
effective than increasing the order of the polynomial to reduce the variance. 

-15 _ 

/ 
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-2o=------------------------------------------------------ 

-6oh 
0 0.1 0.2 0.3 0.4 0.5 0.6 

roll-off factor a T&=2 

-30 - 2N=2,4,6, 8 
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-40 - 
2N=2 

g 
N 
Id "CT ~ 

2Nx4 
-70 - 

-80 - 

40 

0 0.1 0.2 0.3 0.4 0.5 0.6 

roll-off factor a T&=4 

Figure 9-13 SNR Degradation versus Rolloff Factor 
a for (a) T/Ts = 2 and (b) T/Z” = 4 
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9.1.3 Classical Lagrange Interpolation 
In numerical mathematics the task of interpolation for our purposes can be 

stated as follows. Given a function z(t) defined for t-(~-l), . . . , to, . . . , TV, find 
a polynomial P(t) of degree (2N - 1) which assumes the given values CC(&), 

q&a> = &d (n = -(N - l), . * . , -l,O, 1, * . *, N) (9-26) 

(see Figure 9-14). In general, the points t, do not need to be equidistant, nor does 
the number of points have to be an even number 2N. As shown in any textbook 
on numerical mathematics the solution to this problem is unique. There exists a 
Lagrange polynomial of degree 2 N - 1: 

p(t) = 5 &a [(t - L(N-1)) ’ * * (t - tn-1)(t - t& * * * (t - tJJ)] 11: (tn) 
n=-(N-l) 

(9-27) 
with 

x n= 
( t, -t -(N-l)) . ..(t.-t.~)(t.-tn+~)...(t~-tN) 

(9-28) 

Using the definition of (9-27) it is easily verified that for every tra, we have 
P(tn) = x(tn) as required. The polynomial P(t) is a linear combination of the 
values z(tn), 

N 

n=-(N-l) 

with the so-called Lagrange coefficients 

qn(t) = An [(t - t-(N-l)) ’ ’ * (t - ha-l)(t - h-+1) . . * 

(9-29) 

ct - tN)] (9-30) 

I ‘($N-, )) 
x00) 

Figure 9-14 Lagrange Interpolation 



9.1 Digital Interpolation 519 

‘tt k+N ) 

-‘“r 

d 2N-,(N-1) z-1 

P---Q- + 
d 2N-l(‘) 

- . . . m . 1 
d 2N-2 (N) 2” 

+ 

. 

do(N) 

Figure 9-15 Farrow Structure of Lagrange Interpolation 

Since the FIR filter also computes a linear combination of sample values z(kT,), 
it is necessary to point out the differences between the two approaches. 

As we are only interested in the interpolated values in the central interval 
O<t<l,wesett= p in the definition of the Lagrange coefficients qn (t). Every 
qn(p) is a polynomial in p which can be written as 

2N-1 

Qn b-4 = c 4-44 Clm 

m=O 

Inserting into (9-29) we obtain 

(9-31) 

(9-32) 

Thus, from (9-32) we learn that P(p) can be computed as the output of a Farrow 
structure (see Figure 9-15). However, there are some basic differences to the 
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polynomial interpolator: 

. The degree of the Lagrange interpolator always equals the number of samples 
minus one. The array cZ~( n) is thus quadratic. 

. For the polynomial interpolator the degree of the polynomial M can be chosen 
independently of the number of samples. The array c, (n) is, in general, not 
quadratic. 

. There is a single polynomial valid for the entire range t-(~-r) < t < TV . For 
the polynomial interpolator, to each tap h, (p) there is associated a different 
polynomial valid just for this tap. 

. The coefficients of the Lagrange interpolator are completely specified given 
z(tn), while the polynomial interpolator coefficients are the result of an 
optimization. Thus, even for quadratic polynomial interpolator structures they 
have nothing in common with the Lagrange array coefficients d,(n). 

For more details on Lagrange interpolation see the work of Schafer and Rabiner [3]. 
Example: Cubic Lugrange Interpolator 
Using (g-31), we get 

‘tt k+2) 

q-l(p) = -$p3 + $2 - ;p 

Qo (cl) = 6-J $3 - p2 -;+1 

Ql (PL) = -;p3+ g+p 

42 (l-4 = 6 1p3 - ;p 

-- 
x(t k-,) 

l/2 

z-1 R + -1 

2" 

(9-33) 

Figure 9-16 Farrow Structure of a Cubic Lagrange Interpolator 
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9.1.4 Appendix 
In Tables 9-2 to 9-9 Farrow coefficients for various N, M, and BT, = l/4 

are listed. 

Table 9-2 N=l M=2 

n\m I 0 1 2 

-1 1 -0.80043 -0.19957 

0 0 1.19957 -0.19957 

Table 9-3 N=2 A4=2 

n\m I 0 1 2 

-2 0 -0.3688 1 -0.3688 1 

-1 1 -0.65696 -0.34303 

0 0 1.34303 -0.34303 

1 0 -0.3688 1 0.3688 1 

Table 94 N=2 A4=3 

n\m I 0 1 2 3 

-2 0 -0.48 124 0.70609 -0.22485 

-1 1 -0.33413 -1.31155 0.64567 

0 0 1.02020 0.62547 -0.64567 

1 0 -0.25639 0.03154 0.22485 

Table 9-5 N=3 M=2 

n\m I 0 1 2 

-3 0 0.093 17 -0.093 17 

-2 0 -0.49286 0449286 

-1 1 -0.59663 -0.40337 

0 0 1.40337 -0.40337 

1 0 -0.49286 0.49286 

2 0 0.093 17 -0.09317 
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Table 9-6 N=3 Ad=3 

n\m I 0 1 2 3 

-3 0 0.10951 -0.14218 0.03267 

-2 0 -0.64994 0.96411 -0.31416 

-1 1 -0.20510 - 1 a57796 0.78306 

0 0 1.01184 0.77122 -0.78306 

1 0 -0.33578 0.02162 0.3 1416 

2 0 0.07683 -0.04416 -0.03267 

Table 9-7 N=4 M=2 

n\m I 0 1 2 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

-0.02646 0.02646 

0.15446 -0.15446 

-0.56419 0.56419 

-0.56437 -0.43563 

1.43563 -0.43563 

-0.56419 0.56419 

0.15446 -0.15446 

-0.02646 0.02646 

Table 9-8 N=4 M=3 

n\m I 0 1 2 3 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

-0.0297 1 0.03621 -0.00650 

0.18292 -0.23982 0.0569 1 

-0.74618 1.11018 -0.36399 

-0.13816 -1.71425 0.8524 1 

1.00942 0.84299 -0.85241 

-0.38219 0.01819 0.36399 

0.12601 -0.069 11 -0.05690 

-0.0232 1 0.01670 0.00650 
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Table 9-9 N=4 M=4 

n\m I 0 1 2 3 4 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

-0.02584 0.01427 0.02964 

0.16286 -0.12615 -0.13032 

-0.70773 0.89228 -0.005 10 

-0.16034 -1.58857 0.64541 

0.98724 0.96867 -1.05941 

-0.34374 -0.19971 0.72289 

0.10595 0.04457 -0.24413 

-0.01933 -0.00524 0.04265 

-0.01807 

0.09361 

-0.17945 

0.10350 

0.10350 

-0.17945 

0.09361 

-0.01807 

9.2 Interpolator Control 

This section focuses on the control of the interpolator. The task of the 
interpolator control is to determine the basepoint m, and the corresponding 
fractional delay prs based on the output of a timing estimator or of a timing 
error estimator. The control algorithm will be different for the two cases. 

9.2.1 Interpolator Control for Timing Error Feedback Systems 
Error detectors produce an error signal at symbol rate l/T using fractionally 

spaced samples rCT’ = W/MI (MI integer). Most error detectors work with two 
or four samples per symbol. Since the sampling rate l/T8 is not an exact multiple 
of the symbol rate, the samples { ICT’) have to be mapped onto the time scale 
{ kT, ) of the receiver. Mathematically, this is done by expressing the time instant 
kTI + EIT~ by multiples of TJ plus fractional rest, 

kT. + EITI = &NT [kZ + EITI] Z + plcT, 

= mkT, -I- i-d& 

LINT(x) : largest integer 5 2 

(9-34) 

In eq. (9-34) EI is defined with respect to TJ. The relation between (T, E) and 
(TI, &I), the basepoint ?nk and the fractional delay j.& is illustrated in Figure 9- 17. 

From eq. (9-34) it follows that for every sample one has to compute the 
corresponding basepoint ??-Lk and the fractional delay j& in order to obtain the 
interpolated matched filter output z(kTr + EJTI) = z(mkTs + j-&T.). Interpolator 
and decimator are shown as two separate building blocks in the block diagram of 
Figure 9-18. In a practical implementation interpolator and decimator are realized 
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Position of sample 

Transmitter 
time reference 

Receiver 
time reference 

Figure 9-17 Definition of (~1, 7”) and Their Relation to the 
Receiver Time Axis { ICT, ). 
Mapping of ET1 onto mkT, is exemplarily shown for one sample and MI=2 

as an FIR filter with time-variant coefficients. A new sample is read into the 
filter at constant rate l/Ts, while a new output is computed only at the basepoints 
mkT, (Figure g-19). 

I 
MI 

---I5 + 
to the detector path 

c 

z(m, M&+~n MI&) 

Timing Error 

(eq. 9-39) 

Output one sample at m kTS 

Decrease sample rate by MI 

Figure 9-18 Functional Block Diagram of a Timing Error Feedback System 
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kTs 

(from timing error 
detector path) 

Coefficients h,(p) ; i = -(N-l), . . . . N 

Figure 9-19 Interpolator and Decimator Implemented as Time-Variant FIR Filter 

Based on the fractionally spaced samples the error detector produces an error 
signal at symbol rate. Therefore, a second decimation is performed in the error 
detector. This second decimation process is slaved to the first one. It selects 
exactly every Mlth basepoint ??‘&k (h = n&iI), to output one error signal. 

The error detector signal is further processed in a loop filter. The output of 
the loop filter e(m,M,) is used to adjust the control word of the timing processor 

w(md4,) = w(m(,-Ip4,) + JL ++-I)MJ 
K, : constant 

(9-35) 

In the absence of any disturbance the control word assumes its correct value: 

W (9-36) 

Basepoint and fractional delay are recursively computed in the timing processor 
as follows. we express IcTr + E~TI as function of (mk , p]E), see eq. (9-34). The 
next sample at (Ic + ~)TJ + EITI is then given by 

(h+ l)fi+~d-'~ = WT, +pkT, +fi 

(9-37) 

Replacing in the previous equation the unknown ratio TI/T, by its estimate W(mk) 
we obtain 

(h -I- 1) TI + MI = mkc i- LINT [/h -I- w(mk)] Ts i- bk i- w(mk)],,-& T, 

(9-38) 
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(k-2)-? (k-1).TI k.TI (k+l)=r, (k+2)-F 

1: : 

mk-2 mk-l rnk+l 9+2 

mk 
I 

cl m 

m(n-l)MI mnMI m(n+l)MI 

Figure 9-20 Basepoint Computation and Symbol Rate Decimation for 
TIP-L N 1 and MI = 2. (a) Transmitter time scale, (b) basepoints 
rnk , and (c) symbol-rate decimated basepoints ?n,M1. 

From this readily follows the recursion for the estimates: 

mk+i = mk + LINT [FL -t w(mk)] 

h+l = bk + W(mk)]modl 

(9-39) 

Figure 9-20 illustrates the basepoint computation and symbol rate decimation. If 
the ratio TI/T, is substantially larger than 1, then &NT&k + w(mk)) 2 1 with 
high probability. Thus, every sample kTI is mapped onto a different basepoint, 
i.e., mk+l # ml,. The situation is different for TI/T, N 1 which occurs frequently 
in practice. For example, MI = 2 and twofold oversampling yields TI N Ts. The 
event that LINT(C) = 0 occurs frequently. In this case two consecutive samples 
kT1 and (k + l)Tr are mapped onto the same basepoint, mk+l = mk. This 
means that for the same set of input samples in the interpolator (see Figure 9- 
19) two different output values must be computed: one for the set of coefficients 
corresponding to j& and the other one for @k+i. 

We recall that the symbol rate decimation process selects every MIth base- 
point. Since in Figure 9-20 mk- 1 = mk, we find different increments between 
basepoints 

mk - mk-2 = 1 

mk+2 - mk = 2 
(9-40) 

The control word W(mk) in eq. (9-39) is changed only every symbol 

w(mk) = w(m,M,) for nMI < k < (n+ l)M1 (9-41) 
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The symbol rate basepoints ?-n&jr are obtained by incrementing a modulo MI 
counter for every basepoint computation performed, 

and by generating a select pulse for every full cycle. 

Remark; In a hardware realization we would select a ratio of T’/T, = 1 + A > 1 
(where A is a small number) to avoid LINT(X) = 0 with high probability. In 
the rare case where LINT(Z) = 0 is due to noise, one selects rnk+l = mk + 1 
and sets fik = 0. 

Example 
we compute the increments of ?nk+ 1 - ?nk and pk for two different ratios of 
T’/TS (see Table 9-10): 

a) T1/TJ = 1.575 

b) TI/Ts = 1 - 1O-5 
(9-43) 

If TI/T, is nominally an integer, the fractional delay changes very slowly. In 
a hardware implementation it can be kept constant over a large number of symbols 
which simplifies the hardware. 

Table 9-10 Basepoint and Fractional Delay Computation 
for Two Different TI/T, Values 

I I E/T, = 1.575, /Jo = 0 TI/T, = 1 - 10-5, ,u~ = 4.1’ 1o-5 

mk+l - mk mk+l - mk /+I-1 

1 1 0.575 ) 1 I 0.00003 1 

2 1 0.150 I 1 I 0.00002 1 

1 1 0.725 1 1 I 0.000011 

2 1 0.300 1 1 I 0.000001 

1 1 0.875 ) 0 I 0.99999 1 

2 1 0.450 1 1 1 0.999981 

2 1 0.025 1 1 I 0.99997 1 

1 I 0.600 I 1 I 0.999961 
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For low data rate application we can derive the correct sampling instant from 
the (much higher) clock of the digital timing processor. Assume the signal is 
sampled at rate (l/T)M1. The timing processor selects one of M, possible timing 
instants in the 7’1 interval T/A41 = T’ = M,T,. If MC is chosen sufficiently large 
so that the maximum time discretization error T/( M,MI) is negligible, we can 
entirely dispense with interpolation. The processor simply computes the basepoints 
mk as multiples of Tc: 

mk+l = mk + w(mk) 

The control word w(mk) is an integer with nominal value 

(9-44) 

w = TI/Tc = MC (9-45) 

The basepoint computation can be done by a numerically controlled oscillator 
(NCO) which basically is a down-counter presettable to an integer w(mk). The 
control word is updated at symbol rate. Since the clock in the receiver and 
transmitter are very accurate and stable, the loop bandwidth of the feedback 
system can be chosen small. Therefore, the increment KOe(m,M,) per cycle 
is at most one. It therefore suffices to compare it with a threshold and possibly 
increment/decrement the control word by one. For Ic = nMI 

wbhkd = w(m(,-I)M,) + +k+yn-qit4J] (9-46) 

---- to data path 

Decimator 
(symbol rate decimation) 

I sampling at m k*Tc 
I 

decrease sample rate by M I 

Figure 9-21 Digital Timing Recovery when the Sampling Instant Is 
Determined by a Numerically Controlled Oscillator (NCO) 
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where 

A block diagram of the timing error feedback system is shown in 
Because of its simplicity this solution finds widespread application. 

Figure 9-21. 

9.2.2 Interpolator Control for Timing Estimators 

The timing estimator directly provides us with an estimate of the relative time 
shift E normalized to the symbol rate l/T. Consider 

nT + ET = m,T, + pnTJ (9-48) 

and replace the trial parameter by its estimate &- 1 computed in the previous T 
interval: 

nT + &-IT = m,T, + j&T8 (9-49) 

Now consider the next symbol 

(n + 1) T + tn T (9-50) 

Adding &- 1 and immediately subtracting this quantity, we can write for (9-50) 

(n+l)T+i,T=nT+i,-1T+T+(E”n--2ra-l)T (9-5 1) 

Replacing nT + i,- 1T by the right-hand side of (9-49) yields 

(n+l)T+&T=m,T,+j&,T,+T+(t,-t,-,)T 
(9-52) 

= mn + in + g [l + (en - L-I)]] Ts 
s 

Since E is restricted to values 0 5 E < 1 special care must be taken when gn 
crosses the boundaries at 0 or 1. Assume that 2n-1 is close to 1 and that the 
next estimate gn from the timing estimator is a very small number. The difference 
Ain = (E”n - Zn-1) h t en would be close to 1. But since Ed is very slowly 
changing, the increment Ain = (2n - in- 1) is almost always a number of very 
small magnitude, [Aen 1 < 1. From this we conclude that the large negative 
difference is an artifact caused by crossing the boundary of in at 1. To properly 
accommodate this effect we have to compute SAW(t, - in-l) in (9-52) where 
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Figure 9-22 Sawtooth Function 

SAW (x) is the sawtooth function with period 1 displayed in Figure 9-22. Then 
we readily obtain the recursions 

mn+l = mn + LINT 
[ 
clta + T T (1 + SAW& - E”,+1 s 

&t+l = fin + $(I + SAW(E”n - Sn-I)) 
s 1 mod 1 

(9-53) 

Remark: for T/T, the nominal value is used. 

9.2.3 Tracking Performance and Decimation Revisited 
When the tracking performance was calculated in Chapter 6, we explicitly 

assumed that an error signal is available at symbol rate. The random disturbance of 
the error detector output was modeled as stationary process with power spectrum 
SN (e- jwT) . But now consider the actual implementation of an error feedback 
system. The output samples of the error detector are irregularly spaced on the 
{ kTb) axis. What possible meaning can be ascribed to a power spectrum of such 
a sequence and what is the relation to the power spectrum SN (e-jwT) ? Do we 
have to take the time-variant decimation process into account when analyzing the 
tracking performance? 

Fortunately, this is not the case. By definition, every output of the decimator 
represents a sample cc(nT + dnT). It is irrelevant at what exact physical time 
mnT8 the sample value s(mnT8) = Z( nT + &nT) is computed. Thus, the 
sequence (x(mnT8)}, which is regularly spaced on the physical time scale { LT,), 
corresponds to a regularly spaced sequence X( nT + &T). 

9.2.4 Main Points 
. Timing recovery using the samples r(kT,) of a free running oscillator can be 

done by digital interpolation. The fractional time delay j& and the basepoint 
mk are recursively computed. 

. Digital interpolators for high data rate applications are realized as a bank of 
FIR filters (Farrow structure). The number of filters equals the degree of 
the interpolating polynomial plus 1. The number of taps of the FIR filter is 
always even. 
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0 For virtually all practical applications 4-tap FIR filters and a quadratic poly- 
nomial will be sufficient. 

. For a sufficiently large number of samples per symbol (T/T8 > 2) even linear 
interpolation between two samples will be sufficient. 

. If the sampling instant can be derived from the clock running at a much 
higher frequency, no interpolation is required. The timing processor selects 
one among M, >> 1 possible values in a time interval 7” = T/MI. 

9.2.5 Bibliographical Notes 

Interpolation and decimation are discussed in the book by Crochiere and 
Rabiner [4]. The rate conversion is restricted to the ratio of two integers. Timing 
recovery and interpolation require an noninteger decimation rate. The first papers 
to address this issue appear to be [5]-[7]. The ESA report by Gardner [8] made us 
aware of the fact that timing recovery comprises the two tasks of interpolation (in 
the strict mathematical sense) and decimator control; see also [9, lo]. Digital 
receivers capable of operating at variable data rates are of interest in digital 
broadcasting systems [ 111. They require an interactive design of anti-aliasing filter, 
matched filter, and interpolation/decimation control [ 12, 131. A recent publication 
[ 141 discusses the various areas of application of fractional time delays. The paper 
provides a very readable and interesting overview of seemingly unrelated topics. 
It contains a comprehensive list of references. 
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Chapter 10 DSP System Implementation 

This chapter is concerned with the implementation of digital signal processing 
systems. It serves the purpose to make the algorithm designer aware of the strong 
interaction between algorithm and architecture design. 

Digital signal processing systems are an assembly of heterogeneous hardware 
components. The functionality is implemented in both hardware and software 
subsystems. A brief overview of DSP hardware technology is given in Section 
10.1. Design time and cost become increasingly more important than chip cost. 
A look at hardware-software co-design is done in Section 10.2. Section 10.3 is 
devoted to quantization issues. In Sections 10.4 to 10.8 an ASIC (application- 
specific integrated circuit) design of a fully digital receiver is discussed. We 
describe the design flow of the project, the receiver structure, and the decision 
making for its building blocks. The last two sections are bibliographical notes on 
Viterbi and Reed-Solomon decoders. 

10.1 Digital Signal Processing Hardware 

Digital signal processing systems are an assembly of heterogeneous subsys- 
tems. The functionality is implemented in both hardware and software subsystems. 
Commonly found hardware blocks are shown in Figure 10-l. 

There are two basic types of processors available to the designer: a pro- 
grammable general-purpose digital signal processor (DSP) or a microprocessor. 
A general-purpose DSP is a software-programmable integrated circuit used for 

A/D: Analog-to-Digital Converter, D/A: Digital-to-Analog Converter 

Figure 10-l Hardware Components of a Digital Signal Processing System 
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speech coding, modulation, channel coding, detection, equalization, and associ- 
ated modem tasks such as frequency, symbol timing and phase synchronization 
as well as amplitude control. Moreover, a DSP is preferably used with regard 
to flexibility in applications and ability to add new features with minimum re- 
design and re-engineering. Microprocessors are usually used to implement pro- 
tocol stacks, system software, and interface software. Microprocessors are better 
suited to perform the non-repetitive, control-oriented input/output operations as 
well as all housekeeping chores. 

ASICs are used for various purposes. They are utilized for high-throughput 
tasks in the area of digital filtering, synchronization, equalization, and channel 
decoding. An ASIC is often likely to provide also the glue logic to interface 
components. In some systems, the complete digital receiver is implemented as 
an ASIC, coupled with a microcontroller. ASICs have historically been used 
because of their lower power dissipation per function. In certain applications like 
spread-spectrum communications, digital receiver designs require at least partial 
ASIC solutions in order to execute the wideband processing functions such as 
despreading and code synchronization. This is primarily because the chip-rate 
processing steps cannot be supported by current general-purpose DSPs. 

Over the last few years, as manufacturers have brought to market first- and 
second-generation digital cellular and cordless solutions, programmable general- 
purpose digital signal processors are slowly being transformed into “accelerator- 
assisted DSP-microcontroller” hybrids. This transformation is a result of the severe 
pressure being put on reducing the power consumption. As firmware solutions 
become finalized, cycle-hungry portions of algorithms (e.g., equalizers) are being 
“poured into silicon”, using various VLSI architectural ideas. This has given 
rise to, for example, new DSPs with hardware accelerators for Viterbi decoding, 
vectorized processing, and specialized domain functions. The combination of 
programmable processor cores with custom data-path accelerators within a single 
chip offers numerous advantages: performance improvements due to time-critical 
computations implemented in accelerators, reduced power consumption, faster 
internal communication between hardware and software, field programmability 
due to the programmable cores and lower total system cost due to a single DSP 
chip solution. Such core-based ASIC solutions are especially attractive for portable 
applications typically found in digital cellular and cordless telephony, and they are 
likely to become the emerging solution for the foreseeable future. 

If a processor is designed by jointly optimizing the architecture, the instruc- 
tion set and the programs for the application, one speaks of an application-specific 
integrated processor (ASIP). The applications may range from a small number 
of different algorithms to an entire signal processing application. A major draw- 
back of ASIPs is that they require an elaborate support infrastructure which is 
economically justifiable only in large-volume applications. 

The decision to implement an algorithm in software or as a custom data-path 
(accelerator) depends on many issues. Seen from a purely computational power 
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Figure 10-2 Complexity versus Signal Bandwidth Plot 

point-of-view, algorithms can be categorized according to the two parameters signal 
bandwidth and number of operations per sample. The first parameter defines a 
measure of the real-time processing requirement of the algorithm. The second 
provides a measure of complexity of the algorithm. In Figure 10-2 we have 
plotted complexity versus bandwidth on a double logarithmic scale. A straight 
line in the graph corresponds to a processing device that performs a given number 
of instructions per second. Applications in the upper-right corner require massive 
parallel processing and pipelining and are the exclusive domain of ASICs. In 
contrast, in the lower-left corner the signal bandwidth is much smaller than the 
clock rate of a VLSI chip. Hence, hardware resources can be shared and the 
programmable processor is almost always the preferred choice. For the region 
between these two extremes resource sharing is possible either using a processor 
or an ASIC. There are no purely computational power arguments in favor of either 
one of the two solutions. The choice depends on other issues such as time-to- 
market and capability profile of the design team, to mention two examples. 

The rapid advance of microelectronic is illustrated by Figure 10-3. The 
complexity of VLSI circuits (measured in number of gates) increases tenfold every 
6 years. This pattern has been observed for memory components and general- 
purpose processors over the last 20 years and appears to be true also for the DSP. 
The performance measured in MOPS (millions of operations per second) is related 
to the chip clock frequency which follows a similar pattern. The complexity of 
software implemented in consumer products increases tenfold every 4 years [ 11. 
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Figure 10-3 Complexity of VLSI Circuits 

10.2 DSP System Hardware-Software Co-Design 

The functionality in a DSP system is implemented in both hardware and 
software subsystems. But even within the software portions there is diversity. 
Control-oriented processes (protocols) have different characteristics than data-flow- 
oriented processes (e.g., filtering). A DSP system design therefore not only mixes 
hardware design with software design but also mixes design styles within each of 
these categories. 

One can distinguish between two opposing philosophies for system level 
design [2]. One is the unified approach which seeks a consistent semantics for the 
specification of the complete system. The other is a heterogeneous approach which 
seeks to combine semantically disjoint subsystems. For the foreseeable future the 
latter appears to be the feasible approach. In the heterogeneous approach, for 
example, the design automation tool for modeling and analysis of algorithms is 
tightly coupled with tools for hardware and software implementation. This makes it 
possible to explore algorithm/architecture trade-offs in a joint optimization process, 
as will be discussed in the design case study of Section 10.4. 

The partitioning of the functionality into hardware and software subsystems 
is guided by a multitude of (often conflicting) goals. For example, a software 
implementation is more flexible than a hardware implementation because changes 
in the specification are possible in any design phase. On the negative side we 
mentioned the higher power consumption compared to an ASIC solution which 
is a key issue in battery-operated terminals. Also, for higher volumes an ASIC 
is more cost effective. 

Design cost and time become increasingly more important than chip process- 
ing costs. On many markets product life cycles will be very short. To compete 
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successfully, companies will need to be able to turn system concepts into silicon 
quickly. This puts high priority on computerized design methodology and tools in 
order to increase the productivity of engineering design teams. 

IO.3 Quantization and Number Representation 

In this section we discuss the effect of finite word-lengths in digital signal 
processing. There are two main issues to be addressed. First, when sampling was 
considered so far, we assumed that the samples were known with infinite precision, 
which of course is impossible. Each sample must therefore be approximated by 
a binary word. The process where a real number is converted to a finite binary 
word is called quuntizution. 

Second, when in digital processing the result of an operation contains more 
bits than can be handled by the process downstream, the word length must be 
reduced. This can be done either by rounding, truncation, or clipping. 

For further reading, we assume that the reader is familiar with the basics of 
binary arithmetics. As a refresher we suggest Chapter 9.0 to 9.2 of the book by 
Oppenheim and Schafer [3]. 

A quantizer is a zero-memory nonlinear device whose output Zout is related 
to the input x in according to 

xout = qi if Xi<Xin<Xi+l (10-l) 

where qi is an output number that identifies the input interval [xi, xi+1 ), 
Uniform quantization is the most widely used law in data signal processing and 
the only one discussed here. 

All uniform quantizer characteristics have the staircase form shown in Figure 
10-4. They differ in the number of levels, the limits of operation, and the location 
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Figure 10-4 Uniform Quantizer Characteristic with b= 3 Bit. Rounding to the 
nearest level is employed. The binary number is interpreted as 2’s complement. 
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of the origin. Every quantizer I has a finite range that extends between 
limits xrnin) xmax- Any input value exceeding the limits is clipped: 

Xout = Qmin 

Xout = Qmax 

if Xin < X&n 

if Xin 2 Xmax 

the input 

(10-2) 

The number of levels is chosen as L = 2b or L = 2* - 1. Any output word is then 
described by a binary word of b bits. The operation is called b-bit quantization. 

The meaning of Aq is arbitrary. For example, one can equally well interpret 
Aq as an integer or as a binary fraction 2-b. 

A quantizer exhibits small-scale nonlinearity within its individual steps and 
large-scale nonlinearity if operated in the saturation range. The amplitude of the 
input signal has to be controlled to avoid severe distortion of the signal from either 
nonlinearity. The joint operation of the analog-to-digital (A/D) converter and the 
AGC is of crucial importance to the proper operation of any receiver. The input 
amplitude control of the A/D converter is known as loading adjustment. 

Quantizer characteristics can be categorized as possessing midstep or midriser 
staircases, according to their properties in the vicinity of zero input. Each has its 
own advantages and drawbacks and is encountered extensively in practice. 

In Fig. 10-4 a mid-step characteristic with an even number of levels L = 23 
is shown. The characteristic is obtained by rounding the input value to the nearest 
quantization level. A 2’s complement representation of the binary numbers is used 
in this example. The characteristic exhibits a dead zone at the origin. When an 
error detector possesses such a dead zone, the feedback loop tends to instability. 
This characteristic is thus to be avoided in such applications. The characteristic 
is asymmetric since the number - 1 is represented but not the number +l. If 
the quantizer therefore operates in both saturation modes, then it will produce a 
nonzero mean output despite the fact that the input signal has zero mean. The 
characteristic can easily be made symmetric by omitting the most negative value. 

A different characteristic is obtained by truncation. Truncation is the operation 
which chooses the largest integer less than or equal (xin/Ax). For example, 
xin/Ax = 0.8 we obtain INT(0.8) = 0. But for xin/Ax = -3.4 we obtain 
INT( -3.4) = -4. In Figure 10-5 the characteristic obtained by truncation is 
shown. A 2’s complement representation of the binary numbers is used. 

This characteristic is known as ofiet quantizer3. Since it is no longer 
symmetric, it will bias the output signals even for small signal amplitudes. This 
leads to difficulties in applications where a zero mean output is required for a zero 
mean input signal. 

A midriser characteristic is readily obtained from the truncated characteristics 
in Fig. 10-5 by increasing the word length of the quantizer output by 1 bit and 
choosing the LSB (least significant bit) identical 1 for all words (Figure 10-6). 

3 In practical A/D converters the origin can be shifted by adjusting an input offset voltage. 
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Figure 10-5 Offset Quantizer Employing Truncation. b=3; 
binary number interpreted as 2’s complement. 
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Notice that the extra bits need not to be produced in the physical A/D converter 
but can be added in the digital processor after AD conversion. 

The midriser characteristic is symmetric and has no dead zone around zero 
input. A feedback loop with a discontinuous step at zero in its error detector will 
dither about the step which is preferable to limit cycles induced by a dead zone. 
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Figure 10-6 Midriser Characteristic Obtained by Adding 
an Additional Bit to the Quantizer Output 
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Figure 10-7 Quantizer Characteristic Obtained by Magnitude Truncation 

The effect of the number representation on the quantizer characteristic is 
illustrated in Figure 10-7. In some applications it is advantageous to employ a 
sign-magnitude representation. 

Figure 10-7 shows the characteristic by truncation of the magnitude of an input 
signal. This is no longer a uniform quantizer, the center interval has double width. 

When the result of an operation contains more bits than can be handled 
downstream, the result must be shortened. The effect of rounding, truncation, 
or clipping is different for the various number representations. 

The resulting quantization characteristic is analogous to that obtained earlier 
with the exception that now both input and output are discretized. However, 
quantizing discrete values is more susceptible to causing biases than quantizing 
continuous values. Thus quantizing discrete values should be performed even 
more carefully. 

10.4 ASIC Design Case Study 

In this case study we describe the design of a complete receiver chip for 
digital video broadcasting over satellite (DVB-S)[4]. The data rate of DVB is in 
the order of 40 Msymbols/s. The chip was realized in 0.5 p CMOS technology 
with a (maximum) clock frequency of 88 MHz. The complexity of operation 
and the symbol rate locates it in the right upper corner of the complexity versus 
bandwidth plot of Figure 10-2. We outline the design flow of the project, the 
receiver structure, and the rationale of the decision making for its building blocks. 
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10.4.1 Implementation Loss 

In an ASIC realization the chip area is in a first approximation proportional to 
the word length. Since the cost of a chip increases rapidly with the area, choosing 
quantization parameters is a major task. 

The finite word length representation of numbers in a properly designed digital 
receiver ideally has the same effect as an additional white noise term. The resulting 
decrease of the signal-to-noise ratio is called the implementation loss. A second 
degradation with respect to perfect synchronization is caused by the variance of 
the synchronization parameter estimates and was called detection loss (see Chapter 
7). The sum of these two losses, D total, is the decrease of the signal-to-noise ratio 
with respect to a receiver with perfect synchronization and perfect implementation. 
It is exemplarily shown in Figure 10-8 for an 8-PSK trellis coded modulation [5]. 

The left curve shows the BER for a system with perfect synchronization and 
infinite precision arithmetics while the dotted line shows the experimental results. 
It is seen that the experimental curve is indeed approximately obtained by shifting 
the perfect system performance curve by Dtotal to the right. 

Quantization is a nonlinear operation. It exhibits small-scale nonlinearity 
in its individual steps and large-scale nonlinearity in the saturation range. Its 
effect depends on the specific algorithm, it cannot be treated in general terms. 
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In a digital receiver the performance measure of interest is the bit error rate. 
We are allowed to nonlinearly distort the signal as long as the processed signal 
represents a sufficient statistics for detection of acceptable accuracy. For this 
reason, quantization effects in digital receivers are distinctly different than in other 
areas of digital signal processing (such as audio signal processing), which require 
a virtually quantization-error free representation of the analog signal. 

10.4.2 Design Methodology 

At this level of complexity, system simulation is indispensable to evaluate 
the performance characteristics of the system with respect to given design alter- 
natives. The design framework should provide the designer with a flexible and 
efficient environment to explore the alternatives and trade-offs on different levels 
of abstraction. This comprises investigations on the 

. structural level, e.g., joint or separate carrier and timing synchronization 

. algorithmic level, e.g., various estimation algorithms 
. implementation level, e.g., architectures and word lengths 

There is a strong interaction between these levels of abstraction. The prin- 
cipal task of a system engineer is to find a compromise between implementation 
complexity and system performance. Unfortunately, the complexity of the prob- 
lem prevents formalization of this optimization problem. Thus, practical system 
design is partly based on rough complexity estimates and experience, particularly 
at the structural level. 

Typically a design engineer works hierarchically to cope with the problems of 
a complex system design. In a first step structural alternatives are investigated. The 
next step is to transform the design into a model that can be used for system simu- 
lation. Based on this simulation, algorithmic alternatives and their performance are 
evaluated. At first this can be done without word length considerations and may 
already lead to modifications of the system structure. The third step comprises 
developing the actual implementation which requires a largely fixed structure to 
be able to obtain complexity estimates of sufficient accuracy. At this step bit- 
true modeling of all imperfections due to limited word lengths is indispensable to 
assess the final system performance. 

10.4.3 Digital Video Broadcast Specification 

The main points of the DVB standard are summarized in Table lo- 1: 
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Table 10-l Outline of the DVB Standard 

Modulation 
QPSK with Root-Raised Cosine Pulses 
(excess bandwidth a = 0.35) and Gray-Encoding 

Convolutional Channel Coding 

Convolutional Code (CC) R = l/2, 213, 314, 5/6, 718 

Reed-Solomon Code n = 204, k = 188 over GF(8) 

Operating Point 

E:‘/No 4.2 , . . . . 6.15 dB (depending on the code 
rate R) 

BER behind CC 2 x 1o-4 

Example for Symbol Rates 

20 , .“, 44 Msymbols/s 

The data rate is not specified as a single value but suggested to be within 
a range of [ 18 to 681 Mb/s. The standard defines a concatenated coding scheme 
consisting of an inner convolutional code and an outer Reed-Solomon (RS) block 
code. 

Figure 10-9 displays the bit error rate versus Eb/No after the convolutional 

BER specification DVB 
lool target ova spec valuer IF loop (R=1/2,R-7/E!) 

E b/NO [@I 

Figure 10-9 Bit Error Specification of the DVB Standard 
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decoder for the two code rates of R = l/2 and R = 7/8 under the assumption 
of perfect synchronization and perfect convolutional decoder implementation. The 
output of the outer RS code is supposed to be quasi-error-free (one error per hour). 
The standard specifies a BER of 2 x 10m4 at &,/No = 4.2 dB for R = l/2 and 
at &,/No = 6.15 dB for code rate R = 7/8. This leaves a margin of 1 dB (see 
Figure 10-9) for the implementation loss of the complete receiver. This loss must 
also take into account the degradation due to the analog front end (AGC, filter, 
oscillator for down conversion). In the actual implementation the total loss was 
equally split into 0.5 dB for the analog front end and 0.5 dB for the digital part. 

10.4.4 Receiver Structure 
Figure lo-10 gives a structural overview of the receiver. A/D conversion is 

done at the earliest point of the processing chain. The costly analog parts are 
thus reduced to the minimum radio frequency components. Down conversion and 
sampling is accomplished by free-running oscillators. 

In contrast to analog receivers where down conversion and phase recovery 
is performed simultaneously by a PLL, the two tasks are separated in a digital 
receiver. The received signal is first down converted to baseband with a free- 
running oscillator at approximately the carrier frequency fc, This leaves a small 
residual normalized frequency offset R. 

The digital part consists of the timing and phase synchronization units, the 
Viterbi and RS-decoder, frame synchronizer, convolutional deinterleaver, descram- 

Figure 10-10 Block Diagram of the DVB Receiver 
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bler, and the MPEG decoder for the video data. A micro controller interacts via 
12C bus with the functional building blocks. It controls the acquisition process of 
the synchronizers and is used to configure the chip. 

10.4.5 Input Quantization 
i‘he input signal to the A/D converter comes from a noncoherent AGC (see 

Volume 1, p. 278); the signal-to-noise ratio is unknown to the A/D converter. We 
must consider both large-scale and small-scale quantization effects. 

An A/D converter can be viewed as a series connection of a soft limiter and 
a quantizer with an infinite number of levels. We denote the normalized overload 
level of the limiter by 

with 
V(Pi) = ce(Pi) 

m 
(10-3) 

C,(pi) : threshold of the soft limiter 
P,: signal power, Pn: noise power 
Pi = P,/P,, signal-to-noise ratio of the input signal 
Threshold level Cc, interval width Ax, and word length b are related by (Figure 
10-11) 

Cc + Ax = 2b-1Ax (10-4) 

Two problems arise: 

1. What is the optimum overload level V(pi)? 
2. Since the signal-to-noise ratio is unknown, the sensitivity of the receiver 

performance with respect to a mismatch of the overload level V(pi) must be 
determined. 

b = Number of bits (b = 3) 
= Soft limiter threshold 

Figure lo-11 A/D Conversion Viewed as Series Connection of 
Soft Limiter and Infinitely Extended Quantizer 
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It is instructive to first consider the simple example of a sinusoidal signal 
plus Gaussian noise. We determine V(pi) subject to the optimization criterion 
(the selection of this criterion will be justified later on) 

E[&(xICc, b) - 221” + min (10-5) 

with &(slC,,b) th e uniform midriser quantizer characteristic with parameters 
(Cc,b). In eq. (10-S) we are thus looking for the uniform quantizer characteristic 
which minimizes the quadratic error between input signal and quantizer output. 

The result of the optimization task is shown in Figure 10-12. In this figure 
the overload level is plotted versus pi with word length b as parameter. With 
PS = A2/2, A: amplitude of the sinusoidal signal, we obtain for high SNR 

qp.) N Wd = 8 - ( > 
CdPi) 1/2 

4-z A 
pi >> 1 (10-6) 

For large word length b we expect that the useful signal passes the limiter 
undistorted, i.e., Cc(pi)/A N 1 and V(pi) N a. For a 4-bit-quantization we 
obtain V(pi) N 1.26 which is close to 4. The value of V(pg) decreases with 
decreasing word length. The overload level increases at low pi. For a sufficiently 
fine quantization V(pi) becomes larger than the amplitude of the useful signal in 
order to pass larger amplitude values due to noise. 

We return to the optimality criterion of eq. (10-5) which was selected in order 
not to discard information prematurely. In the present case this implies to pass the 
input signal amplitude undistorted to the ML decoder. It is well known that the 
ML decoder requires soft decision inputs for optimum performance. The bit error 
rate increases rapidly for hard-quantized inputs. We thus expect minimizing the 

2.5 

‘(Pi) 

0.5 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-5 0 5 10 15 20 25 

- Pi[dBl 

Figure lo-12 Optimum Normalized Overload Level V(pi) for 
a Sinusoidal Signal plus Gaussian Noise. 
Parameter is word length b. 
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Figure lo-13 BER as a Function of Input Word Length; Optimum Overload 
Factor V(pi); Perfect Synchronization and Decoder Implementation 

mean square error of eq. (10-5) to be consistent with the goal of minimizing the 
bit error rate. (This is indeed true as will be demonstrated shortly.) 

If one optimizes the output SNR of the A/D converter instead, it can be shown 
that this is not the case. The overload factor which maximizes the output SNR 
is far from the optimum factor for minimizing the BER. The reason is that for 
maximum output SNR the input signal undergoes strong clipping which, in turn, 
results in near hard-quantized symbol decisions for the ML detector. 

The small scale effects of input quantization are shown exemplarily in Figure 
lo-13 for an 8-PSK modulation over an additive Gaussian noise channel [S]. From 
this figure we conclude that a 4-bit quantization is sufficient and a 5-bit quantization 
is practically indistinguishable from an infinite precision representation. 

The bit error performance of Figure lo-13 assumes an optimum overload 
factor V(pi). To determine the sensitivity of the bit error rate to a deviation from 
the optimum value a computer experiment was carried out. The result is shown 
in Figure 10-14. The clipping level is normalized to the square root of the signal 
power, a. The BER in Figure lo- 14 is plotted for the two smallest values of 
Eb/Nc. The input signal-to-noise ratio, E, /NO, is related to &,/NO via eq. (3-33): 

(10-7) 
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m Eb/NO-5.4dB. h/T=O.‘OO2, (n+O.O. R-7/8 

m Eb/NO=JAd8. Ts/T=0.‘002, IQ+0.0. R-1/2 

m Eb/N0=5AdB. h/T-0.4002, IflTl-0.1213. R-7/5 

1++1 Eb/N0=5.‘dB. h/T-0.4002, (I)T(=O.1213. R-1/2 

cc /sqws > 
Figure 10-14 BER as a Function of the Normalized Clipping Level 
CJfl. Sampling ratio T,/T = 0.4002. Residual frequency offsets 
IQTl = 0.1213 and IS2TI = 0. Code rates R = 7/8 and R = l/2. 

For both input values of Es/No the results are plotted for zero and maximum 
residual frequency offset, I (RT) Imax = 0.1213. The sampling rate is T,/T = 
0.4002. 

The BER is minimal for a value larger than 1. A design point of 

cc 
7z N 1.25 (10-S) 

was selected. The results show a strong asymmetry with respect to the sign of the 
deviation from the optimum value. Clipping (C,/m < (C,/fil.,t) strongly 
increases the BER since the ML receiver is fed with hard-quantized input signals 
which degrades its performance. The opposite case, (C,Im > (C,/fi(,,t), 
is far less critical since it only increases the quantization noise by increasing the 
resolution Ax to 

(10-9) 
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Figure lo-15 Synchronizer Structure 

10.4.6 Timing and Phase Synchronizer Structure 
The first step in the design process is the selection of a suitable synchronizer 

structure. Timing and phase synchronizer are separated (see Figure 10-H), which 
avoids interaction between these units. From a design point of view this separation 
is also advantageous, since it eases performance analysis and thus reduces design 
time and test complexity. An error feedback structure for both units was chosen 
for the following reasons: video broadcasting data is transmitted as a continuous 
stream. Only an initial acquisition process which is not time-critical has to be 
performed. For tracking purposes error feedback structures are well suited and 
realizable with reasonable complexity. Among the candidate algorithms which 
were initially considered for timing recovery was the square and filter algorithm 
(Section 5.4). The algorithm works independently of the phase. It delivers an 
unambiguous estimate, requires no acquisition unit, and is simple to implement. 
This ease of implementation, however, exists only for a known nominal ratio of 
T/T8 = 4. Since the ratio T/T8 is only known to be in the interval [2; 2.51, the 
square and filter algorithm is ruled out for this application. 

10.4.7 Digital Phase-Locked Loop (DPLL) for Phase Synchronization 
The detailed block diagram of the DPLL is shown in Figure 10-16. In this 

figure the input word length of the individual blocks and the output truncation 
operations are shown. The word length of the DPLL are found by bit-true computer 
simulation. The notation used is summarized in Figure lo-17 below. 



550 DSP System Implementation 

Ki=3:15 

Ks=8:13 

Figure lo-16 Block Diagram of the DPLL for Carrier Phase Synchronization 

be within min 5 K,., S max 

Figure lo-17 Notation Used in Figure lo-16 

We next discuss the functional building block in some detail. The incoming 
signal is multiplied by a rotating phasor exp [j (QM’/2 + &)I by means of a 
CORDIC algorithm [6,7], subsequently filtered in the matched filter and decimated 
to symbol rate. One notices that the matched filter is placed inside the closed loop. 
This is required to achieve a sufficiently large SNR at the phase error detector input. 
The loop filter has a proportional plus integral path. The output rate of the loop 
filter is doubled to 2/T by repeating each value which is subsequently accumulated 
in the NCO. The accumulator is the digital equivalent to the integrator of the VCO 
of an analog PLL. The modulo 2~ reduction (shown as a separate block) of the 
accumulator is automatically performed by the adder if one uses a 2’s complement 
number representation. The DPLL is brought into lock by applying a sweep value 
to the accumulator in the loop filter. The sweep value and the closing of the loop 
after detecting lock is controlled by the block acquisition control. 
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Matched Filter 

The complex-valued matched filter is implemented as two equivalent real FIR 
filters with identical coefficients. To determine the number of taps and the word 
length of the filter coefficients, Figure lo-18 is helpful. The lower part shows the 
number of coefficients which can be represented for a given numerical value of 
the center tap. As an example, assume a center value of he = 15 which can be 
represented by a 5 bit word in 2’s complement representation. From Figure lo- 18 
it follows that the number of nonzero coefficients is nine. Increasing the word 
length of ho to 6, the maximum number of coefficients is nine for ha 2 21 and 
14 for 21 < he 5 31. The quadratic approximation error is shown in the upper 
part of Figure 10-18, again as a function of the center tap value. The error decays 
slowly for values ho > 15 while the number of filter taps and the word length 
increase rapidly. As a compromise between accuracy and complexity the design 
point of Figure lo-18 and Table 10-2 was chosen. 

In the following we will explain the detailed considerations that lead to the 
hardware implementation of the matched filter. This example serves the purpose 
to illustrate the close interaction between the algorithm and architecture design 
found in DSP systems. 

A suitable architecture of an FIR filter is the transposed direct form (Figure lo- 
19). Since the coefficients are fixed, the area-intensive multipliers can be replaced 
by sequences of shift-and-add operations. As we see in Figure 10-20, each “1” 
of a coefficient requires an adder. Thus, we encounter an additional constraint on 
the system design: choosing the coefficient in a way that results in the minimum 
number of “1”. 

Matched Filter 2/T Quantlzatlon Reaulta 
0 I I I I I I I I 

I 

4- I I I I I I I I I 
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4bit 
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,I 
I 
1 Design Point 

I 

’ I 

I 
6 bit I 7 bit 

I - number filter coefficients 
I 

“0 5 10 15 20 25 30 35 40 45 50 
value of center tap 

Figure lo-18 Matched Filter Approximation 
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7 

Figure lo-19 FIR Filter in Transposed Direct Form 

Figure lo-20 Replacement of Multipliers by Shift-and-Add Operations 

The number of l’s can be further reduced by changing the number representa- 
tion of the coefficients. In filters with variable coefficients (e.g., in the interpolator 
filter) this can be performed by Booth encoding [S]. For fixed coefficient filters 
each sequence of l’s (without the most significant bit) in a 2’s complement num- 
ber can be described in a canonical signed digit (CSD) representation with at most 

c 1 x 2” = 1 x 2”+1 - 1 x 2N (10-10) 
d=N 

This leads to the matched filter coefficients in CSD format shown in Table 10-2. 
As a result, we need nine adders to implement a branch of the matched filter. 

For these adders different implementation alternatives exist. The simplest is the 
carry ripple adder (Figure 10-21). It consists of full adder cells. This adder 
requires the smallest area but is the slowest one since the critical path consists 

Table 10-2 Matched Filter Coefficients 

Coefficient 
Numerical 

Value 2’s complement 
Canonical Signed 

Digit 
Representation 

h0 14 01110 100-10 

h-1 = hl 8 01000 01000 

h-2 = h2 -1 11111 0000-1 

hB3 = h3 -2 11110 000-10 

he4 = h4 1 00001 00001 
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Figure lo-21 Carry Ripple versus Carry Save Adder 

of the entire carry path. By choosing an alternative number representation of the 
intermediate results, we obtain a speedup at a slightly increased area: the carry 
output of each adder is fed into the inputs of the following filter tap. This carry 
save format is a redundant number representation since each numerical value can 
be expressed by different binary representations. Now, the critical path consists 
of one full adder cell only. 

The word length of the intermediate results increases from left to right in 
Figure 10-19. This implies a growing size of the adders. By reordering the partial 
products or the “bitplanes” [9, 10, 1 l] in such a way that the smallest intermediate 
results are added first, the increase of word length is the smallest possible. Thus, 
the silicon area is minimized. Taking into account that the requirements on the 
processing speed and the silicon technology allow to place three bitplanes between 
two register slices, we get the structural block diagram of the matched filter 
depicted in Figure 10-22. 

(0) (0) 
h-4 h4 

(0) (0) 
h-2 h, 

(1) (1) (1) 
h-3 ho h3 

(3) (3) 
h-1 h 

(4) 
ho 

i 1 I I I I I 
z-6 z-2 z-6 z-5 *-2 z-71 z-5 z-6 

Figure lo-22 Block Diagram of One Branch of the Matched Filter 
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Figure lo-23 Detailed Block Diagram of Matched Filter 

An additional advantage of the reordering of the bitplanes can be seen in 
Figure lo-23 which shows the structure in detail. It consists of full and half adder 
cells and of registers. The carry overflow correction [lo, 121 cells are required 
to reduce the word length of the intermediate results in carry save representation. 
The vector merging adder (VMA) converts the filter output from carry save back to 
2’s complement representation. Due to the early processing of the bitplanes with 
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the smallest numerical coefficient values, the least significant bits are computed 
first and may be truncated without side effects. The word length of the VMA is 
decreased as well. 

Phase Error Detector 
A decision-directed detector with hard quantized decisions is used (see Section 

5.8): 
g(eo - 8) = Im[ic;z,(+-je’] (10-11) 

with 

hn = sign{Re[t,(g)e-j’]} +j sign{Im[z,(Z)e-j”]} (10-12) 

Inserting the hard quantized symbols tin into the previous equation we obtain 

!I 00 ( - 8) = Re(&,)Im[z,(++‘] - Im(&)Re [~~(2)e-~‘] (10-13) 

The characteristic g 80 
( 1 

- 8 is plotted in Figure 10-24. It varies with the signal- 

to-noise ratio. The slope at the origin becomes smaller with decreasing E,/No 
(see also Section 6.3). Since the detector takes the difference between two noisy 
samples, it is sensitive to quantization. For this reason an &bit internal word 
length was found to be necessary for an acceptable performance (see below). 

Phase Error Detector 

~ SNR=3d8 
I+il SNR=SdB 
m SNR=SOdB 

Figure lo-24 Phase Error Detector with Hard Quantized Decisions 
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Loop Parameters as a Function of Loop Constants 
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Figure lo-25 Loop Parameters as a Function of the 
Quantized Loop Constants ICI and I$, 
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Design of the DPLL 

Since the loop bandwidth BL is much smaller than the symbol rate, BLT = 
10-a, a quasi-time-continuous design (see Volume 1) approach is taken. In Figure 
lo-25 the PLL parameters BLT, w,T are displayed as a function of the quantized 
coefficients: 

Kp E [-611 (3 bit) 
(10-14) 

KI E [3,15] (4 bit) 

For example, for Kp = -4, KI = 6 we obtain BtT z 10B3, < z 0.8. 

Notice: Kp and KI in Figure lo-16 are the negative 2’s logarithms of the quantity 
used in the continuous realization (see Figure 10-16). 

Loop Filter and NC0 Accumulator 

In order to avoid overflow effects, the accumulator word length of the filter 
and NC0 must be large. The units are implemented with a word length of 25 bits 
and of 19 bits, respectively. 

Dacking Performance 

The normalized var 
0 
8 /2 BLT is plotted in Figure 10-26. At the design point 

Es/No = 3 dB the variance is approximately 8.5 dB above the CR-bound. Of 
this difference, 7 dB are due to incorrect decisions of the DD phase error detector 

Normalized Variance of the 
Phase Estimate 

. 
m quantized system, ideal decisiors 

Es/NO [dB] 

Figure lo-26 Normalized Variance var 8 /~BLT as a Function of Es/No 0 



558 DSP System Implementation 

(compare also with Figure 6-l), and 1.5 dB is attributed to numerical effects. To 
validate the design a computer experiment was run assuming known symbols in 
the DD algorithm. The resulting variance is about 1.5 dB above the CR-bound, as 
predicted. By inspection of Figure 6-4 we find that an NDA algorithm for QPSK 
offers no performance improvement over the DD algorithm. 

Due to erroneous decisions the slope of the phase error characteristic decreases 
(Figures 6-3 and 10-24) with decreasing Es/No. For this reason the loop bandwidth 
also varies with Es/No, as shown in Figure 10-27. In the same figure we 
have plotted the variance var fi 0 (not normalized to 2B,T) taking the E,/No 
dependence of the loop bandwidth into account. Notice that it is the variance 
var 6 which affects the demodulation process. 

0 

Remark: At the operating point of E,/No = 3 dB the difference in performance 
between the algorithm using correct decisions and the DD algorithm is 4.5 dB, 
compared to 8.5 dB for the corresponding normalized quantities in the previous 
figure. The seeming discrepancy is readily resolved by noting that the slope of the 
phase error detector characteristic is different in the two cases. 

The variance is lower-bounded by the quantization of the phase in the 
CORDIC at (2~/256)~/12. For any practical application this value is negligibly 
small. 

Using formula (6-231) for the cycle slip rate, one computes for BLT = 10v2 
and Es/No = 3 dB approximately one cycle slip per 1.6 days. 

Variance of the Phase Estimate 

20. 30. 40. 5 

Es/NO [dB] 

Figure lo-27 Variance var 8 0 and Loop Bandwidth BLT as a Function of E, /No 
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controlled 

truncation 

I ana 
monitoring 

Figure lo-28 DPLL for Timing Recovery 

We recall that to accommodate for phase noise effects (Volume 1, Chapter 
3.6) the bandwidth must be larger than a minimum value, which depends on the 
oscillator characteristic and the symbol rate. 

10.4.8 Timing Recovery 
Figure lo-28 shows the block diagram of the DPLL used for timing recovery. 

In the block diagram the input word lengths of every block and the clipping and 
truncation operation at the output are shown. 

In the sequel we discuss the building blocks of the DPLL. The interpolator is 
implemented as a 4-tap FIR filter with time-variant coefficients. The word length 
of the filter coefficients, hi, is 4 bits. Their values for the 8 different fractional 
delays 1-1 were determined by minimizing the quadratic approximation error. To 
compensate for the bias at the interpolator output (due to the A/D characteristic) 
the value 4 is added. 

The NDA timing error detector works with two samples per symbol (see 
Section 5.6.2). The loop filter has a proportional plus integral type path in order 
to realize a second-order closed-loop filter transfer function. Similarly as for the 
carrier recovery, DPLL-aided acquisition is used to bring the loop into lock. 
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Interpolator Control 

For the sake of convenience the recursive equations for the basepoint and 
fractional delay computation are repeated below [Eq. (g-39)]: 

mk+l= mk + J%NT[~~ +w(r?-&)] 

h+l = i$k + w(mk)],odl 

(10-15) 

The control word w(m,Z’,) is an estimate of the ratio Tl/T (T’ = T/2). The 
LINT( .) and fractional rest computation are performed in the following way. Define 
the function 

q(mk, i) = $k + w(mk) - i; i = 0, 1,2, . . . (10-16) 

At the basepoint mk the value 7](m1,, 0) is stored in an N-bit register. At every 
TJ cycle the value of the register is decremented by 1, 

q(mk, i + 1) = q(mk, i) - 1 (10-17) 

As long as q(rni , i) > 1, there obviously exists an integer LINT( *) > ?-r&k + i. 
Hence, the criterion for obtaining the next basepoint mk+l is ?‘j(?nl,, imin) < 1, 
where imin is the smallest integer for which the condition is fulfilled. Thus, 
the decrementation operation is continued until the condition q(mk , imin) < 1 is 
detected. By definition, the register content q(m!, , imin) equals j&+1. 

The operations are continued for mk+l with the initial value 

5+-‘-‘k+l, 0) = d mk, ‘&in) + w(mk+l) 

The nominal ratio TI/T, is always larger than one to guarantee that no two 
basepoints coincide, i.e., m&r # mk in the noiseless case. Noise may rarely 
cause the condition ?j?(?nk , 0) < 1. In such a case the result is considered false and 
is replaced by q(mk, 0) = 1. Hence, j&r = 0 and mk+r = mk + 1. 

The following numerical values apply to the DVB chip. The sampling interval 
is quantized to N = 
one of the 212 = 

12 bits. A (quantized) fractional delay p is thus represented by 
4096 integer numbers. The intermediate time interval Tr = T/2 

ranges from [4096,5120] depending on the ratio 1.0 < TI/T, 5 1.2. The N = 12 
bit word for p is truncated to 3 bits to obtain one of the 8 possible values used 
in the interpolator. 

Constraints on the T/T8 Ratio 

After interpolation a controlled decimation is carried out. Therefore it may 
occur that signal and noise spectra, which do not interfere before the decimation 
process, do aliase after decimation. In order to satisfy the conditions on sufficient 
statistics (Section 4.2.4) the following relations must hold [13]: 

(10-19) 
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Timing Error Variance 
quantized sync algorithms 

Y::~-- other signol quontizotion loss 

,  

i 
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Es/No [dt3] 

Figure lo-29 Timing Error Variance versus E,/Ne 

with BaW the bandwidth of the analog prefilter, a the excess bandwidth, and IslTl 
the maximum frequency offset normalized to the symbol rate. 

Tracking Performance 

In Figure lo-29 the variance var(Z) is plotted versus Es/No. At the design 
point of Es/No = 3.4 dB, the CRB equals -40.5 dB , One part of the difference 
of 6.5 dB is due to the fact that the NDA algorithm does not reach the CRB 
while the other part is due to numerical effects. From Figure 6-6 we obtain for 
the NDA algorithm a variance of var(i) = -36.8 dB for perfect implementation. 
This leaves a 2.8dB loss which must be attributed to quantization. Using Figure 
lo-29 we can further analyze the structure of the quantization loss. The variance 
is lower bounded by the quantization of /J into 8 levels, 

var(Z) 2 (10-20) 

At high SNR the variance is mostly due to this quantization. We see that the 
asymptotic value of the variance is slightly above the lower bound. We therefore 
can attribute most of the loss to the quantization of p and a small part of 0.45 dB 
to other word length effects. The decomposition at large Es/No merely serves 
as a qualitative mark. For small values of E,/No we observe an increase of the 
quantization loss which is caused by complicated nonlinear effects in the estimator. 
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BER(Symbol Rate) 
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Figure lo-30 Bit Error Rate versus T’/T 

In Figure lo-30 the BER is plotted for the code rates R = l/2 and R = 7/8, 
respectively, as a function of the ratio T,/T. The operating points are 

R = l/2 
R=7/8, M =4 (10-21) 

(perfect carrier synchronization). We observe that the bit error rate is practically 
independent of the ratio T,/T for both code rates. It varies between 4 x 10m4 and 
2 x 10e4. The loss D, is the difference of Es/No to achieve a bit error rate of 
4 x 1o-4 and 2 x 10V4, respectively. 

10.5 Bit Error Performance of the DVB Chip 

The bit error performance for the code rates of R = l/2 and R = 7/8 of the 
receiver is shown in Figure 10-3 1. The solid lines belong to the hypothetical 
receiver with perfect synchronization and implementation. The dotted curves 
belong to the inner receiver comprising carrier synchronization, timing recovery, 
and convolutional decoder (see Figure 10-10). The performance is obtained by 
simulating the bit-true models of the functional building blocks. A perfect analog 
front end is assumed. The output of the convolutional decoder is input to the 
Reed-Solomon decoder, after frame synchronization and deinterleaving is carried 
out. For a BER 5 2 x 10 -4 of the convolutional decoder the Reed-Solomon 
decoder output is quasi error-free. 

The total loss D total is below the specified 0.5 dB for both code rates. This 
leaves approximately 0.5 dB for the imperfection of the analog front end, 
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BER performance 
w simulation results for R=7/8, R=1/2 
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Figure lo-31 BER Performance of Bit-True Receiver 

10.6 Implementation 

The circuit is manufactured in a 3.3 Volt advanced 0.5pm CMOS technology 
with a power consumption below 1.5 W and fits into a P-QFP-64 package. 
The maximum allowable clock rate is 88 MHz. Table 10-3 gives a complexity 
breakdown of the data-path components. A photo of the device is shown in Figure 
10-32. 

Table 10-3 Complexity Breakdown 

Block Cell Area RAM 
# Lines of 

VHDL 

Timing/Carrier Synchronizer 

Viterbi Decoder (incl. node 
synchronizer) 

Frame Synchronizer 

Deinterleaver 

Reed-Solomon Decoder 

Descrambler 

32.5% - 7000 

40.0% 83.8% 4000 

1.7% - 700 

2.2% 8.4% 640 

22.9% 7.8% 5600 

0.7% - 360 
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E’igure lo-32 Chip Photograph of the DVB Receiver 

10.7 CAD Tools and Design Methodology 

The design flow is illustrated by Figure 10-33. 

.Sd$k&Dz~p c-2 1 simu:tor Coupling 
3 Architecture [ ’ \,l-ln, 

\ 
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Place & Route 
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Post Layout 
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Figure lo-33 Design Flow 
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10.7.1 Algorithm Design 

In a first step a model of the channel and a floating-point model of the 
functional units under considerations are simulated to obtain the performance of 
a perfect implementation. This performance serves as a benchmark against which 
the finite word length implementation is compared. 

During the design process it may become necessary to modify or replace 
algorithms. The interactive algorithm design process is completed when the system 
performance meets the specification. The process of comparing the specifications 
against the performance is called validation. 

Computer simulation is the experimental side of the algorithm design process. 
The experimental results must always be compared to the theoretical results, such 
as variance of estimates or the Cramer Rao bound. Only in such a way one 
can eliminate inevitable modeling or simulation errors or identify deficiencies 
of approximations to optimal algorithms. As a typical example, consider the 
performance evaluation of the carrier phase synchronizer in Section 10.4.7. 

In the next step the floating models are successively replaced by finite word 
length bit-true models of the units to be implemented. The performance of the 
bit-true models is exactly that of the actual VLSI implementation. In this design 
cycle no modifications of the algorithms should be necessary. Since the level of 
abstraction is far more detailed, the simulation time greatly increases. Therefore, 
only finite word length effects are evaluated. Various concepts exist for modeling 
and simulating the bit-true behavior [ 15]-[ 191. The replacement of a floating-point 
model by a finite word length model is a difficult, error-prone and time-consuming 
task which requires much experience. Only very recently computer-aided design 
(CAD) tool support become available [20]-[22]. 

The CAD tool used in the DVB receiver design was COSSAPTM.4 
COSSAPTM has an extensive telecommunication library which allows floating- 
point as well as bit-true simulation of an algorithm. The block diagram editor of 
COSSAPTM and the stream-driven simulation paradigm allow efficient modeling 
and simulation of dynamic data flow. 

Remark: Among other tools, SPW TM of Alta Group of Cadence offers similar 
capabilities. 

10.7.2 Architecture Design 
For each of the building blocks in Figure lo-10 an architecture was developed. 

The architectural description was done in the VHDL [23] language. A rough 
indicator of the modeling complexity is the number of lines of VHDL code, given in 
Table 10-3. The functional verification of the VHDL model against the bit-true and 
cycle-true COSSAP reference was done by coupling two simulation engines. Via 
an interface [24] COSSAP block simulation data is fed into the VHDL simulator. 

4 COSSAP? Registered Trademark of SYNOPSYS Inc., Mountain View, California. 
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The result to the input is transferred back into the COSSAP environment and 
compared with the reference output. 

For logic synthesis and estimation in terms of silicon area and minimum clock 
frequency the SYNOPSYS tool suite (Rev. 3.0) was used. 

The area of design methodology and CAD tools is rapidly advancing. The 
design flow described is state of the art of 1996. The reader is urged to update 
this information. 

Remark: Recently (1996) a new generation of commercial CAD tools emerged 
which allows the synthesis of an architecture from a behavioral description. The 
advantage of this approach is that only one model must be developed. An example 
of such a tool is the Behavioral CompilerTM.’ 

10.8 Topics Not Covered 

Simulation of communication system is a demanding discipline. It is the 
subject of the books by Jeruchim, Balaban, and Shanmugan, [25] and the books 
by Gardner and Baker [26] which are highly recommended reading. 

Hardware-software co-design is extremely important for meeting design goals. 
The area is rapidly evolving due to the expansion of the CAD tools support to co- 
design problems, An in-depth treatment of the various aspects can be found in 
the proceedings of the first Hardware/Software Co-Design Workshop in Tremezzo, 
1995 [27, 281. 

The design of decoders (the outer receiver) is regrettably outside the scope 
of this book. For the reader interested in this fascinating area we provide 
bibliographical notes at the end of this chapter. 
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10.9 Bibliographical Notes on Convolutional 
Coding and Decoding 

In 1967 Viterbi [l] devised a decoding algorithm for convolutional codes 
which is named after him. A comprehensive discussion about the Viterbi algorithm 
is given by Forney [2]. The theoretical aspects of the algorithm are well covered in 
the standard textbooks on communication theory, whereas the literature on Viterbi 
decoder (VD) implementation is widely scattered in journals. In the following a 
guide to access the literature on implementation is provided. The Viterbi Decoder 
consists of three main building blocks: a branch metric computation unit, a unit 
for updating the path metric (add-compare select unit, ACSU), and a unit for 
the survivor sequence generation (survivor memory unit, SMU). Since the branch 
metric computation unit usually is very small6 the ACSU and SMU unit are the 
candidates for optimizing the implementation of the VD. 

10.9.1 High-Rate Viterbi Decoders 

The bottleneck for any high-rate VD is the recursive add-compare-select 
computation. Fettweis and Meyr [3, 41 showed that this bottleneck can be broken 
by introducing parallelism at three different levels. At the algorithmic level the 
algorithm may be modified to decode Ic data blocks in parallel [3, 5]-[8]. This 
results in a k-fold increase of the throughput of the Viterbi decoder at about k-fold 
silicon area. 

6 For rate l/2 decoders and architectures not parallelized at the block-level. 
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Parhi showed that parallelism can also be introduced at the block level [9]. 
Here, each step in the recursive ACS update processes k trellis steps which leads 
to k decoded bits per clock cycle. Therefore, a k-fold improvement of data 
throughput can be achieved. The introduction of parallelism at this level may 
also be derived from linear matrix algebra on a (maximum,+)-semi-ring [3, 10, 
1 l] which is basically equivalent to the transitive closure calculation of graph 
theory. Some of the lock-ahead architectures that these methods are based upon 
canbe traced back to Kogge and Stone. [ 12, 131 For convolutional codes with 
a low number of states N 5 4 this method can be implemented at an acceptable 
increase in hardware cost. For the practically relevant convolutional codes with 
N = 64 states it results in an exponential increase (factor 2k) in silicon area. 
Therefore, the method is not economical for k > 2. For the practically relevant 
and area-efficient k = 2 case the architecture has been rediscovered in [ 141 (radix- 
4 ACS architecture). Black and Meng [14] report a highly optimized full-custom 
implementation of this architecture for N = 32 states. 

At the bit level parallelism may be introduced by employing a redundant 
number system, for example, by using carry-save ACS processing elements [15]. 
Basically, this leads to a critical path that is independent of the word-length w  and 
thus has a potential of O(W) throughput improvement. But since the word-length 
of the ACS unit usually requires less than 10 bits (for the currently used codes) the 
increase in throughput is only about 30 to 50 percent. This speedup comes at the 
expense of an increased ACS unit silicon area (by a factor 2 to 3). A cascadable 
600 Mb/s 4-state Viterbi decoder chip that simultaneously exploits all three levels 
of parallelism was developed by Dawid et al. [ 10, 161. 

10.9.2 Area-Efficient Implementations for Low to Medium Speed 

The traditional high-speed architecture, the node-parallel (NP) architecture, 
uses one processing element (PE) per state of the trellis. Due to its simplicity it 
is often used even if the computational power is not fully utilized in the decoder. 
This mismatch of implemented and required processing power results in a waste 
of silicon area. Scalable architectures where the number of processing elements 
can be selected to match the data rate are reported in [17]-[26]. Furthermore, 
these architectures make use of pipeline-interleaving that allows the use of highly 
efficient deeply pipelined processor elements. 

Gulak and Shwedyk [ 17, 181 showed that an architecture analogous to the 
well-known cascade architecture for the FFT can be used for the ACS computations 
of Viterbi decoders. The comparatively low processor utilization of about 50 
percent of the original design was later improved to more than 95 percent by Feygin 
et. al. [21] (generalized folded cascade architectures). Since each processing stage 
contains just one butterfly ACS processor (2 node equations are processed in 
parallel at each stage) and the implementation consists of up to log, (N)/2 stages, 
the maximum data rate is given by fACs loga (N)/N (fACs: throughput of a 
pipelined ACS processing element). Thus the application of this architectures is 
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limited to the lower speed region. Since the processor utilization is slightly less 
than 100 percent, a complicated rate conversion unit (e.g., FIFOs) is needed for 
most applications. 

Another area-efficient architecture for the medium-speed region has been 
proposed by Shung et al. [22, 233 and Bitterlich et al. [25, 271. The architecture 
proposed in [22, 231 can be used for a very wide range of trellis types; a heuristic 
algorithm is suggested to construct schedules that lead to high processor utilization. 
[25, 271 is restricted to the practically important shuffle-exchange type trellises 
that are used by most of todays telecommuncation systems (e.g. DVB [28] and 
DAB [29]). Here a mathematical formalism is introduced that allows the direct 
calculation of the schedules. In contrast to the cascade VD, the trellis-pipeline 
interleaving (TPI) [25, 271 architecture processes several ACS node equations 
of a single trellis step in parallel. Data rates of fAcs2”/N can be achieved 
(k = 1, . . . . l%? WI). Th e main deficiency of these architectures is that the 
parameter k which determines the amount of resource sharing and thus the data 
rate is tied to the selected pipelining degree of the ACS processing elements. 
Furthermore, like cascade VDs, rate conversion circuits are often needed. A class 
of architectures that overcomes these problems is presented in [30]. Moreover [30] 
provides a mathematical framework to understand node-parallel, cascade and TPI 
architectures as special cases of an underlying unified concept which allows the 
explicit derivation of the required control circuits (“schedules”). Layout results 
using these concepts are reported in [26]. 

Another direction of research is the reduction of power dissipation. This is in 
particular important for mobile receivers. Kubuta et. al. [3l]introduced the scarce- 
state-transition Viterbi decoder architecture which leads to significant reduction of 
power dissipation by reducing the number of state transitions in the ACSU for 
operation in the high SNR region [32, 331. 

10.9.3 SMU Architectures 
The optimization of the survivor-memory unit is another important topic. Two 

main SMU architecture classes are known: register-exchange and RAM traceback 
architecture. The register-exchange architectures implement the traceback algo- 
rithm by using N registers of L bits (N: number of states, L: survivor depth). 
For each decoded bit N x L flip-flops are concurrently updated, which leads to a 
high-power consumption for medium-to-large constraint length codes. The other 
alternative, the RAM traceback SMU [34], overcomes this problem and is often 
the superior solution for medium to high constraint length codes because it also 
consumes less silicon area. Cypher and Shung [35] introduced and analyzed a 
unified concept of RAM traceback architectures which allows multiple, different 
“speed” read and write traceback pointers that can be applied to a wide range of 
applications. Black and Meng recently intorduced as an alternative to the classi- 
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cal trace-back methods the trace-forward method. [36] This method leads to a 
reduction of silicon area income applications 

10.9.4 Decoding of Concatenated Codes 

An area of recent research has focused on the decoding of concdtenated codes. 
The idea behind concatenated coding is that one complex code may be substitutable 
by two concatenated (simpler) codes with the same total error correction capability 
but hopefully with reduced total decoding costs [37]. At the sender site two (or 
more) cascaded convolutional coders are used. 

Decoding of two concatenated codes can be achieved by cascaded decoders at 
the receiver site [38]. Since the second decoder usually requires soft input for an 
acceptable decoding performance, this naturally leads to the development of soft- 
output decoders. Two major classes are currently under discussion for concatenated 
convolutional codes: maximum-a-posteriori (MAP) decoders and implementations 
of the soft-output Viterbi algorithm (SOVA). 

The SOVA was originally proposed by Hagenauer and Hijher [39]. The 
implementation of the SOVA is more complex than a hard-output VD: in addition 
to all the data processing required by the hard-output VA, the SOVA requires 
the generation of reliability information for the decoded output which leads to 
significantly more internal processing. Joeressen and Meyr [40] showed that an 
implementation of the SOVA for practically relevant cases (16 states, rate l/2) 
requires twice the area of a hard-output Viterbi decoder . An implementation of a 
concatenated convolutional coding system consisting of two 16-state convolutional 
codes is reported to be about as complex as a 64-state hard-output Viterbi decoder 
[40]-[42] which has about the same error correcting potential. It has been reported 
by Dawid [43] and Meyr that the MAP algorithm can be implemented at about 
the same hardware complexity as well. 

10.9.5 Punctured Codes 
Current telecommunication standards, e.g., digital video broadcasting (DVB 

[28]) or digital audio broadcasting (DAB [29]) usually support a variety of different 
code rates (run-time selectable). The decoder hardware is often directly influenced 
by the codes used because the specific code determines the interconnection structure 
of the ACS and SMU unit for high-speed VDs. Therefore selecting “unrelated” 
codes for each rate would lead to the implementation of a separate decoder 
hardware for each rate which would result in a waste of silicon area, The same 
decoder hardware can be shared if the different codes are derived from a single 
code by puncturing, i.e. by systematically removing some bits from the coded 
output [44, 451. In comparison with the base code this leads to codes of higher 
rate. Higher-rate codes are preferable when the full error correction potential of 
the base code is not needed. Usually a rate 112 code is punctured to obtain rate 
213, 3/4, 5/6, and 7/8 codes [28, 29, 461. 
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10.10 Bibliographical Notes on Reed-Solomon Decoders 

Binary cyclic codes making use of finite-field algebra were introduced first 
by Bose and Ray-Chaudhuri [ 1, 21 and Hocquenghem [3] and named BCH codes 
in honor of their inventors. Reed and Solomon [4] extended these BCH codes 
allowing symbols to be elements of GF( q”), Due to the generally nonbinary 
nature of their symbols, Reed-Solomon (RS) codes are more applicable to burst 
error correction. 

Kasami, Lin, Peterson [5, 61 and later independently Wolf [7] discovered the 
so-called extended Reed-Solomon codes. Two information symbols can be added 
to an RS code of length n = qm - 1 without reducing its minimum distance. The 
extended RS code has length n + 2 and the same number of redundancy symbols 
as the original code. 

10.10.1 Conventional Decoding Methods 

Since BCH codes and RS codes are closely related, decoding algorithms 
for both codes are very similar. Nevertheless, RS decoding is computationally 
much more expensive, since all operations need to be performed in the Galois 
field GF(qm). Therefore, early decoding algorithms were primarily developed for 
BCH codes and later extended and applied to RS codes. 

Generally, BCH/RS decoding is performed in three or four steps: 

. Re-encoding in order to compute the syndromes 
. Solving the key equation in order to find an error-locator polynomial 
. Determining the error locations by finding the roots of the error-locator 

polynomial 
. Computing the corresponding error values (necessary for RS codes only) 

Solving the key equation is the most sophisticated problem in this decoding 
procedure and has been the subject of numerous papers concerning BCH/RS 
decoding. 

The first decoding algorithm for binary BCH codes was developed by Peterson 
[8]. Several refinements and generalizations [9]-[ 1 l] led to the well-known 
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Berlekamp-Massey algorithm [ 12, 131, where the solution of the key equation is 
regarded as a problem equivalent to shift-register synthesis. A computationally 
efficient version of the Berlekamp-Massey algorithm is presented by Lin and 
Costello [14], where some circuitry for Galois field arithmetic and RS re-encoding 
is proposed as well. 

Completely different approaches to RS decoding have been pursued by 
Sugiyama et. al., Blahut, and Welch & Berlekamp. Sugiyama et. al. [15] use the 
Euclidean algorithm to find the GCD (greatest common divisor) of two integers 
to solve the key equation. Blahut [16] employs finite-field transforms in order to 
solve the key-equation in the frequency domain. Finally, the “remainder decod- 
ing algorithm” by Welch and Berlekamp [ 171 introduces a different key-equation 
which allows the preceding expensive computation of the syndromes to be elimi- 
nated. The Welch-Berlekamp algorithm has been further refined by Liu [18] and 
more recently by Morii and Kasahara [ 191. 

10.10.2 Soft-Decision Rs Decoding 

If some reliability information about the symbols at the RS decoder input 
is available, exploiting this additional information increases the error correction 
performance. Decoding algorithms that take account of such reliability information 
are known as “soft-input” or “soft-decision” decoding algorithms. The most simple 
kind of reliability information is a binary flag which states if a received symbol 
is “fully reliable” or “unreliable”. Unreliable symbols are denoted “erasures”. For 
decoding, the value of a symbol marked as an erasure is discarded, the symbol is 
treated as an error with known location. 

These basic ideas are found in Forney’s generalized minimum distance (GMD) 
decoding algorithm [20]. The symbols of an input code word are sorted according 
to their reliabilities. The least reliable symbols are successively declared as 
erasures, the remaining symbols are subject to conventional error correction. A 
Reed-Solomon code with Ic = 2t + e redundancy symbols can correct up to e 
erasures and t errors simultaneously. 

Due to the enormous progress in VLSI technology soft-decision algorithms 
hithereto rendered too complex have become practically feasible. Recent ap- 
proaches of Welch and Berlekamp [21] as well as Doi et. al. [22] are adap- 
tations of Forney’s GMD algorithm to the particular problem of soft-decision RS 
decoding. More combined error-erasure correcting RS decoding algorithms are 
presented by Araki et. al. [23], Kijtter [24], and Sorger [25]. A refined algorithm 
proposed by Vardy and Be’ery [26] allows an exploitation of bit-level reliability 
information rather than symbol reliabilities. Recently, Berlekamp [27] has pre- 
sented a new soft-decision RS decoding algorithm which is capable of correcting 
up to k + 1 symbol erasures, where k is the number of redundancy symbols. This 
is one additional correctable symbol erasure than allowed by previous algorithms. 

10.10.3 Concatenated Codes 

Forney [28] examined the employment of concatenated codes in order to 
increase error-correction performance. Many variations in concatenating codes 



10.10 Bibliographical Notes on Reed-Solomon Decoders 577 

are possible. An effective and popular approach is to use a convolutional code 
(applying Viterbi decoding) as inner code and a Reed-Solomon code as outer 
code, as proposed by Odenwalder [29]. Zeoli [30] modified Odenwalder’s basic 
concatenation scheme such that additional reliability information is passed from the 
inner soft-output Viterbi decoder to an outer soft-decision RS decoder. A similar 
soft-decision concatenated coding scheme has been presented by Lee [31]. 
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Chapter 11 Characterization, Modeling, 
and Simulation of Linear Fading Channels 

11 .l Introduction 

In order to meet the ever-increasing need for both increased mobility and 
higher quality of a larger selection of services, wireless radio transmission of digital 
information such as digitized speech, still or moving images, written messages, and 
other data plays an increasingly important role in the design and implementation 
of mobile and personal communication systems [ 1, 21. 

Nearly all radio channels of interest are more or less time-variant and dis- 
persive in nature. However, many electromagnetic environments, e.g., satellite 
or line-of-sight (LOS) microwave channels, may often be regarded as effectively 
time-invariant. In such cases, receiver structures, including synchronizers that have 
been derived for static channels (see the material of the preceding chapters), may 
be applied. 

On the other hand, when environments such as the land-mobile (LM), satellite- 
mobile (SM), or ionospheric shortwave (high-frequency, HF) channels exhibit 
significant signal variations on a short-term time scale, this signal fading affects 
nearly every stage of the communication system. Throughout this part of the book, 
we shall focus on linear modulation formats. Large variations of received signal 
levels caused by fading put additional strain on linear digital receiver components; 
the resolution of A/D converters and the precision of digital signal processing must 
be higher than in the case of static channels. More importantly, deep signal fades 
that may occur quite frequently must be bridged by applying diversity techniques, 
most often explicit or implicit time diversity (provided, e.g., by retransmission 
protocols or the use of appropriate channel coding with interleaving), antenna, 
frequency, spatial, and/or polarization diversity [3]. Moreover, if the channel 
dispersion results in intersymbol interference (ISI), this must be counteracted by 
means of an (adaptive) equalizer. Finally, transmission over fading channels 
necessitates specifically designed synchronizer structures and algorithms that are, 
in general, substantially different from those for static channels. 

Following the ideas outlined in previous chapters, we are primarily interested 
in synchronizers that are mathematically derived in a systematic manner, based 
upon a suitable model of all signals and systems involved [4]. In particular, 
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adequate modeling of the fading channel is of highest concern. Since the channel 
variations as observed by the receiver appear to be random, the channel model will 
most often be a statistical one. Furthermore, as synchronizers primarily have to 
cope with short-term variations of quantities such as amplitude(s) and phase(s) of 
received signals, it often suffices to assume stationary statistical channel properties, 
at least over a reasonably short time frame. 

11.2 Digital Transmission over Continuous-Time 
and Discrete-Equivalent Fading Channels 

11.2.1 Transmission over Continuous-Time Fading Channels 

In digital communications over linear channels, the baseband-equivalent 
transmitted signal s(t) is a train of transmitter shaping filter impulse responses 
gT(t - IcT), delayed by integer multiples Ic of symbol duration T and weighted 
by complex-valued M-PSK or M-QAM data symbols ak: 

s(t> = c ak gT(t - kT) 

k 

(11-l) 

Throughout this part of the book, we are concerned with strictly baud-limited 
radio frequency (RF) communications. Therefore, all signals and systems are 
understood to be complex-valued lowpass-equivalent envelope representations of 
their passband counterparts; the label L denoting lowpass equivalence in earlier 
chapters is dropped here. All lowpass envelope signals and systems are taken 
to refer to the transmitter carrier ficos(wct) so that the bandpass transmitted 
signal fi Re [s(t) .ejWo’] is centered about the transmitter carrier frequency wn. 
The physical fading channel - just as any lowpass-equivalent linear system - can 
thus be characterized by the complex-valued time-variant fading channel impulse 
response (CIR) c(r; t) or equivalently its Fourier transform with respect to the 
delay variable r, the instantaneous channel transfer function C(w; t) valid at time 
instant t. Most radio channels are characterized by multipath propagation where 
a number of reflected or scattered radio rays arrive at the receiving end. Such 
a typical scattering scenario is illustrated in Figure 1 l-l for the example of a 
mobile radio environment. Unless obstructed, the LOS ray (dashed line) arrives 
first at the receiver, while the other rays (solid lines) are reflected from various 
objects in the environs. Each of the rays is characterized by a distinct attenuation 
(amplitude “gain”), a phase shift, and a propagation delay. The former two are 
jointly expressed by a complex-valued gain factor en(t) where an(t) = 1 en(t) 1 is 
the time-variant amplitude gain and cpn(t) = arg{c, (t)} the random phase shift. 
Here, the delays r,(t) are taken to be relative to the propagation delay rp of the 
first arriving ray (usually the LOS ray, if present). The propagation delay is related 
to the propagation distance dp between transmitter and receiver by 

CI, =- rp c 
dP 

= 3*33[kml I-@ 
(11-2) 
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Figure 11-l Typical Scattering Scenario in Mobile Radio Communications 

where c is the speed of light. Usually, m(t) and rP change only slowly with time; 
the instantaneous differential delays r, = r,(t) can thus be assumed to remain 
stationary within a reasonably short time frame so that they may be indexed in 
natural order, i.e., 0 = TO < 71 5 . . . 5 QJ-~ = rmax. The physical channel 
impulse response, including the propagation delay rP, is then expressed as the 
superposition of a number N (which may be virtuaily infinite) of weighted and 
delayed Dirac pulses: 

N-l 

Cp(O) = c G&(t) q7. - [q7+?J (11-3) 
n=O 

In digital communications where transmitter and receiver clock phases may be 
different, a fractional receiver clock delay (or clock advance, if negative) re = Ed T 
has to be added to the physical path delays (rP + 7,). Assuming equal transmitter 
and receiver clock rates l/T (the rationale for this is discussed below), the relative 
timing offset Ed is stationary and in the range -0.5 < E~ 5 0.5. The propagation 
delay rP may now be expressed in terms of integer and fractional multiples of 
symbol duration T: 

rp = [L, + EC + E] T (11-4) 

with L, an integer such that the fractional extra delay (or advance) E is also in 
the range -0.5 < E < 0.5. From the illustration in Figure 1 l-2 it is seen that E is 
the fractional delay of the first arriving multipath ray with respect to the nearest 
receiver symbol clock tick. 

For the purpose of receiver design, it is convenient to introduce the channel 
impulse response in terms of the receiver timing reference: 

Cc(W) = Cp(T + [L, + E,]T$) 

= y en(t) 6(T - [ET + Tn]) 
(11-5) 

n=O 
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I delay 
to reoei- 

ver time reference 

Figure 11-2 Transmitter and Receiver Time Scales 

(see Figure 1 l-2). Since the propagation delay rP is in general a noninteger 
multiple of symbol duration T, the timing delay E may assume any value in the 
range -0.5 < E 5 0.5 even in the case of perfect match between transmitter and 
receiver clocks (Ed = 0). Hence, the “start” of the channel impulse response (first 
arriving ray) may be offset by up to half a symbol interval with respect to the 
receiver timing reference. 

From the channel model of (1 l-5), the various receiver synchronization tasks 
are readily identified. Being concerned about coherent or differentially coherent 
reception only, the existence of randomly varying complex-valued path weights 
c,.,(t) necessitates some kind of carrier recovery, i.e., phase synchronization, and, 
in addition, amplitude (gain) control when amplitude-sensitive modulation formats 
are employed. The differential multipath and timing delays r,, and E, respectively, 
call for some sort of timing synchronization. If the channel is nonselective 
(rn < T, see below), this can be accomplished by means of estimation and 
compensation of the timing delay E (Chapters 4 and 5). In the case of selective 
channels, however, a filtered and sampled version of the channel impulse response 
c, (7; t) must be estimated and compensated for by means of equalization. The 
latter case will receive much attention in the remainder of the book. 

Apart from the random phase shift introduced by the channel itself, imperfect 
transmitter and receiver oscillators may give rise to a sizeable - often nonrandom 
but unknown - frequency shift. It is assumed here that if very large offsets in 
the order or in excess of the symbol rate l/T occur, these are taken care of by 
a coarse frequency synchronization stage in the receiver front end ([5], Chapter 
8). Following the guidelines established in Chapter 8, we shall henceforth assume 
small and moderate frequency shifts in the range (iIT)/ 5 0.1 - 0.15, i.e., 
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the received signal spectrum may be shifted by up to 10-15 percent of the symbol 
rate. Taking SW into account in the signal model and incorporating the constant 
carrier phase shift 8 of Chapter 8 into the complex-valued path weights cn(t>, the 
information-bearing signal s(t) [eq. (1 l-l)] being transmitted through the channel 
yields the received signal shifted in frequency through the rotating phasor ejszt: 

= ,W ak gT(t-ET-rn-kT) I + n(t) 
= ,jnt 

(11-6) 

cn(t> gT([t-kT] - [ET+T~]) + n(t) 

* 
h.(r=t-kT ; t) 

= ,W xak h,(T=t-kT; t) f n(t) 
k 1 

with h, (7; t) the time-variant eflective channel impulse response, including trans- 
mitter filtering and a fractional timing delay. The effective CIR h, (r; t) and its 
transfer function HE (w; t) may be expanded as follows: 

n=O 

= ~(7; t) * gT(r) * +--ET) 

= c&;t> * &) 

= h(r; t) JC +--ET) 
N-l 

HL(w; t) = C en(t) GT(w) e--j“‘[ET+7n] 
n=O 

= C(w; t) G*(w) e-jwcT 

= c,(w; t) GT(w) 

= H(w; t) e-jweT 

e; t) =yCn(t) S(7--7,) 

n=O 

c,(r; t) = c(r; t) * +--ET) 

hb; t> = ‘+;t) * gT(T) 

C(w; t) =Nccn(t) e-jwTa 

C&d; t) = ::I; t) e-jwET 

H(w; t) = C(w;t) GT(w) 
(11-7) 

where * denotes the convolution operator, and c( 7; t), h(T; t) the physical and 
effective CIRs, respectively, taking into account differential delays only, thus 
disregarding propagation and timing delays. This expansion is useful for the 
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purpose of channel modeling and simulation (Section 11.3) since the effects 
of physical channel (fading, dispersion), transmitter filtering, and timing offset 
(propagation, receiver clock) can be attributed to the constituents c( 7; t), gT(r), 
and S( 7 - ET), respectively. 

We remark that the definitions of channel impulse response used here do not 
include receive filtering and thus are different from that of the earlier parts of 
the book where h(r; t) o-•H(w; t) was meant to denote the cascade of transmit 
filter, physical channel, and receive filter. Here, the additive noise n(t) is taken 
to be white Gaussian (AWGN) with power spectral density No, although in reality 
n(t) may be dominated by co-channel interference (CCI) in interference-limited 
environments. Moreover, n(t) is correlated via filtering by the anti-aliasing filter 
F(w). However, the flatness condition (F(w) = 1; Iw 15 B,. , see below) imposed 
on F(w) leaves the noise undistorted within the bandwidth of interest, so that it 
is immaterial whether the effect of F(w) is considered or not. 

Since spectrum is a most valuable resource especially in multiple-access envi- 
ronments, narrowband signaling using tightly band-limited transmitter pulse shap- 
ing filters is a necessity. This, by the way, also applies to CDMA communications 
where the term “narrowband” is taken to refer to the chip rate instead of the symbol 
rate. Tight pulse shaping also helps in suppressing adjacent channel interference 
(ACI). Hence, we assume that the filter gT(r) -GT(u) can be approximated with 
sufficient accuracy as being strictly band-limited to (two-sided) RF bandwidth B, 
so that the effective channel HE (w; t) = H(w ; t) e-jWET [eq. (1 l-7)] is also strictly 
band-limited to B. A common choice is a transmitter filter with root-raised-cosine 
transfer function [ 31 

GT(w) = T (l-o); 5 I;] < (l+cY); 

I4 2 (l+a); 

gT(T) = ( ’ T)2 [(1-ol)si((l--a)*$) + $ cos ((l+a,T$)] 
l- 4a?; 

(11-8) 
where the filter energy 

+oO 

E gT = J 9$(T) dr = k jmlGT(w)lldw = T (11-9) 

-CO -CO 

is equal to the symbol interval T. The filter and thus the channel is strictly 
band-limited to the (two-sided) bandwidth B = (1 + cy) (l/T) with bandwidth 
expansion (or rolloff) factor 0 < CY < 1. As discussed in Section 4.3, the (energy- 
normalizing) received matched filter for the special case of nonselective channels 
(AWGN, no frequency shift) is given by GMF(U) = (l/T) G;(w). Hence, the 
cascade G(w) = GT(w) GMF(W) of pulse shaping and pulse matched filters equals 
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G(w) = (l/T) jG~(u)l”, i.e., 

587 

G(w)=T 

IWI > (l+cy$ T 

g(T) = si 7rf 
( > 

cos [a+/T)] 

T I- 4 [r+/T)12 
(11-10) 

is a raised-cosine pulse satisfying the Nyquist condition on ISI-free transmission 
[eq. (2-17)]. Notice, however, that in baseband communications (Chapter 2) B 
has been defined as the one-sided bandwidth while here at passband B is taken 
to denote the two-sided RF bandwidth. 

As explained above, the frequency content of the received signal r(t) is 
allowed to be offset in frequency due to oscillator imperfections by up to a certain 
maximum value 0 max so that, after downconversion, the receiver anti-aliasing filter 
F(w) in front of the D/A converter must leave the received input signal undistorted 
within the frequency range IwI 5 27rB,/2 = (27rB + Sl,,,)/2. Only if R is very 
small or has been effectively compensated for by a preceding frequency controlling 
stage operating on the time-continuous signal in front of F(U), the widening of 
the receiver input frequency range may be neglected in the design of F(w). 

From eq. (11-7) it is observed that the effective channel H,(w; t) = 
H (w ; t) e-jwcT exhibits a more or less frequency-dependent transmission char- 
acteristic. The degree of selectivity is dependent upon the physical channel 
C,(w; t) = C(u; t) e-jwfT and the transmission bandwidth B. In particular, the 
channel transfer function is effectively frequency-nonselective (nonselective or Jlat) 
within B if e-jwmaxTmax M 1, where urnax = B/2 will be in the order of the 
symbol rate l/T in bandwidth-limited environments. Hence, the channel is nons- 
elective when the dispersion (span of ray transmission delays) satisfies rmax < T 
(in receiver design, nonselectivity can often be safely assumed if rmax < 0.1 T), 
while the channel is frequency-selective when the dispersion is comparable to or 
in excess of the symbol duration T. 

and 
In case the channel is nonselective, the effective channel transfer function 
impulse response collapse to 

(flat fading) (11-11) 

= GT(w) c(t) e -jw(cT) 

h,(W) = c(t) g& - ET) 
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Thus all (nonresolvable) path weights en(t) merge into a single weight c(t) termed 
multiplicative distortion (MD) [6], and all path delays up to T,,, < 7’ can be taken 
to be effectively zero so that one is left with the timing delay ET. The received 
signal can then be written as 

ak c(t) gT(t-ET----T) 1 i- n(t) (flat fading) 
Lk J 

1 
(11-12) 

= ak g&-dP-RT) + n(t) 

Very small frequency offsets lfWl < 1 are sometimes included in the dynamical 
channel MD process model to yield the combined frequency-channel MD process 
csz(t> = ejnt c(t). If all sync parameters [Q, e, c(t)] were known in advance, one 
would be able to process the received signal using the (ideal) energy-normalizing 
frequency channel matched jilter: 

HMF,~(w; t) = e-jot HMF(U; t) (selective and flat fading) 

= e-jnt $I$: (w; t) 

= ,-jnt C*(&; t) $$(u) e+j4fT) 

= [ e -jszt c*(t)] 
[ 
+($(w) e+jY(rT)] (flat fading) 

h~~,n( T; t) = e-jSlt hMF (7; t) (selective and flat fading) 
(11-13) 

= e-jnt +h:(--r; t) 
= e-jnt c*(-r; t) * $gi(-T) * S(T+&T) 1 
= 1 e-jnt c*(t)] $g;(<) * S(r+ET) 1 (flat fading) 

[see also eq. (1 l-7)], with frequency compensation (back-rotation of the complex 
phasor ejnt) via the term e-jot and channel matched filtering by h~F(7; t), which, 
in the case of flat fading, comprises phase correction (randomly varying channel 
phase p(t) = arg[c(t)]) through c*(t), pulse matched filtering by g&r) = 
(l/T)g&(--r), and t’ iming delay compensation via S( 7 + ET). 

Notice that, for perjkct frequency channel matched filtering, the order of 
operations cannot be interchanged, i.e., frequency and phase correction are to be 
performed prior to pulse matched filtering. Obviously, large frequency offsets 
and fast channel variations call for the received signal to be shifted in frequency 
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such that its spectrum matches that of the pulse MF. However, considering only 
(residual) frequency offsets and channel fading bandwidths being small relative 
to the bandwidth B, the transmission model and receiver design for flat fading 
channels can be substantially simplified by attempting to compensate for frequency 
and phase following the (known and fixed) pulse MF gMF (r)o-•GMF(W), thus 
avoiding the (ideal but a priori unknown) frequency channel matched filter. The 
pulse MF can then be implemented either as part of the analog front end [e.g., 
by combining it with the analog prefilter: GMF(W) = F(w)] or as a digital filter 
following F(w) and A/D conversion. The output of the pulse MF is then written as 

z(t) = gMF(t) * T(t) 

O”l 
= J px-4 ejn(t-u) c(t-u) c al, gT([t-U]-&T-kT) du +m(t) 

-CO k 1 
M ejnt c(t) c ~k~e~j”‘~g~(-u) gT([t-u]-ET-kT) du 1 t-m(t) 

k -CO 

= ejnt c(t) ak g(t -cT-kT) 1 + m(t) 
-ejnt c(t) xak 7 (l-e-jnu) $g$(*)gT([t-u]-ET-/CT) du 

\ / 

--OO small if sl~gi 1 
- 

small if s2Tei 
(11-14) 

where m(t) = gMF(t) * n(t) is the filtered noise with power spectral density 
So = (l/T) IGT(Q)I~ No = NO G(w) and autocorrelation h&(t) = NO g(t). 
Since the vast majority of systems operating over fading channels are designed such 
that the fading rates remain well below the symbol rate l/T, the approximation 
c(t-u) M c(t) can be taken to be valid within the duration of the pulse gT(t) whose 
main lobe spans the region -7’ < t < 2’. The third term of eq. (11-14) is identified 
as the distortion resulting from mismatched filtering by using gMF( r) - instead of 
e-jSlt gMF( r) - prior to frequency correction. As discussed in Section 8.4 in the 
context of AWGN channels, this term is small if the relative frequency offset is 
well below 1. Hence, the pulse matched filter output may be well approximated by 

41 ejnt C(t) 
(nT Small) - 

--ET-kkT) 1 + m(t) (flat fading) 

m(t) .  I  

(1 l-15) 

Figure 1 l-3 summarizes the discussion above and illustrates the channel transmis- 
sion models for both frequency-selective and nonselective fading channels. As 
already mentioned, interchanging frequency correction and pulse matched filter- 
ing (as shown in the figure) is allowable only for small relative offsets of up to 
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frequency-selective channel transmission model 
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Figure 11-3 Linear Fading Channel Transmission Model 

10-15 percent. If this cannot be guaranteed, a separate frequency synchronizer 
must be employed in front of GMF(w). Frequency-selective channel matched fil- 
tering is more sensitive against frequency offsets so that, if the (time-variant, a 
priori unknown) channel matched filter HMF(W; t) = GMF(W) C*(w; t) is used for 
near-optimal reception (Chapter 13), frequency synchronization prior to matched 
filtering is generally advisable unless the frequency shift is in the order of, or 
smaller than, the channel fading rate. 

11.2.2 Discrete-Equivalent Transmission Behavior of Fading Channels 

In all-digital receiver implementations, the received signal r(t) [eq. (1 l- 
6)] should be sampled as early as possible in the receiver processing chain. In 
order to fully preserve the information content, a minimum sampling rate of 
(l/Ts)min = Br = (1 + CY) (l/T)+(&,,,/27r) is required (see Figure 1 l-3). This, 
however, would necessitate an ideal lowpass anti-aliasing filter F(w) with (one- 
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sided) bandwidth B,/2. Also, (l/T,),i, would, in general, be incommensurate 
with the symbol rate l/T. However, considering small frequency shifts !&, 
and typical pulse shaping rolloff factors cy ranging between about 0.2 and 0.7, a 
nominal sampling frequency of l/T8 = 2/T may be chosen. This also allows for 
a smooth transition between pass- and stopband and thereby easier implementation 
of the anti-aliasing filter F(w). 

While in practice the sampling frequency of a free-running receiver clock 
will never be exactly equal to 2/T (see Chapter 4), the variation in timing instants 
resulting from slightly incommensurate rates can nevertheless be assumed to remain 
small over a reasonably short time interval. This is especially true for fading 
channels where information is most often transferred in a block- or packet-like 
fashion. Over the duration of such blocks, the relative timing delay ET can 
therefore be assumed to be stationary. 

Of course, there are many variations on the theme of sampling. For instance, 
the received signal may be sampled at rates higher than 2/T, say 8/T, in order to 
make the anti-aliasing filter simpler (higher cutoff frequency, smoother rolloff). In 
that case, however, the sampled signal may contain unwanted noise and adjacent 
channel interference. Digital lowpass filtering and subsequent decimation then 
yields a signal of rate 2/T. Alternatively, one may downconvert the received 
signal to some intermediate (or “audio”) band, sample the (filtered) mixer output 
at a high rate using a single A/D converter, perform digital downconversion to 
baseband, and finally decimate to rate 2/T. 

Assuming double-spaced sampling at rate 2/T, the sampled received signal 
r(t) [eq. (1 l-6), including frequency offset] can be expressed as 

r;’ = r(t = [2k+i]T,) =r(t=[k+;]T) (i=O,l) 

= emqk+w) [p += [k+++; t= b++)] 
+n(t= [b+;]T) 

(11-16) 

with indices i = 0,l denoting samples taken at timing instants kT (integer 
multiples of T) and kT + T/2 (half-integer multiples of T), respectively. From 
eq. ( 1 l- 16), the discrete-equivalent dispersive channel impulse response (including 
receiver timing offset) is identified as 

h:i; k = h, (T= [n+i]T; t= b+i]T) (11-17) 
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Figure 11-4 Discrete-Equivalent Channel Transmission Model 
for Frequency-Selective Fading Channels 

The channel therefore manifests itself as if it were sampled in the delay and time 
domains, both at rate 2/T. Furthermore, the peculiar indexing in eqs. (11-16) and 
(l&17) su 

‘k 
Pf 

ests demultiplexing the received signal into 77 two partial signals 
and rkl , respectively. Each of these partial signals rka is dependent on its 

own partial channel hz),; k while being independent from the other partial channel. 
Therefore, the transmission system can be modeled as two separate systems (the 
partial channels h(“) E n. k), both being fed by the same input signal (the symbol 
stream {ak}) and producing the two partial received signals. The sampled noise 
processes n(ki) in eq. (1 l- 16) can be viewed as individually uncorrelated (see 

(0) note on noise properties above), but the processes nk and nf’ are, in general, 
mutually correlated through the action of the anti-aliasing filter F(w). The discrete- 
equivalent partial channel transmission model thus obtained is illustrated in Figure 
1 l-4 for the example of a two-ray channel. This model is quite convenient since all 
discrete partial signals and systems are the result of sampling in the delay and time 
domains at the same rate, viz. the symbol rate l/T (instead of 2/T as before). If 
necessary, this partitioning technique can be easily extended to sampling at higher 
multiples of the symbol rate. 

In the case of nonselective fading channels, the transmission model can be 
simplified considerably. Observing eq. (1 l-l l), the sampled channel impulse 
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response [eq. (ll-17)] is written as 

For slow and moderate fading rates, 
c(t = kT) and therefore c(kl) M 

the approximation c(t = [k +0.5]T) M 
c(ko) for the MD process holds. The digital- 

equivalent time-invariant filter ~$2 ,n = gT (T = [n+ i/2]T -ET) is the sampled 
transmitter pulse response shifted by the fractional timing delay ET. Sampling the 
received signal r(t) [eq. (1 l-l 2)] at rate 2/T then yields 

.,)=.(,=[,,;]T) (i = 0,l) 

= ,jM'(kt~/2) (i) 
ck, [T at3 !$&j + $) (flat fading) \ (', 

%-i,k 

(11-19) 

As discussed above, pulse matched filtering further simplifies the flat-fading 
transmission model. One may implement gMF(T) either as an analog filter and 
sample its output z(t) [eq. (11-H)], or, equivalently, apply the (partial) digital 
pulse MF g$L ra 
(i> 

, = (l/T) g+(T = -[n+i/2]T) to filter the sampled (partial) signal 

rk [approximation of eq. ( 1 l- 19)]. The sampled pulse MF output thus becomes 

z!) = r(t= b+;]T) 

M ejWW/2] (d) ;, CL, [F%g(r= bi-iIT--ET--n,)] , 
4,k 

+m(t= b+i]T) 

(11-20) 

= ejS2T[k+i/2] ,.,f) [ 1 c 
-?a 

a, g$+ + rn!) (flat fading) 

cg 9 
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where g!‘!, = g(r= [n+i/2]T-ET) is the sampled Nyquist pulse delayed by ET. 
The autocorrelation of the partial noise process UJ~) and the cross correlation 
between the two partial processes ,f) and rnp) are given by 

R,(i) (n) = E [mt)mfTn] = Rm(i) (t = 7lT) 

= Nog(r-nq = No 6, 

%aP) ,m(‘) (n) = E m(kO)m(l)* 
k+n 1 = E[m(t =kT) m*(t= IcT+[n+l/2]T)] 

= Rm(t = [n+1/2]T) = No g(T= [n+1/2]T) 
(11-21) 

respectively. ’ (0) Therefore, ml, and ml’) are individually white noise processes 
with variance NO, however, mutually coupled through pulse matched filtering. 

Often the timing parameter E is known, either via initial timing acquisition or 
from continuous tracking during steady-state operation. In fact, on flat fading 
channels, tracking of the timing phase may be accomplished using the same 
algorithms as for AWGN channels (see preceding chapters), since the degradation 
in performance (compared with tracking on static channels) remains small [7], 
Then e may be compensated for by digital interpolation (Chapters 4 and 9) or by 
physically adjusting the sampling clock such that E = 0. With quasi-perfect timing 
recovery, the MF output can be decimated down to symbol rate l/T without loss 

(i> of information, so that, of the two partial signals zk 
,(i) only $) 

and partial MD processes 
(0) 

z oi 
= zk and ck = cI, remain, respectively. In addition, we have 

qE=o),n = S, due to Nyquist (ISI-free) pulse shaping and energy-normalizing 
matched filtering. Then the transmission model for the decimated pulse MF output 
boils down to 

zk = ,jilTk 
ck ak + mk 

flat fading, 
perfect timing 

(1 l-22) 

(0) where ml, = “k is white additive noise with variance NO. Hence, the equiv- 
alent flat fading channel model for small frequency offsets and perfect timing 
consists of just a memory-free but time-variant multiplicative distortion cfi,k and 
a discrete AWGN process with variance NO. The discrete-equivalent flat fading 
channel transmission models for unknown and known/compensated timing delay, 
respectively, are illustrated in Figure 11-5. 

’ Notice that, in this part of the book, the cross correlation between two random sequences Xk and yk 
is defined as Rl,y(~) = E[Xk yl+,] (= complex conjugate of the cross-correlation definition in the 
previous chapters). By virtue of this redefinition, cross correlation matrices of sequences of random 
vectors can be expressed more elegantly in terms of a Hermitian transpose: R,,, (n) = E[xk yr+,]. 
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flat fading transmission model for unknown timing parameter E 

flat fading transmission model for known/compensated timing 
parameter E 

~akd$+:,,~ 

I 
?k , 

ej hTk 

Figure 11-5 Discrete-Equivalent Channel Transmission 
Models for Flat Fading Channels 

11.2.3 Statistical Characterization of Fading Channels 
Up to now, we have been concerned with the transmission model regarding 

the channel delay profile or, equivalently, the degree of frequency selectivity, 
i.e., the characteristics of c(r;t) o-•C(w; t) in the r and w  domains, respectively. 
We now turn our attention to the time variations of fading channels, i.e., the 
variations of c(r; t) o-oC(w; t) in the t domain. These are caused by variations of 
inhomogeneous media (ionosphere, atmospheric refraction), by moving obstacles 
along the propagation path, or by movements of the radio terminals (see Figure 
1 l-l). The physical mechanisms that make up a fading process may have very 
different rates of change. Three distinct time scales of fading can be identified, 
so that one can distinguish between the following three broad categories of signal 
fading: 

. Long-term (large-area or global) signal fading: slow variations of average 
signal strength, caused by varying distances between terminals leading to 
changes in free-space attenuation (mobile or personal radio), by the variability 
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of the ionization and curvature of reflecting ionospheric layers (shortwave 
radio), slowly varying tropospheric scattering conditions (VHF and UHF 
range), losses caused by precipitation, and the like. 
Medium-term signal variations, typically caused by occasional obstruction 
of the LOS path (shadowing by buildings, hills, etc.) in mobile or satellite 
mobile radio. 
Short-term (small-area or local) signal fading: relatively fast variations 
of amplitude and phase of information-bearing signals picked up by the 
receiver, typically caused by rapid succession of instants with constructive 
and destructive interference between scattered or reflected rays. 

Long- or medium-term signal variations are often modeled as lognormal fading, 
i.e., the short-term average signal strength, expressed in decibels, is taken to be a 
Gaussian random variable with a certain mean (long-term average signal strength) 
and variance (measure of fluctuation about the long-term average) [8]. Long- or 
medium-term fading determines the channel availability (or outage probability) 
and thus strongly affects the choice of transmission protocols and, to some lesser 
extent, the error control coding scheme. However, it is the “fastest” of the 
above three fading mechanisms that has a most profound impact on the design 
of transmission systems and digital receivers. From the viewpoint of receiver 
design - encompassing error-corrective channel coding and decoding, modulation, 
equalization, diversity reception, and synchronization - it is therefore necessary 
(and often sufficient) to focus on the short-term signal fading. 

Unfortunately, attempting to achieve a deterministic mapping of the time- 
varying electromagnetic scenario onto the instantaneous channel impulse response 
C(T; t) would be a very ambitious endeavor since it necessitates fine-grain model- 
ing of the entire scattering scenario, including relevant parameters such as terrain 
(geological structure, buildings, vegetation, ground absorption and reflection), at- 
mosphere (temperature, pressure, humidity, precipitation, ionization), constellation 
of obstacles along the propagation path(s), transmitting and receiving antennas 
(near and far field), etc. This, however, is most often impossible since some, if 
not all, relevant scattering parameters are usually unknown. Notice also that tiny 
variations in the scattering scenario may have a tremendous impact on the instanta- 
neous channel transmission behavior. For instance, path-length variations as small 
as a fraction of the wavelength, caused, e.g., by rustling leaves, may give rise to 
large phase shifts of scattered rays. On the other hand, deterministic ray tracing 
modeling of the CIR c( T; t) may be feasible for some indoor environments and very 
high carrier frequencies (e.g., 60 GHz) where the propagation characteristics can 
be obtained from the geometrical and material properties, using the rules of quasi- 
optical ray transmission and reflection. The results thus obtained are expected to be 
more accurate than using the WSSUS statistical model (discussed below) whose 
validity is restricted to a small area (in indoor environments a few square cen- 
timeters). In the cellular mobile arena where fine-grain modeling is not feasible, 
ray tracing is used for determining long-term averages of channel conditions for 
the purpose of cellular planning. At any rate, using ray tracing methods requires 
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a lot of expertise and computational power, and when it comes to exploring the 
characteristics of hithereto unknown channels, the predictions made by ray tracing 
are often cross-checked against empirical results from measurement campaigns. 

From the viewpoint of digital communications, it is seldom feasible nor 
necessary to trace every detail of the scattering scenario. Rather, one resorts 
to statistical modeling of the short-term channel variations [9]. The construction 
of statistical models and finding their parameters is accomplished based either 
on measurements alone (empirical model), on a simplified model of the physical 
scenario (coarse-grain or analytical model), or a combination of both. Usually, 
it is assumed that the random fading processes are wide-sense stationary (WSS), 
i.e., these processes are sufficiently characterized by their means and covariances. 
Furthermore, the elementary rays [weights en(t)] that constitute the channel are 
assumed to undergo mutually uncorrelated scattering (US), which is plausible since 
individual rays can often be attributed to distinct physical scatterers. Wide-sense 
stationary, uncorrelated scattering (WSSUS) fading process models [9, lo] thus 
have long been a widely accepted standard. 

Fundamental Short-Term Statistical Parameters of Fading Channels 

The short-term statistics of a fading channel are completely characterized by 
a single basic statistical function, viz. the scatteringfinction. All other parameters 
describing the statistical properties of c(r; t>o-oC(w ; t) can be derived from this 
basic function. The scattering function is one of four statistically equivalent 
correlation functions in the time and frequency domains: 

. Spaced-time spaced-frequency correlation function 

Rc(Aw; At) = E[C(w; t) C*(w+Aw; t+At)] (1 l-23) 

. 

. 

Spaced-time delay correlation function 

R&; At) = E[c(r; t) c*(7; t+At)] 

Spaced-frequency Doppler power spectrum (psd) 

00 

S&k +) = 
s 

Rc(Aw; At) ,-jq(At) d(At) 

-CO 

l Delay Doppler power spectrum = scattering function 

(11-24) 

(1 l-25) 

SC@; $‘) = 7 R,(T; At) e~-j@(~~) d(At) (11-26) 
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spaced-time- 
spaced-frequency 
correlation function 

delay-Doppler spectrum; 
scattering function 

Figure 11-6 Fourier Transform Relations between Equivalent Statistical Functions 

where $J = 2nX is the angular frequency variable (A = frequency variable) of 
the Doppler spectra. The Fourier transform relations between the above four 
statistically equivalent functions are depicted in Figure 11-6. 

The elementary ray weight processes 

Cn(t) = &.& @ht+w = f& ej(2rAD,t+ba) 

that constitute the physical channel [eq. (1 l-7), disregarding propagation and 
clock timing delays] are characterized by gain factors &, Doppler shifts $0,) 
and phase shifts Bn that may be assumed fixed during very short time intervals. 
Most often the number N of these processes is virtually infinite so that the en(t) 
have infinitesimal gains. Invoking the WSSUS assumption, the spaced-time delay 
correlation and scattering functions [eqs, (1 l-24) and (1 l-26)] become 

N-l 

R,(T; At) = c (t;) ejzoDnAt S(T---7,) 
t-b=0 (11-28) 

n=O 

respectively. Each elementary ray manifests itself as a point (7,) $0,) in the 
delay-Doppler plane (7, $J), and the multitude of such rays make up a quasi- 
continuous two-dimensional function SC (7; +). 

From measurements one often observes that the elementary rays form distinct 
clusters in some areas of the delay-Doppler plane. Let us distinguish between 
clusters by denoting SC,(r; $J) the partial scattering function of the mth cluster, 
so that the total spaced-time delay correlation and scattering functions 

R,(T; At) = “c’ Rc,(r; At) 
rn=o 
M-l 

(11-29) 
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specularly reflected rays 
diffusky scattered rays 

4 
with same delay 

rays 

Figure 11-7 l’ypes of Clusters in the Delay-Doppler Plane 

can also be expressed as the superposition of M cluster spaced-time delay corre- 
lation and scattering functions Rc, (7; At) and SC, (7; II), respectively. Further 
denote by R, the region in the delay-Doppler plane (7,$) for which SC,,, (7; $) is 
nonzero, and by Nm the set of indices n for which the elementary rays cn (t) belong 
to the mth cluster. Typically, three types of ray clustering can be distinguished: 

. Strong clustering about a single point R, = (TV, $o,), 

. Clustering in an oblong region R, with nearly equal propagation delays 
r,.,, M rn for all n E Nm, and 

. Weak clustering in an extended region R,. 

This clustering scenario is illustrated by Figure 1 l-7. 
The type of clustering is determined by the underlying physical scattering 

scenario, in particular, the spatial distribution and material properties of scatterers 
(hence, the strengths and angles of incidence of scattered rays) and the velocity of 
terminals (or scatterers). If some knowledge on this scattering scenario is available, 
scattering functions for certain typical environments (urban, suburban, etc.) may 
be derived from this physical model. 

Strong clustering about a single point R, = (TV, ‘$0,) in the (7, $) 
plane is attributed to either the LOS ray or specular (quasi-optical) reflection 
from a nearly singular scattering point on smooth surfaces such as buildings, 
asphalt, water surfaces, or tall mountains. Although the scattering scenario is 
changing continuously due to the motion of radio terminals, obstacles along the 
propagation path or the scatterer itself, this scattering scenario may often be 
regarded as “frozen,” at least over a short duration of time, so that the scattering 
point remains stationary for some time. Specular reflection from point scatterers 
results in wavefronts that are approximately coherent, i.e., the elementary rays add 

2 For simplicity’s sake, the complex-valued path weights cm (t), Doppler shifts 90, , and phases 0, 
of the mth cluster are given the same variable names as their elementary counterparts. In order to 
avoid confusion, indices m are taken to refer to clusters whereas indices n refer to elementary rays. 
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constructively. 
coherent path: 

Thus, the point cluster may be modeled essentially like a single 

cm(t) = y’cn(t) 
n=O 

= 

> 

am ,i WD, t+emj (1 l-30) 
LOS or specularly 

reflected path 

where N, is the number of elementary rays constituting the mth point clusters2 
Depending on the motion of terminals or scatterers and- the direction of arrival, 
the path may bear a sizeable Doppler shift $0, = &rho, M $0,. Assuming 
phase coherence (0, M &), the path gain factor - which is almost time-invariant 
- becomes cy, M crzl-’ tn. Hence, the LOS / specular path model consists of a 
rotating phasor with fixed amplitude Q m and coherent phase (pna (t) = $0, t + 8,. 

Frequently, scattering takes place over a large area of rough (relative to 
the wavelength) or irregular surfaces such as vegetation or objects close to the 
antennas. Such scattering is not specular but difSuse, and a cluster of diffusely 
scattered rays is composed of a multitude of individual rays which exhibit less 
directivity and no phase coherence. In some cases of interest, all incoherent rays 
of a cluster have (approximately) equal propagation delays TV R r, (Figure 1 l-7), 
so that the respective cluster weight 

cm(t) = y en(t) = 

n=O diffuse scattering, n=O 

delays almost equal > 

(11-31) 

= a,(t) @m(t) 

representing an oblong region R, in the (7, $) plane, effectively becomes a 
complex-Gaussian random process. Its individual Doppler spectrum and average 
power can be determined from the quasi-continuous scattering function as 

PC, = &,(O) = +a(t)12] (1 l-32) 

= ; S,(ry,b) dr d$ = & 
s J 

se,(Yq dlC, 
%I %I 

If the channel comprises M such clusters with distinct delays rm, the spaced-time 
delay correlation and scattering functions [eqs. (1 l-24) and (1 l-26)] simplify to 

Rc(q At) = Mc1 Rc,,,(At) S(T - 7,) 
m=O 

sC(T; +) = Mc1 SC,($) fi(T - Tm) 

m=O 

(1 l-33) 
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where 

are the spaced-time correlation function 
cluster process cm (t), respectively. 

Rc,(At) = E[cm(t) c;(t + At)] 

Se,,,(+) = 7 k,,(At) ej@(At) d(At) 

--oo 

and Doppler power spectrum of the mth 

(1 l-34) 

Derived Short-Term Statistical Parameters of Fading Channels 

The probability density function as well as other functions and parameters 
that characterize the dynamic behavior of fading channels can be derived from the 
scattering function. 

If a cluster represents a multitude of incoherent elementary rays, the density 
function of its weight process c(t) = o(t) ejqct) (for clarity, the index m is 
dropped in the pdf s) is complex Gaussian with uniformly distributed phase v(t), 
Rayleigh-distributed amplitude a(t) and exponentially distributed energy (power) 
E(t) = a2(t): 

p(a) = 2; e-aa’B 

p(E) = i emEiB 
(11-35) 

respectively, where r = E{a2} is the average energy (power) of the cluster 
process. Notice that the cluster weight can be attributed an energy since it is (part 
of) a system. When viewed as a random process, c(t> can be attributed a power. 

Particularly in the case of flat fading channels, a cluster of rays having the 
same delay may comprise both a specular/LOS and a diffuse component, so that 
the composite weight process c(t) [eq. (11-l l)] 

‘$) = c,(t) + Cd(t) 

= cys ejqe(t) + ad(t) ej’Pdtt) 

= cys ej(r(‘Det+e*) + ad(t) ejpd(t) 

obeys a Rician density 

p(a) = 2: exp {-($5)} Io(2dq-) 

=2$ exp{-($+K)} Io(2fi--+) 

P(E) = &!xP{-~}&-+z&/E) 

(11-36) 

(1 l-37) 
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with E, = af and ??d = E{cui} th e ( average) energies of the specular and diffuse 
components, respectively, E = E(t) = 1 c(t) I2 the total energy of c(t), and 
K = E,/??d the ratio between the energies of the specular and diffuse components 
(K factor). 

The dynamic behavior of fading channels is often expressed in terms of one- 
dimensional (thus coarser) characteristics: 

Spaced-time correlation function 

&(At) = E[C(w; t) C*(w; t+At)] = &(Aw =O; At) (1 l-38) 

Spaced-frequency correlation function 

&(Aw) = E[C(w;t)C*(w+Aw; t)] = Rc(Aw; At=O) 

Power delay profile 

R,(T) = E[c(q t) c*(q t)] = R,(T; At = 0) 

1 O” 
=- 

27r s 
s,(~; $9 dlC, 

-CO 

Doppler spectrum 

s&q = 4 
-CO 

00 

= J 

&(At) c+‘(*~) d(At) 

Se@; 4) dT 

= $(Aw=O; 11) 

(11-39) 

(1 l-40) 

(11-41) 

--oo 

The power delay pro$Ze &(T) contains the necessary information on the channel 
dispersion and thus the amount of IS1 to be expected for a given symbol duration 
T. The spaced-time correlation function Rc ( At)04Sc (+) and Doppler spectrum 
shed light on the channel dynamics, i.e., fastness of fading. 

From the above one-dimensional functions, a number of characteristic param- 
eters can be extracted: 

. Channel coherence time 

T cob = rms[Rc(At)] 

. Channel coherence bandwidth 

B cob = & rms[& (Au)] 

(11-42) 

(11-43) 

. rms channel delay spread 

70 = rmS[&(T)] (1 l-44) 
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Maximum channel delay spread 

Tmax = TN-1 - 70 

Channel Doppler shift 

AD = & JqS,(llr)l 

Channel Doppler spread 

(11-45) 

(11-46) 

Channel spread factor 

CD = & rms[S,(+)] (11-47) 

S c = TD CD (1 l-48) 

where 

7 x f (4 dx 
co 
SC x - T)~ f(x) dx 

z=E[x]=-00, rms[x] = --OO 

1 
s” f(x) dx 

(11-49) 

s f(x) dx 
-03 -CO 

denote the mean and root meun square values of a functionf( x), respectively. 
The coherence time TcOh and coherence bandwidth &oh, respectively, indicate the 
time and frequency shifts over which a channel is essentially correlated. The delay 
spread 7-0 is linked with the coherence bandwidth via rD M l/B&. However, in 
receiver design, the maximum delay spread rmax = r&l-r0 is of higher relevance 
than the (one-sided) rms value 70 of the power delay profile. The Doppler shift 
f!D (in Hertz) is the global frequency offset introduced by the physical channel 
itself (not by an oscillator offset), and the Doppler spread bD (in Hertz) is the (one- 
sided) rrns bandwidth of the Doppler spectrum. It is linked with the coherence time 
via the approximate relation bD M l/!&h. In a set of clusters with M distinct 
delays TV, the scattering function of eq. (11-33) comprises M cluster Doppler 
spectra SC, ( $J) [eq. (1 l-34)] from which cluster Doppler shifts and spreads may 
be extracted: 

*D, = k JfvLn WI 
(11-50) 

UD¶X = & rm&n(Iu 

Occasionally, the Doppler shift and Doppler spread are lumped together to yield 
an “efficient” (larger) Doppler spread that can be used as a global measure of 
the degree of channel fading. If the Doppler spectrum Se( $) is strictly band- 
limited (e.g., in the case of mobile radio channels), a more appropriate measure 
is the channel cutoff frequency (poppler frequency) AD (in Hertz). Finally, the 
channel spread factor SC = TO a~ is a measure of overall fading channel quality; 
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Figure 11-8 Example of Scattering Function, Power 
Delay Profile and Doppler Spectrum 

if the channel is underspread (Se << l), the fading is slow with respect to the 
dispersion so that coherent transmission is possible if suitable antifading techniques 
are applied. On the other hand, if the channel is overspread (SC in the order or 
in excess of l), the channel changes significantly over the duration of its impulse 
response, so that, in general, only noncoherent transmission is possible. 

An example of a typical scattering function for a channel with a virtually 
infinite number of paths, together with the power delay profile, Doppler spectrum 
and some important parameters, are visualized in Figure 1 l-8. 

When designing countermeasures against fading (e.g., providing for a fade 
margin or selecting a suitable channel coding scheme) or assessing the outage 
probability of a system operating over fading channels, the rate of occurrence 
and the duration of “deep” fades are of interest. Consider again a fading process 
c(t) (cluster index m has been dropped). The level crossing rate 7x(C) is the 
average number of crossings (both upward and downward) of the amplitude process 
o(t) = Ic(t)J with a certain fading threshold C. If C is small, this corresponds 
with the average fading rate. The average time elapsing from a downward to the 
next upward crossing of the fading amplitude o(t) with level C is the average 
fade duration d(C). The parameters n(C) and d(C) are given by 
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(11-52) 

The two-dimensional pdf p( cy , &) may be evaluated by assuming that the amplitude 
process a(t) and the process h(t) = cZc~(t)/cZt of its derivative are uncorrelated, 
i.e., p(a, iy) = p(cy)p(&). The pdf p( d! can then be computed with the help of ) 
p(a) and the spaced-time correlation function Rc (At). 

Statistical Parameters of Some Important Fading Channels 

In this section, the most important properties of some technically relevant 
fading channels are summarized. 

The geostationary satellite chunnel exhibits some scintillation caused by 
movements of the ionospheric penetration point of microwave rays [ 1 l]. Under 
mild scintillation conditions, the maximum dispersion rmaX remains well below 10 
ns and the Doppler spread 0~ below 1 Hz. When severe scintillation conditions are 
present (caused, e.g., by ionospheric turbulences, low elevation, or the use of low 
VHF frequencies), the Doppler spread may rise up to 10 Hz. In the case that the 
satellite is not geostationary, one may also have to cope with very large Doppler 
shifts AD. Usually, the LOS ray is dominant (unless obstructed), and the fading 
is Rician with large K factor. Because of the strong LOS component, very mild 
selectivity and slow fading, the satellite channel can often be well approximated 
by an AWGN channel model, possibly including a frequency shift [ 121. Provision 
of a small fade margin is usually sufficient for reliable communications. 

The microwave line-of-sight channel [13, 141 may exhibit fading caused by 
objects near the LOS ray, by ground reflections, or by atmospheric layering 
and anomalies of the atmospheric refractive index. Superrefraction (very large 
refractive index) may give rise to multipath propagation and long-distance co- 
channel interference. On the other hand, subrefraction (very small refractive index) 
is likely to cause deep fades of the LOS ray. Under such conditions, dispersions 
of up to 10-100 ns, Doppler spreads of several Hertz and signal fades of 20 dB 
and more may occur, so that large fade margins and the use of space diversity and 
possibly adaptive equalization should be considered. Under normal propagation 
conditions, the dispersion and Doppler remain below 2 ns and 1 Hz, respectively. 

The tropospheric scattering channel used for high-power narrowband (up to 
several hundred kHz) transmission in microwave bands up to 10 GHz [ 151 features 
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flat rural areas, on the other hand, the dispersion is usually very small (below 1 ps), 
and the fading tends to be more Rician due to the often-present strong LOS ray. 

The land-mobile satellite channel for smallband transmission (typically 5 kHz) 
at frequencies around 1 GHz is characterized by frequent shadowing of the LOS 
ray by obstacles such as buildings, tunnels, bridges, etc. The absorption and 
duration of shadowing events can be quite large. The effect of shadowing is 
often described by a Gilbert-Elliot model with the two states “good channel” (no 
shadowing, strong LOS ray, nonselective Rice fading) and “bad channel” (deep 
fade because of LOS ray obstruction, only scattered rays, Rayleigh fading). The 
aeronautical satellite channel used for smallband signals (bandwidth in kilohertz 
range) is also nonselective. Ground reflection (usually a single reflected ray) leads 
to Rician fading. Due to the large aircraft velocities, Doppler shifts in the order 
of 1 kHz and Doppler spreads of up to 200 Hz may be present. 

The indoor radio channel becomes increasingly important for micro- and pico- 
cellular communications inside of offices, plants, private homes, etc. The channel 
is stongly nonstationary; long periods of stable propagation conditions may be 
interrupted by short-term fading disturbances caused by movements of terminals, 
antennas, people, or objects along the radio rays. Such events result in absorption 
between 10 and 30 dB. The dispersion usually remains below 100 ns, in large 
buildings occasionally up to 1 ps. The Doppler spread ranges from less than 10 
Hz (fixed terminals) to values up to 100 Hz (moving terminals). 

The most relevant statistical parameters of important fading channels are 
summarized in Table 1 l- 1 for typical values of carrier frequency fo and symbol 
rate l/T. Given the symbol rate, the dispersion and fading parameters can be 
normalized to the symbol duration and rate, respectively, i.e., r’ = T/T (dispersion 
variable) and cr’ = 0 T, A’ = XT, etc. (fading variable). In addition, Table 1 l- 
1 lists critical issues that must be given special attention when designing digital 
communication systems for those channels. 

11.2.4 Main Points 

. Physical multipath fading channels can be modeled as continuous-time sys- 
tems with channel impulse response (CIR) and channel transfer function (CTF) 
~(7; t)-C(u; t), respectively. Including the effects of band-limited TX 
pulse shaping filtering gT(7) -GT(u) and a delay e (propagation and tim- 
ing) into the channel model yields the effective CIR and band-limited CTF 
h,(~; t) o+ H,(w; t) = C(w; t) GT(u) e-iwrT [eq. (ll-7)]. A fading channel 
may either be frequency-nonselective (flat) or frequency-selective within the 
bandwidth of interest. In the flat fading case the relevant physical CIR and 
CTF reduce to the multiplicative distortion c(t). 

. Sampling of the received signal at a rate larger than the symbol rate, typically 
at rate 2/T, yields received samples which may be partitioned into two 
T-spaced partial signals rr) (i = 0,l). Associated with each of these 
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Each cluster or ionospheric mode, being a superposition of a multitude of 
elementary physical rays, exhibits a relatively small dispersion (20-200 ps). Under 
multipath propagation conditions, however, the total dispersion is dependent upon 
the range and may be as large as 5 ms. Occasionally, weak rays may be delayed 
by up to 8 or 10 ms, e.g., under aurora1 conditions. The cluster Doppler spectra 
S,, (+) are usually Gaussian-shaped, sometimes with two lobes (magneto-ionic 
components) [ 17, 181. Doppler shift and spreads range between 0.01 and 0.5 Hz 
for monomode propagation, 0.1-l Hz for multipath, and 5-10 Hz or more for 
aurora conditions. 

The land-mobile (LM) channel [19] for small- and wideband transmission at 
frequencies below 10 GHz exhibits more or less frequency-dependent multipath 
transmission (see Figure 1 l-l), depending on the bandwidth, range (up to 2&50 
km), and the terrain. The short-term stationarity assumption is valid within a 
mobile moving distance of about 10-50 wavelengths. Scattered rays with small 
excess delays rn (with respect to the LOS ray which may or may not be present) 
can often be attributed to diffuse scatterers such as the ground or objects near 
the antennas (e.g., parts of the vehicle whereupon the antenna is mounted). Such 
diffuse Rayleigh-distributed rays tend to arrive from all directions and often cluster 
near the origin of the (7, $) plane. On the other hand, rays having large extra 
delays are often due to specular reflection from large objects such as mountains 
or tall buildings and therefore tend to form more pronounced or even strongly 
peaked clusters. Depending on the maximum relative speed v between the mobile 
terminals, the Doppler spectrum is strictly band-limited to the Doppler frequency 
AD = fo (u/c> (f 0 carrier frequency, c speed of light). Under the assumption of 
isotropic scattering from all directions, the diffuse cluster Doppler spectra become 
U-shaped (Jakes spectrum [20]): 

where pna = RC, (At = 0) denotes the average energy (power) of the mth cluster. 
On the other hand, specular reflection results in sharply peaked Doppler spectra 
[strong isolated peaks of Sc( 7; $)I, i.e., the cluster Doppler spectrum virtually 
reduces to a single Dirac peak with delay r,, weight pm, and Doppler shift 

@D, = %hDm [see eq. (1 l-30)] where nom is bounded by the Doppler frequency 
b. 

In strongly irregular terrain (urban, dense vegetation), rays suffer from high 
absorption so that the dispersion is small (typically l-3 ps). In suburban envi- 
ronments and in hilly terrain, the power-delay profile RJT) drops off roughly 
exponentially, and significant dispersion usually spans less than 15-20 ps, occa- 
sionally up to 30 ps or more. In mountaineous areas, the dispersion of specularly 
reflected rays may be as large as 150 ps ; such extreme values, however, can be 
avoided and the dispersion limited to about 20 ps by suitable cell planning [21]. In 
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flat rural areas, on the other hand, the dispersion is usually very small (below 1 ps), 
and the fading tends to be more Rician due to the often-present strong LOS ray. 

The land-mobile satellite channel for smallband transmission (typically 5 kHz) 
at frequencies around 1 GHz is characterized by frequent shadowing of the LOS 
ray by obstacles such as buildings, tunnels, bridges, etc. The absorption and 
duration of shadowing events can be quite large. The effect of shadowing is 
often described by a Gilbert-Elliot model with the two states “good channel” (no 
shadowing, strong LOS ray, nonselective Rice fading) and “bad channel” (deep 
fade because of LOS ray obstruction, only scattered rays, Rayleigh fading). The 
aeronautical satellite channel used for smallband signals (bandwidth in kilohertz 
range) is also nonselective. Ground reflection (usually a single reflected ray) leads 
to Rician fading. Due to the large aircraft velocities, Doppler shifts in the order 
of 1 kHz and Doppler spreads of up to 200 Hz may be present. 

The indoor radio channel becomes increasingly important for micro- and pico- 
cellular communications inside of offices, plants, private homes, etc. The channel 
is stongly nonstationary; long periods of stable propagation conditions may be 
interrupted by short-term fading disturbances caused by movements of terminals, 
antennas, people, or objects along the radio rays. Such events result in absorption 
between 10 and 30 dB. The dispersion usually remains below 100 ns, in large 
buildings occasionally up to 1 ps. The Doppler spread ranges from less than 10 
Hz (fixed terminals) to values up to 100 Hz (moving terminals). 

The most relevant statistical parameters of important fading channels are 
summarized in Table 1 l-l for typical values of carrier frequency fo and symbol 
rate l/T. Given the symbol rate, the dispersion and fading parameters can be 
normalized to the symbol duration and rate, respectively, i.e., r’ = r/T (dispersion 
variable) and cr’ = 0 T, X’ = XT, etc. (fading variable). In addition, Table ll- 
1 lists critical issues that must be given special attention when designing digital 
communication systems for those channels. 

11.2.4 Main Points 

. Physical multipath fading channels can be modeled as continuous-time sys- 
tems with channel impulse response (CIR) and channel transfer function (CTF) 
c(r; t)o-eC(~; t), respectively. Including the effects of band-limited TX 
pulse shaping filtering gT (T) ~+GT(u) and a delay c (propagation and tim- 
ing) into the channel model yields the effective CIR and band-limited CTF 
h,(r; t) wo H,(w; t> = C(w; t) G*(W) e-jwrT [eq. (ll-7)]. A fading channel 
may either be frequency-nonselective @at) or frequency-selective within the 
bandwidth of interest. In the flat fading case the relevant physical CIR and 
CTF reduce to the multiplicative distortion c(t>. 

. Sampling of the received signal at a rate larger than the symbol rate, typically 
at rate 2/T, yields received samples which may be partitioned into two 
T-spaced partial signals rf) (i = 0,l). Associated with each of these 
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Table 11-l Parameters of Some Important Fading Channels 
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Channel 

Microwave 
LOS 

Ionospheric 
HF 

Qpical Dispersion Fading 
Applications 

f-0 l/T +nFbx hb, 4 

5 GHz 5MBd 1 <1o-6 

10 MHz 2 kBd 1 to 10 IO-3 

critical issues 

attenuation, 
dispersion 

dispersion, 
fading, 
addit. noise 

Troposcatter 5 GHz 

Land-mobile 1 GHz 
radio 

Land-mobile 1 GHz 
satellite 

Aero.-mobile 1 GHz 
satellite 

Indoor radio 1 GHz 

1OOkBd <l <1o-3 

200kBd 1 to5 I()-~ 

2 kBd <<l 0.1 

2 kBd <<I up to 1 

200kBd cl 1o-4 

fading 

dispersion, 
fading, 
interference 

shadowing, 
Doppler 

Doppler 

attenuation 

signals is a T-spaced partial discrete-equvialent channel /z:;;~. Depending 
on whether the channel is selective or flat, and on whethe; pulse matched 
filtering without or with perfect timing sync has been employed (flat fading), 
the following transmission models apply: 

Selective fading, rate - 2/T sampling : 

$1 = ,wyk+~) [pnh:k_.,.] +@ (i=O,l) 

Flat fading, rate - 2/T sampling : 

Flat fading, pulse - MF output, imperfect timing, rate - 2/T : 

$1 = pp+$) $1 i 
+m(,) 

Flat fading, pulse - MF output, perfect timing, rate - l/T : 
jslTk 

zk = e ck ak +mk 
(11-54) 
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. 

with &! n the sampled TX pulse shaping filter and &fA the sampled cascade 
of TX and RX pulse shaping filters. 
Long- and short-term fading processes are usually characterized in terms of 
certain statistical parameters. Short-term fading, being most important for 
receiver design, is governed by the scatteringfunction, i.e., the delay Doppler 
power spectrum Se( 7; $). Often, clustering of multipath rays in the (7; $J) 
plane is observed. The kind of clustering also determines the fading amplitude 
density p(a): diffuse scattering (NLOS) yields Rayleigh fading, while the 
presence of a LOS path or specular reflection leads to Rice fading. From the 
scattering function a number of secondary statistics can be derived, including 
the power delay profile I&(r) and the Doppler spectrum Se($). 
The basic properties of some important fading channels, including satellite, 
microwave LOS, ionospheric shortwave, land-mobile, and indoor, have been 
reviewed. 

11.3 Modeling and Simulation of Discrete-Equivalent 
Fading Channels 

When designing communication systems for fading channels, it is important 
to be able to assess and verify system performance during the entire design phase, 
long before actually implementing the system in hardware and performing in 
situ field tests. For a large selection of important channels, theoretical studies 
and extensive measurements have been conducted over years or decades. From 
these investigations, the properties of many channels are well understood and 
their statistical parameters known with sufficient accuracy. Therefore, statistical 
channel models can be constructed and implemented in hard- or software. Software 
models are particularly useful since a realization of a random channel process may 
be reproduced arbitrarily often, whereby a comparison between different receivers 
is possible even if simulation time is limited, and it is possible to emulate a wide 
range of well-defined channel conditions, in particular worst-case conditions that 
occur very rarely in nature. 

11.3.1 Direct Filtering Approach to Selective 
Fading Channel Simulation 

There are several possibilities of constructing a simulation model of a fading 
channel being characterized by the scattering function. Depending on the type of 
multipath ray clustering (Figure 1 l-7), one or the other approach is more suitable. 
The direct filtering approach is suited for selective fading channels which exhibit 
no weak clustering in extended regions R, but a finite number M of clusters in 
oblong or point regions R, having distinct delays r.. (Figure 1 l-7). Each such 
cluster process cm(t) is best modeled individually, and all contributions are then 
superponed to form a realization of the random process of the time-variant eflective 
partial channel impulse response hELik, sampled at rate l/T in both the r and 
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time domains. In the context of channel simulation, it is often more appropriate to 
first generate a realization of the sequence of T8 = (T/2)-spaced channel impulse 
responses at sample rate l/T8 = 2/T and then split the CIRs so obtained into 
partial CIRs to be used for T-spaced filtering of the symbol data stream: 

h E,u;/ = hs(r=vTS; t= IT,) 

= h&= [v/2]T; t = [1/2]T) 

{ 

h(O) 
= r,n=[v/2]; k[1/2] (v even) 

h(l) 
E,74V-1)/2]; k=[(I-1)/2] (v odd) 

h!‘!, k ! ; = h,(r=[n+i/2]T; t=[k+i/2]T) 

= h,,,=[,n+i]; I=[2k+i] 

(11-55) 

with tap indices v = 2n + i and time indices I = 2k + i.3 From eqs. (11-7) and 
(11-17) we then have 

C,;I 

M-l 
v I 

= L cm;1 gTc,v(Tm) 

m=O 

M-l 

h$, = mgo cm(t = [Ic_+i/a]T), gT(T= [n+i/2]T-&T-T,) 
* 

,(i) 
m;k !JR,,(4 

M-l 

(1 l-56) 

The samples h,,,;i of T, = (T/2)- p s ace c d h annel taps may be collected in the 
CIR vector: 

h E;l = (. . . h T  
c,-1;1 h,,o;l ho,l;l . . J 

M-l 

= c cm;/ (. * . g%-lbm) gTa,O(Tm) gT&m) . . .)T 
m=o ” d 

BTr(~m)=gTr,m 
(1 l-57) 

M-l 

= 
c cm;1 gTt,m 

m=O 

3 For simplicity, indices Y and I are taken to refer to the Td = 
refer to the T-spaced channel model. 

(T/2)-spaced channel, while n and k 
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where the vector g~~,~ represents the delayed (by eT + r,.,, ) and sampled (T/2)- 
spaced partial transmitter filter impulse response. 

For practical reasons, it is advisable to separate the effects of differential 
delays rm and timing delays ET in the channel simulator, i.e., the digital equivalent 
of h&; t) = h(7; t) S( T --ET) [eq. (1 l-7)] should be implemented as the cascade 
of two filters, the first (time-variant) filter h,,;l representing the effective channel 
h(q t), taking into account differential ray delays r, only, and the second (fixed) 
filter hIE,” (digital interpolator, see Chapters 4 and 9) representing a delay element: 

(11-58) 

= hv;l * hI,,v 

The channel tap processes to be modeled by the channel simulator kernel are thus 
collected in the CIR vector: 

hl = (. . . h+ ho;, hl;l . . .) 
T  

=yCm;l (,.. gT,-l(rm) gT,O(Tm) gT,l(Tm) . . .)T 
m=O 

/ -r 
BT(~m)=gT,m 

M-l 

= 
c cm;1 gT,m 

m=O 

(11-59) 

where gT,m represents the delayed (by rm) and sampled (T/2)-spaced partial 
transmitter filter impulse response. 

We remark that the channel simulator of eq. (11-59) - as well as the other 
types of simulators (operating at sample rate l/T,) discussed below - is also 
appropriate for filtering nonlinearly modulated signals sl = s(t = lTb). Then the 
pulse shaping filter GT(w) - whose delayed replicas are represented by g’J’,m - 
must be chosen such that the filter is transparent (flat frequency response) within 
the bandwidth B, of the signal power spectrum S.,(w), i.e., (1 - cr)/T 2 B, 
[assuming l/T3 = 2/T, see eq. (H-8)]. 

In any realizable simulator, hl must be truncated to some finite-dimensional 
CIR vector. Care should be taken with such truncation since all relevant taps to the 
left and right of the impulse response (see Figure 1 l-4) are to be included in the CIR 
vector; this is especially important in the case of small bandwidth expansion factors 
Q where the root-raised cosine impulse response gT,v(Tm) = @(r = [V/2]T-Tm) 
[eq. (ll-8)] has strong pre- and postcursors about its center of gravity (delay Tm). 
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While the vectors go,, are fixed once LY and the set of M cluster delays 
{ 7,) have been set, realizations of the time-variant cluster processes c,;r (rate 
2/T) must correctly represent the fading statistics, i.e., the density function (pdf) 
and power spectrum (psd) should match the cluster pdf and the discrete-time cluster 
Doppler spectrum Se, ($“), respectively, where $” = + T, = $J (T/2) denotes 
the Doppler frequency variable normalized to the sample rate l/T8 = 2/T.4 

In the case of difSuse scattering, cm;1 is a Rayleigh fading complex-Gaussian 
random process. The direct filtering simulator, also termed quadrature amplitude 
modulation fading simulator [20], then consists of a number of branches where 
each process c,;r is simulated by applying complex white Gaussian noise (WGN) 
zu,;~ of unity power to a digital filter with z-transform Tn (z) (the filter output is 
still complex Gaussian, hence the fading is Rayleigh-distributed) whose squared 
spectrum Tfn (z = ej@’ ) matches or at least approximates the (normalized) cluster 
Doppler spectrum Se, (II”) (Wiener-Lee theorem [22]): 

T,-,+ = P?“) k dm (1140) 

Whenever one or more of the diffuse cluster parameters pna = RC, (0), AD,, or 
CD, change, the filter T,(z) of eq. (1 l-60) must be redesigned. This can be 
circumvented - and thus the simulator made more versatile - by using a fixed 
unity-energy filter matched to the shape of the cluster Doppler spectrum. In order 
to be able to adjust to variable Doppler shifts and spreads, this filter is designed 
for zero Doppler shift and some Doppler spread 60 > bD being much larger than 
any Doppler that occurs in practice. As a side effect, this also improves on the 
numerical stability thanks to the larger filter bandwidth. The actual cluster process 
cm;r is then simulated by first driving Tm(z) by complex WGN w,;r of power 
pna, then scaling down the tap Doppler spread by linearly interpolating the filter 
output (interpolation rate factor 1, 
Doppler shift phasor ej2rAgm I. 

= 60 /a~,) and finally multiplying by the tap 

The fading processes of the LOS ray or a point cluster of specularly reflected 
rays can be modeled directly by phase modulation fading simulator branches 
[20] where the ray weights cna;r are represented by rotating phasors cna;l = 
am,i(+~,~+~m) with nonfading amplitudes cy,, relative Doppler shifts $$ = m 
2?m& [eq. (1 l-30)], and uniformly distributed phases em. 

The structure of the direct filtering simulator for a total of M LOS/specular 
and diffuse clusters with distinct delays TV is visualized in Figure 11-9. The 
T,-spaced cluster or ray processes cm;1 - which have been generated by either a 
quadrature amplitude or a phase modulation fading simulator branch - are used for 
weighting the respective delayed and sampled pulse shaping filter vectors g~,~. 
All M such weighted vectors are finally superponed according to eq. (1 l-59) to 

4 Here, all double-primed quantities are defined to be normalized to sample rate l/Ts = 2/T. 
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n, 
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form the effective CIR vector hr. In the data path of the simulator, the channel 
symbols a& are first converted to the T,-spaced transmitted signal 

s/ = ak=If 2 1 even 
0 1 odd 

(11-61) 

[digital equivalent of Dirac pulse train ak: 6(t - IcT) ; linear modulation] and then 
convolved with hl in a linear time-variant (LTV) filter. The timing delay ET is 
taken care of by the digital interpolation filter hl,,, [eq. (1 l-58)]. If present, a 
global oscillat$r frequency shift Q is simulated by multiplying the output signal by 
the phasor ejsl ‘. Finally, the noise process nl is added to yield the received signal: 

z ejsa”’ (SI * hv+ * hr,,,) + nl 

(i) which may be split into partial signals rk [eq. (1 l-16)], if necessary. 

(11-62) 

In the case of j& fading with imperfect timing, pulse matched filtering and 
small frequency offset 52’ < 1, the channel model of eq. (1 l-20) applies, and it 
therefore suffices to simulate the T/S-spaced MD process C~J = ejsl ‘I cl. If the 
timing error has been perfectly compensated for, the sirnpt;) model of eq. ( 1 l- 
22) remains so that only the T-spaced MD process ck = ck = cl=2k has to be 
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generated by the simulator. In the case that the MD process is Rician, the MD 
may be modeled as the superposition of a specular/LOS and a diffuse component 
according to eq. (1 l-l 1). 

Of course, there are many variations on direct filtering channel simulation. 
For instance, a continuous cluster Doppler spectrum SC, ($J”) - which can be 
viewed as the average distribution of Doppler shifts - may reduce to a peak with 
an instantaneous Doppler shift A:, that is essentially constant over the duration 
of very short time frames of interest, typically TDMA bursts in mobile radio 
having a spatial duration of a few wavelengths. Then diffuse Rayleigh-distributed 
fading clusters may be represented by phase modulation fading simulator branches 
as if they were specularly reflected point clusters. The sequence of Doppler 
shifts (ti$,} taken to be valid for the transmission bursts can then be generated 
by Monte Carlo simulation as a realization of a random sequence with pdf 
Pr&“) CJc SC, (V’). 

In practice, the intended application may necessitate the channel simulator to 
be modified. For example, when the received signal is undersampled (rate l/T 
instead of 2/T; entails a loss of information due to aliasing but may be appropriate 
in low-noise environments), only a T-spaced (partial) channel simulator needs 
to be implemented. In many receivers, the analog anti-aliasing filter F(w) is 
lumped together with the pulse matched filter gMF(r)o-•GMF(W) (at IF band or 
baseband) for improved noise and interference rejection [GMF(w) is band-limited 
with bandwidth B while, in general, F(w) may be more wideband]. In that case, 
the pulse MF must be included into the filter vectors, i.e., the gT,m (Figure 1 l-9) 
are to be replaced by g, representing the cascade of transmitter and pulse MF 
responses with elements gm,” = QT,” t (l/T)g+ --v. , 

When focusing on the outer transmission system (e.g., designing a coding 
scheme or assessing equalizer and decoder performance), another interesting chan- 
nel simulator may be devised by including the optimum (channel-dependent) re- 
ceiver filter into the channel model. Depending on the kind of equalizer, this 
optimum filter is either the channel matched filter (Ungerboeck’s receiver [23]) or 
the channel whitening matched filter (Forney’s canonical receiver [24] being dis- 
cussed in Section 13.3). Then the tap fading processes of the resulting T-spaced 
equivalent channel [25, 261, as seen by the equalizer or decoder (Section 13.3.3), 
can also be simulated by filtering. Since this simulator is based on perfect channel 
estimation and ideal whitening (matched) filtering, it is not applicable to the de- 
velopment and performance evaluation of synchronizers (channel estimators) and 
nonideal channel-dependent receiver filters. 

11.3.2 Transformed Filtering Approach to Selective 
Fading Channel Simulation 

The direct filtering channel simulator concept is well suited for channels that 
exhibit but a few multipath clusters with distinct delays TV. For some channels, 
however, the number M of such clusters is large, or a virtually infinite number 
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Figure 11-10 Methods of Simulating Large Scattering Clusters 

of scattered rays form a large cluster in the (7, $)-plane (Figure 1 l-7) so that 
the cluster scattering function SC, (7; 11) is nonzero in an extended region 72,. 
The corresponding cluster spaced-time delay correlation Rc, (7; At) and thus 
the cluster delay profile Rc, (r) become quasi-continuous in the delay variable 
r. Obviously, the direct filtering simulator is not readily applicable; a different 
representation of such clusters is needed. 

Methods of Simulating Large Clusters of Scattered Rays 

One’ possible solution of simulating large clusters consists in approximating 
SC,,, (7; $J) by artificially “discretizing” SC, (7; I/J) in r direction, i.e., chopping 
$,,,(T; $) into a number B of slices SCmb ($J) = JR Se,(r; $)& where R,, 
is the bth bin with center delay r,,+, . This is illustr%d in Figure 1 l- 10 (upper 
part). The so formed artificial oblong “clusters” with Doppler spectra SCmb (+) 
can now be simulated by generating WGN processes ZU,+,~ with powers pmb = 

s Se,, ($)d$, followed by filtering [filters T,,, (z) approximating Jml in 
fading simulator branches just as in the direct filtering simulator of Figure 11-9. 
Obviously, there exists a trade-off between simulator complexity and accuracy: 
fine-grain cluster partitioning necessitates quite a large number of equivalent 
“clusters” to be implemented, while coarse-grain partitioning may lead to the fading 
statistics no longer being represented correctly. 
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Another representation of fading channels with extended clusters can be 
devised by interpreting the scattering function as a measure of the probability 
density of scattered rays in the (7, +)-plane, i.e., p( 7; $) cx Sc( 7; $J). This is 
readily understood by recalling that each elementary ray manifests itself as a point 
in the delay Doppler plane with infinitesimaly small power ri, Doppler shift $0,) 
delay TV, and random phase tin [see eq. (ll-28)]. In the so-called Monte-Carlo 
model - an example is illustrated in Figure 1 l-10 (lower part) - the multitude of 
Nm elementary ray processes that make up the quasi-continuous two-dimensional 
cluster scattering function SC, (7; $) is replaced by acfinite number N, of discrete 
processes cna,,r = tiym e’(‘gmn ‘+emn) = ej3 ; mm’ (em, .ejemn) with delays rm,. 
Each such path is modeled as if it were a specularly reflected ray; it is taken to 
represent a small region %&,, about the point ( rm,, , $D,, ) . 

In the simulator, the set of path parameters (rm,, $D,, , am,, 8,,) (n = 
0 .‘j rrn - 1 paths per cluster) is chosen ofline before the simulation is started. 
There are many possible ways of parameter selection. For instance, the set of 
points ( rm,, $D,, ) may be chosen randomly such that the resulting point scatter 
diagram reflects the clustering of rays in the (7, $)-plane. Alternatively, one may 
select (Trn, , go,,,,, > in some deterministic way, e.g., by forming equidistant grids 
in the cluster regions R, (Figure 1 l- 10). Likewise, there are several strategies 
of choosing the cluster weights (am,, ejemn) pertaining to (ma,, $D,, ). For 
example, the gains cy,, may be matched to the scattering function in a determin- 
istic way, e.g., by integrating SC, (7; $) over the region R,,,, . Alternatively, the 
gains may be chosen randomly as a realization of a complex Gaussian random 
variable whose average power E[ahn] matches the profile SC, (7; $) in region 
R mn- The uniformly distributed phases Brn, E [0,27r) are chosen randomly and 
independently from one another. Notice that, once the parameter set has been 
fixed, the simulated channel trajectory during runtime is in fact deterministic. It 
has been shown that a couple of hundered so-formed discrete processes yield good 
approximations to Rayleigh fading clusters [27, 281. This simulator concept makes 
it very easy to switch between totally different channels (e.g., frequency hopping) 
just by Sekthg a new Set Of pamI%terS (7,R, ?,bD,, , (Ym,, em,). 

The Transformed Filtering Channel Simulator 

In digital communications, only a finite number of TJ = (T/2)-spaced taps 
h v;l = h(T = vT,;t = IT,) of the discrete-equivalent CIR needs to be simulated. 
This motivates a different approach to selective fading channel simulaton, here 
termed transformedfiltering approach, where it is desired to establish a mapping 
from a cluster scattering function SC, (7; 11) of the physical channel onto the 
statistics of the respective collection of sampled tap processes h,., (m). The resulting 
transformed filtering simulator thus circumvents the need for generating a large 
number of diffuse rays, yet does not compromise the correct representation of 
channel statistics, in particular, the rate and duration of deep fades. Depending on 
the ray clustering profile, the transformed model may lead to a substantial reduction 
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in the number of fading simulator branches. This advantage, however, is paid for 
by a less flexible simulator whose coefficients must be calculated anew whenever 
the clustering profile changes. Hence, the transformed filtering approach is suited 
for simulating certain well-defined and widely used channel scenarios such as the 
hilly terrain (HT) or typical urban (TU) mobile channels as specified by CEPT 
[29, 301. 

The derivation starts with expressing the temporal and inter-tap correlations of 
the processes hi:) pertaining to the mth extended cluster in terms of the cross- 
correlation function? 

with gT(r”) = g(r/T,). The link between the cross-correlation function 
RLL+, (At) and S&“; $J> can be established via reformulating the cross-power 
spectrum: 

Rh,h,+, (At) e-j@(At) d(At) 
-Kl 

= 
I 

O” bdy-~“) ST(~ + [V-T”])] s&“; $) &” 

--oo 

(11-64) 

Since the fading is assumed to be slow with respect to the symbol rate so that 
SJr”; $) is nonzero only for small II) < ‘~r( l/T,), the spectrum &,h,+, (ejq”) 
of the sampled autocorrelation Rhyh,+, (AZ) = &,h,+, (At = AZT,) satis- 

fies sh, h,+, (@“) = Sh,h,+, (+” = qYZ”) with high accuracy. Transforming 

5 In order to avoid notational overloading, the cluster index m is dropped in this derivation. 
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Sh,h,+, (eJ $“) back to the time domain yields 

RLL+p (Al) = E by; 1 h:+,. r+ar] , 

1 =O” 
=- 

27r JJ [ST(~-+‘) gz-(c1 + [ pq”])] s, (#‘; ,W) ,jVW) &” ,$” --A -00 
(11-65) 

The third line in eq. (1 l-65) involves the (cluster) scatteritg function $(r”; I$@“) 
of the Ts -spaced channel which also satisfies Sc(7”; ejq ) M Sc( 7”; +” = +T,) 
with high accuracy. 

The sampled cross-correlation function of eq. (1 l-65) as well as the cross- 
power spectrum may be split into two terms: 

RW,+L, (Al) = Pu,utp qv,,(Al) 

respectively, where pV,V+cl = Rv,v+,., (AZ = 0) is the cross-correlation between 
taps and cy,, V +,(AZ) the temporal cross-correlation profile normalized to unity, 
i.e., qvtfi (AZ = 0) = (l/[2n])~~RcyylvtcI(ej~“) d($“) = 1. 

In principle, Rhvhv+c (AI)o-oShVhv+p (ej+“) can be evaluated numerically 
for any kind of (cluster) scattering function S,( 7”; ej@“) via eqs. (1 l-65) and (1 l- 
64). In general, however, all intertap cross-power spectra Sh,h,+, (ej+“) may have 
distinct profiles c++,,(ej$” ) , thus rendering their modeling quite an involved task. 

For this reason, let us consider the important special case of the cluster 
scattering function being separable in the delay and Doppler domains, i.e., 

where a,(Al)o-~,(ej~” ) is again normalized to unity energy. The tap cross- 
correlation functions and cross-power spectra of eq. (1 l-66) then simplify to 

Rla,h,+, (Al) = Pu,utcc a,(Al) 
% h,+, = PI/pi-p 0, 

(11-68) 
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The tap cross-correlation coefficients py,V+P can be determined via eqs. (1 l-64) 
and ( 1 l-67): 

‘hvhv+, (ej”‘) = J [gZ+‘---“) g&A + [v-7.“])] $(#‘; ,“) &” 

= h’(v-T”) gT(p + [Y-T”])] I&.(#‘) d#’ 1 
(11-69) 

Comparison with eq. (1 l-68) immediately yields 

00 

Pu,u+p = J h+‘-T”) g& + [v-r”])] Ii+-“) dr” (11-70) 
-00 

As expected, p v,V+P is a function of the pulse shaping filter response gT (r”) and 
the delay power profile &(F). 

Let us now arrange the tap cross-correlation functions and cross-power spectra 
(pertaining to the mth cluster) in infinite-dimensional matrices: 

Rh(A1) = 

Sh ,j+” = 
( > 

Thanks to the separation property [eqs. (1 l-67) and (1 l-68)], these matrices 
simplify to 

Rh(AZ) = Rh a cx,(Al) 
(11-72) 
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P-1,-1 

PO,-1 
Pl,-1 

P-l,0 
PO,0 
PI,0 

P-1,1 
PO,1 * 

Pl,l 

(11-73) 

is the (infinite-dimensional) symmetric covariance matrix of the (likewise infinite- 
dimensional) discrete-equivalent channel tap vector 

Rh = cov[hJ = E[hl.hy] 

(11-74) 

A cluster scattering function representing a number N of elementary rays leads to 
a rank-N covariance matrix Rh. In extended clusters of diffusely scattered rays 
we have N -+ oo so that Rh is of infinite rank. The average powers of tap 
processes hy;l, viz. pv = py,y = E[J h,;r I21 are arranged along the main diagonal 
of Rh. The off-diagonal elements pv,v+P of Rh reflect the mutual coupling of the 
sampled tap processes introduced by pulse shaping. 

In order to synthesize channel tap processes h,;l with these statistical prop- 
erties in an efficient way, consider the unitary spectral decomposition of Rh: 

Rh =U*A.UT = c A, * upu; 
P 

(1 l-75) 

with diagonal eigenvalue matrix A = diag(Xc, X1, . , ,) and unitary eigenvector 
matrix U = (uc u1 . . .). From this decomposition it follows that the set of 
correlated complex Gaussian random processes { h,;l} (collected in vector hi) can 
be generated by filtering a set of uncorrelated complex Gaussian processes {pP+} 
[collected in vector pi = (PO;/ pi;l . . .)T] by means of a unitary filtering network 
U, i.e., 

h, = U - pl (11-76) 

The processes pP;l have average powers X, so that cov[pJ = A and therefore 

cov[hl] =E[hlahy] 

= E[U~pr-p~4JT] 

=U*A*UT 

= Rh 

(1 l-77) 

as desired. 
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Figure 11-11 Transformed Filtering Selective Fading 
Channel Simulator (mth Cluster) 

In a practical simulator, vectors pr and hr must be truncated to some finite 
dimension, i.e., 

(11-78) 

with dimensions P and &, respectively. The number P of processes pr,;l should 
be chosen such that their average powers, contained in the respective truncated 
eigenvalue matrix A = diag( Aa, . . . , X+1), are much larger than the discarded 
eigenvalues. Likewise, the number & of tap processes h,,q;+ to be synthesized 
should be chosen such that their tap powers pV, = pVqrVq, contained along the 
main diagonal of the respective truncated correlation matrix filh, are much larger 
than the powers of “weak” taps disregarded by the simulator. 

The resulting transformed filtering simulator for a channel cluster whose 
cluster scattering function can be separated according to eq. (11-67) is shown 
in Figure 11-11. 

The data path (not included in the figure) is the same as in Figure 1 l-9. The 
P processes pP;l with powers A, are generated by filtering mutually independent 
WGN processes 2oP;l of powers AP by unity-energy Doppler spectrum shaping 
filters T(z) approximating the widened (interpolation factor I) cluster Doppler 
spectrum S, (e j(@‘I)) that may have been shifted in frequency by its negative 
Doppler shift -$g, such that it is roughly centered about the origin. Backshifting 
the cluster Doppler spectrum by $$, = 27rhgm may then be accomplished 
following linear interpolation (rate factor I). Realizations of processes pP;l thus 
obtained are delivered to the & x A4 filtering matrix u whose output processes 
are statistically correct realizations of relevant channel tap processes hYp;l. If 
necessary, the Q-tap vector hl so obtained may again be split into two vectors 
hf) containing the taps of the two partial channels. When more than one cluster 
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is present, all M cluster CIRs hi”) generated by filtering simulator branches are 
finally superponed to form the realization hl of the total CIR process. 

Example: Transformed Filtering Simulation of Land-Mobile Channels 

As an example of the transformed filtering simulator, consider the land-mobile 
channel model whose cluster scattering functions can often be separated according 
to eq. (11-67). In mobile radio, clusters with small delays 7” tend to exhibit a U- 
shaped Jakes Doppler spectrum a,( ej@” ) [eq. (ll-53)], while clusters with large 
delays are likely to have more pronounced spectra, e.g., Gaussian-shaped spikes. 

In the following examples, the CIR is sampled in r direction at rate l/T,=270 
kHz. In contrast to the GSM recommendations [partial response Gaussian mini- 
mum shift keying (GMSK) signal: rate l/T = l/T,=270 kHz, bandwidth -200 
kHz], we assume linear (PSK or QAM) modulation with root-raised cosine Nyquist 
filtering (cu = 0.5) and a symbol rate of l/T=1 35 kBd (2 bits per symbol, signal 
bandwidth B = (l+cu)( l/T)%200 kHz) [31]. As pointed out earlier, this simula- 
tor can also be used for nonlinearly modulated signals occupying a bandwidth not 
exceeding that of the flat region of the pulse matched filter g&7)o-oGMF(W), 
here (1 - a)(l/T)~77.5 kHz. By doubling the sampling rate and tightening the 
bandwidth factor to Q = 0.25, the channel simulator can be modified so as to 
accommodate the full GSM signal bandwidth of 200 Hz. 

Let us consider the two types of delay-power profiles &(r”) specified by 
CEPT for GSM channel modeling at 900 MHz [29, 301. The first model features 
12 (or 6) discrete densely spaced oblong Jakes clusters, and 
specified in terms of one or two continuous exponentials. 

the second model is 

The average powers pm and delays rg of M = 12 oblong clusters of the 
first delay-power profile [30] are listed in Table 1 l-2 for the hilly terrain (HT) and 
typical urban (TU) GSM channels, along with the parameters (average tap powers 
pV, , eigenvalues X,) of the respective transformed filtering models. Of course, the 
12 clusters may well be modeled by direct filtering, but notice from Table 11-2 
that, by virtue of transformed filtering, the number of filtering branches (Figure 
1 l- 11) is reduced from M = 12 to P = 4 and P = 3 for the HT and TU channels, 
respectively. Here, the matrices have been truncated such that spurious channel 
taps hvP;l with powers pV, below a threshold of 0.001 x the strongest tap power, 
as well as spurious eigenvalues X, 5 0.001 x Xa were eliminated. Notice that in 
high-noise environments the simulator can be further simplified by neglecting taps 
and eigenvalues whose contributions are buried in noise. For instance, by raising 
the threshold to 0.01, only (P, &)=(4,9) and (2,6) filtering branches and taps remain 
to be implemented for the HT and TU channel simulators, respectively. 

Continuous delay-power profiles &(?) as specified by COST [29] comprise 
M clusters of weighted exponentials: 

R,(#‘) = Me Pm $ e- (T”-T::)/-i: e (,I, _ /) (1 l-79) 
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Table 11-2 Parameters of Direct and Transformed Filtering 
GSM-HT and TU Channel Simulation Models 

GSM-HT, Transformed, 
M=12, Q = 11, 
Jakes Doppler P=4 

Pm 

0.0264 
0.0418 
0.0662 
0.1050 
0.2640 
0.2640 
0.1050 
0.0418 
0.0332 
0.0264 
0.0166 
0.0105 

II 
rm 
0. 
0.0542 
0.108 
0.163 
0.217 
0.542 
0.615 
4.065 
4.119 
4.282 
4.662 
5.420 

v9 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 

P% 

0.0006 
0.0094 
0.0499 
0.4739 
0.3213 
0.0095 
0.0187 
0.0703 
0.0400 
0.0054 
0.0009 

0.8395 
0.1168 
0.0323 
0.0113 

GSM-TU, Transformed, 
M=12, Q = 9, 
Jakes Doppler P=3 

Pm 

0.0904 
0.1138 
0.2271 
0.1433 
0.1138 
0.0718 
0.0454 
0.0718 
0.057 1 
0.0286 
0.0180 
0.0227 

T; 
0. 
0.0542 
0.108 
0.163 
0.217 
0.325 
0.379 
0,488 
0.650 
0.813 
0.867 
1.355 

ycl pug 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 

0.0006 
0.0011 
0.0094 
0.0853 
0.5702 
0.3111 
0.0178 
0.0067 
0.0009 

0.9474 
0.0532 
0.0027 

with average cluster power pm, delay rz [where ~(7”) denotes the unit step 
function], and time constant ?A of the mth exponentially decaying cluster profile. 
In order to keep this example simple, the distinct cluster Doppler spectra (including 
Gaussian-shaped spikes) specified by COST are replaced by Jakes spectra. The 
cluster parameters are listed in Table 1 l-3 for the HT, TU, and BU (bad urban) 
channels according to COST [29], along with the average tap powers p,,, and 
eigenvalues & of the respective transformed filtering simulators. Again, only 
P = 4 filtering branches and between Q = 4 and 12 taps need to be implemented 
to adequately represent these channels. In high-noise environments (threshold 
O.Ol), these figures boil down to (P, &)=(2,6), (2,4), and (3,7) for the COST-HT, 
TU, and BU channel simulators, respectively. This example illustrates the benefits, 
both in terms of modeling accuracy and simulator efficiency, that can be gained by 
employing the transformed filtering technique for modeling the effect of “critical” 
extended clusters in the scattering function. 

11.3.3 Main Points 

. 

. 

System performance evaluation via simulution necessitates software channel 
simulators which accurately represent the statistics of a multipath fading 
channel. This may be accomplished by a number of techniques, including 
the direct and transformed filtering approaches which have been discussed in 
more detail. In the direct flfiltering model, each cluster fading process cm(t) 
with delay r m is modeled and generated individually. This technique is best 
suited to channels featuring a small number of clusters with distinct delays. 
Channels which exhibit a quasi-continuous delay profile due to diffuse scat- 
tering can be represented by a transformed filtering model, given that the 
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Table 11-3 Parameters of Transformed Filtering COST-HT 
and BU Channel Simulation Models 

COST-HT, 
M=2, 
Jakes Doppler 

Transformed, 
Q = 12, 
P = 4 

COST-BU, 
M=2, 

Jakes Doppler 

Transformed, 
Q = 10, 
P = 4 

% Pv, A, 5 pv, XP 

-4 -3 0.0007 0.0016 0.8726 0.1132 $&;I: ’ 
-2 0.0069 0.0065 
-1 0.1162 0.0043 

&, 
-4 -3 o.ooo4 0.0007 0.7114 0.2666 
-2 0.0065 0.0184 

T&O.27 -1 0.0577 0.0019 
0 0.5592 0 0.3803 

2 1 0.1849 0.0043 2 1 0.3455 0.1788 
3 0.0113 

;4g: 
3 0.0235 

4 5 0.0659 0.0423 2’ c; 1 = 0’27’ . 3; 4 5 0.0045 0.0004 
6 0.0024 
7 0.0010 

COST-TU, 
M=2, 

Transformed, 
Q = 4, 

Jakes Doppler P = 4 

vq pv, XP 

Rc(r"): -1 0.0082 0.7878 
p=l 
/Lo 0 

0.7358 0.1120 

1 
0.1543 0.0057 

+'=0.27 2 0.0080 0.0012 

(cluster) scattering function is separable in the delay and Doppler domains. 
The infinitely many elementary ray processes of such a cluster contribute to 
the discrete-equivalent channel tap vector process hl, and these contributions 
are synthesized through a spectral decomposition of the covariance matrix Rh 
of hl. This technique yields high modeling accuracy and improved simulator 
efficiency for some important channels of interest. 

11.4 Bibliographical Notes 

Meanwhile, a large body of literature exists on channel characterization and 
modeling. Material on flat fading channels being characterized by multiplicative 
distortion is found, e.g., in [32, 33, 6, 341. Statistical modeling of short-term 
channel variations is detailed in [9, 35, 36, 19, lo], and deriving the scattering 
function from a physical channel model is the topic of (35, 37, 81. 
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For further information on microwave LOS channels, the reader is referred 
to [ 13, 141. Land-mobile/personal radio channels, land-mobile satellite channels, 
and aeronautical satellite channels are covered in [35, 38, 25, 19, 39, lo], [40, 
34, 411, and [42, 431, respectively. Material on ionospheric shortwave channels 
and the various sources of interference is found, e.g., in [44, 45, 16, 46, 17, 181 
and [47, 48, 49, 50, 511. Important characteristics of indoor radio channels are 
found in [52,53, 54,551. When designing receivers for new emerging applications 
such as wireless ATM or terrestrial digital video broadcasting (DVB-T) [56], it is 
important to consult latest results on channel characterization and modeling. 

Hard- or software implementations of statistical channel models are detailed 
in [57, 13, 25, 411. Material on the direct filtering approach and on simulating 
extended clusters is found in [25, 26, 201 and [31, 26, 27, 28, 581, respectively. 
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Chapter 12 Detection and Parameter 
Synchronization on Fading Channels 

In this chapter, we are concerned with optimal receiver structures and near- 
optimal algorithms for data detection and sync parameter estimation on both flat 
and frequency-selective fading channels. Emphasis is placed on the concept of 
synchronized detection where the sync parameters are explicitly estimated and 
then used for detection. Based on this mathematical framework, optimal estimator- 
detector receivers for joint detection and synchronization are derived. This chapter 
focuses on the methodology and fundamental insights rather than on details of 
implementation; these are addressed in the following chapters on realizable receiver 
structures and fading channel estimation. 

12.1 Fading Channel Transmission Models 
and Synchronization Parameters 

In this section, the transmission models and synchronization parameters of 
interest are briefly reviewed and put in a mathematical framework suitable for 
detection and synchronization. Based on these models, optimal joint detection and 
sync parameter estimation strategies and algorithms are systematically derived. 
Even though the optimal algorithms as well as most of their simplified versions 
admittedly suffer from an extremely high complexity, the ideas, strategies, and 
valuable insights worked out here provide a universal framework that can be 
applied to the systematic development of both the data-aided (DA) and non-data- 
aided (NDA) synchronization algorithms covered in Chapters 14 and 15. 

As before, we are concerned with linearly modulated, possibly encoded 
QAM or PSK symbol sequences. Although of practical importance, nonlinear 
modulations such as MSK (Section 3.2) are not discussed here, but the basic 
principles of deriving optimal detectors and synchronizers remain the same. 

As detailed in Chapter 11 [eqs. (11-l@, (ll-19), (ll-20), and (ll-22), 
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respectively], the following transmission models are of interest: 

Selective fading: 

Flat fading: 

$1 = p’(k+i/2) $1 

[ 

C an $$&&) 
-n 

+ ng’ 

C$jJk 
1 8 

Flat fading, pulse MF output, imperfect timing: 
(12-1) 

Flat fading, pulse MF output, perfect timing: 

with noise autocorrelation functions [eq. (ll-21)] l&?(n) = NaS,, (AWGN) and 
I&?(n) = Nob,, Rm(0),m(l)(n) = Nog(r = [n+0.5]2’). 

We consider the transmission of an isolated block of N symbols 

a = (ag al . . . aN-l)T (12-2) 

starting at reference time index p = 0, where p may be unknown at the receiver. 
The sequence length N may range from a small number (short data packet) up 
to near infinity (quasi-continuous transmission). Some of the symbols al, may 
be known (training); the unknown (random data) symbols may be uncoded or 
coded and possibly interleaved. Depending on the channel transmission model 
and the availability of prior knowledge, the sync parameters 8 of interest may 
encompass the start-of-frame index p, the (relative) frequency offset s2’, the set h 
of time-variant selective channel impulse response vectors or the set c of flat fading 
channel weights, the timing offset E, and carrier phase cp. Since the channel is 
band-limited, the (partial) channel impulse response (CIR) vector h(,‘) as defined in 
eq. (1 l-59) comprises, in theory, infinitely many samples hz!k. The same applies 

to the sampled pulse shaping filter response $T,n (i) (E) and the concatenation gg )( e) 
of pulse shaping and matched filters. 

While it is important to represent weak taps (channel pre- and postcursors) in 
the channel simulator (Section 11.3), the derivation of manageable detection and 
synchronization algorithms most often requires that the number of sync parameters 
to be considered is kept at a minimum. In this vein, the CIR model used for the 
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derivation of receiver algorithms must be truncated to some finite length L (symbol 
intervals) so that the (partial) CIR vector of interest becomes 

h(ki) = ( h(d:; h(;:i . . . ha,,)’ , I , (12-3) 

The T/2-spaced CIR vector hk may be expressed in a short-hand notation as the 
“sum” (@) of the two partial CIR vectors: 

hk = h(,O) $ h(,‘) 

= ( hO;k hl;h h2;k h3;k . . - haL;lc h&1$ > 
T 

(12-4) 

The set of all CIR vectors hk (Ic = 0, 1, . . . , N- 1, . . .) may then be collected in a 
vector h encompassing all channel tap processes that are relevant for the detection 
of sequence a. Likewise, the (single) weight process trajectory of a flat fading 
channel can be collected in a vector: 

c=(Q) Cl . . . C&l) 
T (12-5) 

where it has been assumed that the fading process does not change significantly 
during a symbol interval, i.e., cr) % cf) = ck. 

Using this notation, the sync parameters of interest for flat and selective 
channels can be summarized in Table 12-1. 

Table 12-l Synchronization Parameters for Flat and Selective Channels 

I Channel model 1 Sync parameters 8 I 

I Selective fading 1 p, i-2, h = (h;f h? . . . hs-, . . .)T 

(selective fixed) 

Flat fading 

(flat fixed, i.e., AWGN) 

p, R’, h = h(O) $ h(l) (hk = h) 

p, s-7, E, c = (co Cl . . . C&l} 

p, a’, e, cp = a&] @k = c) 

The parameters p, a’, E, cp are assumed to be invariant over the block length 
N. Notice that the dimensionality of the sync parameter vector 8 may be very 
large; for instance, in the case of a selective fading channel, at least (N-1)2(,5+1) 
channel taps [2( L+l) channel tap processes of duration 2 N - 1 symbol intervals] 
are to be estimated. 

A suficient statistic for detection and synchronization is given by the collec- 
tion of all received samples that are dependent on the data a. Since the channel 
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memory is assumed to be finite,, the true sufficient statistic, i.e., the infinite-length 
received sequence {$k , . . . , r(&}, can also be truncated to a finite-length vector: 

Receiver input signal: (flat fading: L = 0) 

r = p(O) $ r(l) y!’ TV) . . . r$)+L-l )T 

Pulse MF output signal, imperfect timing: 

Z = z(o) $ z(l) z!) zii) . . . z$L1 )T 
(12-6) 

Pulse MF output signal, perfect timing: 

z=(%oq . . . Z&J 

Notice that, for the special case of perfect timing, the pulse MF output is free of 
intersymbol interference (ISI) so that z becomes a true (not approximate) sufficient 
statistic in this case. Note that the exact dimension of the observation vector 
depends on the particular application and the sync parameters of interest. For 
instance, if the start-of-frame instant ,Y [which has implicitely been assumed known 
in eq. (12-6)] is unknown but bounded within a finite interval -PO 5 ~1 5 1~0 
about zero, additional samples of the received signal have to be included into the 

(i> (i> observation vector which then ranges from rBc10 to ~~~+(~+~)-r (receiver input 
signal). At any rate, the observation may be expressed concisely as a function of 
the data sequence a and the sync parameters 0, plus additive random noise n or m: 

r = &(a, 0) + n 
z = f&,e)+m 

(receiver input) 
(pulse MF output) 

(12-7) 

The observation is linearly dependent on the data a but may be nonlinearly 
dependent on some sync parameters 6. 

To further illustrate the construction of transmission models, we will now 
take a closer look at some important special cases of vector-matrix formulations 
of the observation. 

12.1.1 Flat Fading Channel Transmission 

As a first example, consider the (relatively simple) case of fkzt fading channel 
transmission with pulse matched filtering and perfect timing error compensation, 
with known start-of-frame instant p = 0 but (possibly) unknown frequency Q’ and 
unknown flat fading process vector c. Via eqs. (12-1) and (12-6), the (T-spaced) 
observation z can be expressed in terms of the N-dim. data vector a, an N x N- 
dim. diagonal channel matrix C and an N x N-dim. diagonal frequency offset 
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matrix W(Q’): 

z=M(O)a +m 

X0 

tJ[ 

,jCl' 0 

21 
,jSt 1 

. = . . . . . 

ZN-1 
ejSl’ (N-l) 

1 
) 

z ww 

635 

(12-8) 

The transmission matrix M(8) of eq. (12-8) with sync parameter vector 8 = 
(0’ CT)’ is linearly dependent on the channel c. Hence, the observation z can 
likewise be expressed in terms of the N-dim. channel process vector c, an N x N- 
dim. diagonal data matrix A and (as above) the N x N-dim. frequency offset 
matrix W (R’): 

20 

Zl 
= 

i I[ 

,jfl' 0 

,jSi’ 1 

. . . . . 

ZN-1 
,jSi’ (N-l) 

1 

2 YW 

- fO ‘l .I uNwjfj)+m (12-‘) 

\ /\ / Y 

= W(sZ’) A c +*m 

C 

The observation being linearly dependent on some of the synchronization param- 
eters 8 is an important special case since then the powerful concepts of optimal 
linear parameter estimation theory [ 1, 21 can be applied. 

12.1.2 Selective Fading Channel Transmission 
Consider now selective fading channel transmission, again with known start- 

of-frame instant p = 0, (possibly) unknown frequency Q’, and unknown channel 
impulse response process vector h with (maximum) delay spread L. Using eqs. 
(12- 1) and (124, the observation 1: can be expressed in terms of the N-dim. data 
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vector a, a (2[N + L] x N)-dim. banded channel transmission matrix H and a 
(2[N+L] x 2[N+L])-d im. diagonal frequency offset matrix W(@): 

r = r(O) @ p(l) 

=M(8)-a + n 

= (W(‘)(n’) $ W(‘)(Q’)) a (H(O) $ H(l)) .a + n 
\ w /\ L/ 

VW H 

rti) = 

. 

r0 
(i) 

rl ejfl' 0 
. 
. ejil’ 1 
. 

. 
TN-1 

I 

. . 

. . . 

rN+L-1 

ejn’ (N+L-1) 
t 

W(‘)(W) 

ho,o 
h,l 

hL,L 

ho,1 

h--l,L 

hL,w 

. . . 
. . . . . . 
. . . . . . . . . 
. . . . . . . . . 

. . . . . . 

ho,m 

h,N-1 ho,rw 

h , N+L-2 

hL,N+m. 

Hii) 

= J&d’,(@) H(‘) a + n(i) 

(12-10) 
As above, the short-hand operator $ denotes the “sum” X = X(‘&BX(~) of two 
matrices (or vectors) X(O), X(l) in th e sense the elements of X(O), X(l) are copied 
to appropriate positions of the new matrix X with appropriate dimensions. For 
instance, H is constructed from H(O), H(l) by copying the rows 0, 1, 2,... of H(O) 
(H(l)) to rows 0, 2, 4,... (1, 3, 5 ,...) of H. Similarly, W is constructed from 
W(O), W(l) by copying the main diagonal elements of W(O) (W(l)) to positions 
0, 2, 4 ,... (1, 3, 5 ,...) of the main diagonal of W. 

In eq. (12-lo), the transmission matrix M(B) with sync parameter vector 
8 = (0’ hT )’ is, of course, nonlinearly dependent on the frequency shift 0’ 
but linearly dependent on the channel h (here arranged in matrix H). This 
linear dependence motivates a second, equivalent transmission model where the 
observation r is expressed in terms of the B[L+l]N-dim. CIR process vector h, an 
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(2[N+L] x 2[L+l]N)-d im. data matrix A and (as above) the (2[N+L] x 2[N+L])- 
dim. frequency offset matrix W(Q’): 

r = #4 $ Jl) 

= W(Q’) . (A(‘) $ A(‘)) . (h(O) $ h(l)) + n 
-- 

A h 

(i> 

,js1' 0 

ejSl’ 1 

. . . 

,ja’ (N+L-1) 

a0 
. . . al 

a0 ‘*. ‘s. 

al **. aN-1 

aN-1 
. v . 

A(i) 

= ‘w(“) (a’) A(‘) h(‘) + ,(i> 

ho,0 ’ 
. . . 

h,L 
. 
: 

ho+1 
. . . 

,h,N+m 

i) 

s,(i) 

(12-11) 
where the (2[N+L] x 2[L+l]N)-d’ im. matrix A is constructed from the ([N+ 
L] x [L+l]N)-d im. matrix A(‘) by doubling the size of the ([L+l 
diagonal submatrices al, .I&1 (Ic = 0, . . . , N - 1) contained in A (1 

x [L+l])-dim. 
‘1 to dimension 

(2[L+l] x 2[L+l]) and abutting them just like in A(‘), but with an offset of two 
rows between abutted submatrices. 

Of course, eqs. (12-10) and (12-11) are just two of many possible ways of 
representing the observation resulting from transmission through a selective fading 
channel; vector and matrix arrangements should be selected such that they best 
suit the application and detection / synchronization problem at hand. 

12.1.3 Main Points 

. Vector/matrix models for fading channel transmission have been established 
which yield vector output processes z (flat fading channel, including pulse 
matched filtering and perfect timing sync) and r (selective channel). By 
inspection of these models, the sync parameter vector 8 of interest is easily 
identified. 
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. Of particular interest are the flat and selective fading channel trajectories c 
and h, respectively. In this case, the observation (2; or r) is of the form 

e=W(R’)Ac +m 

r = W(S2’) A h + n 
(12-12) 

and thus linearly dependent on the sync parameters c and h, respectively. 

12.2 Optimal Joint Detection and Synchronization 

Up to the present, only relatively few attempts have been made to apply the 
concepts of joint data detection and parameter synchronization to (static or fading) 
dispersive channels. The basic idea of joint detection and channel estimation is 
a - conceptually simple but computationally very complex - exhaustive search 
for the “overall best fit” between the “model output” (hypothetical data sequence 
transmitted over its associated hypothetical channel) and the observation (received 
signal), most often aided by some side information on the channel dynamics. 

Recently, several approaches to joint detection and synchronization, in par- 
ticular selective channel estimation, have been investigated. Most of these assume 
that the fading is very slow so that the CIR h can be taken as time-invariant within 
a sufficiently large time interval. Neglecting oscillator frequency offsets, one may 
attempt to maximize the joint likelihood function of (a, h): 

ML = arg ma p(rla, h) 
0 

(12-13) 

(maximum likelihood, ML) which, in the case of white noise, is equivalent to 
minimizing the least squares (LS) error between model output ? = A & and 
observation r : 

LS 
= arg min I]r - Ah112 

a,h 
(12-14) 

Fe minimization may be accomplished by first computing the channel estimate 
h(a) for each possible symbol hypothesis a (within the finite interval where h is 
stationary) and then select the one which best fits the observation (minimum LS 
error) [3]. In order to restrict the per-symbol computational effort to some upper 
limit, suboptimal algorithms usually search for the optimum in a recursive manner. 
For instance, the generalized Viterbi algorithm [4] retains a fixed number of “best” 
data sequences (survivors), together with their associated channel estimates, after 
progressing from time instant (k-l) to k. Generating a distinct channel estimate for 
every single survivor is sometimes referred to as per-survivor processing (PSP) [S, 
6,7]. The number of channel estimates may be reduced further by computing only 
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those i(a) that are based on the assumption of binary data a (reduced constellation 
approach [ 81). 

An alternative scheme termed quantized channel approach [9] is based on a fi- 
nite set of candidate channels h that is selected before the joint detection/estimation 
algorithm is started. In principle, ML or LS detection and estimation is performed 
by detecting the optimal data sequence B(h) associated with each candidate h 
and then selecting the one with the smallest LS error. During recursive Viterbi 
data detection, the candidate channels themselves should be adapted (by driving 
the residual error to a minimum) so that they converge against the (unquantized) 
true value. 

Simulation results [lo, 81 indicate that convergence of such joint detec- 
tion/estimation algorithms can be remarkably fast, e.g., within 50 to several hun- 
dred iterations. Hence, such algorithms have the potential to tolerate some degree 
of fading and therefore remain to be a hot topic for further research. 

12.2.1 The Bayesian Approach to Joint Detection and Synchronization 

Let us now focus on joint detection and estimation in the context of truly 
fading channels. For the following discussion of Bayesian detection and estimation 
techniques, let r denote the observation in general (either r or the pulse MF output 
z). Then optimal maximum a posteriori (MAP) detection of the data a contained 
in A calls for maximizing the probability of a, conditioned on the observation r, 

ii~~p = arg max P(alr) 
a 

(12-15) 

As the probability P(a 1 r) and the likelihood function p(r 1 a) are linked via 
Bayes’s rule P(alr) = [P(a)/g(r)] - p(rla) , we have 

iML = arg max p(rla) 
a 

arg max P(alr) = &MAP (12-16) 
a 

so that MAP detection is equivalent to ML detection if all possible sequences a 
are equally likely, an assumption which is generally made in practice. 

As has already been pointed out in Section 4.3, ML detection can be performed 
directly through maximizing the likelihood function p(rla) without the need for 
any kind of synchronization. However, we are most interested in receiver structures 
which follow the concept of synchronized detection introduced in Chapter 4. Thus, 
a sync parameter estimate 6 must be formed and subsequently used for detection 
as if it were the true parameter. All joint estimation-detection structures of this 
chapter and, more importantly, virtually all realizable receiver structures are based 
on synchronized detection. 
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The sync parameters 8 can be brought into play by reformulating the like- 
lihood p(rla): 

P(rla) = I p(r, Wa) &J 
J 

f (12-17) 
= J drla, 0) - p(ela) de 

Following the same high-SNR argument as in Section 4.3, maximizing the inte- 
grand 

yields the joint estimation-detection rule 

(h/m, 8) = arg max p(r, 0lo) 

(12-18) 

(12-19) 

In the important case that all random quantities are Gaussian, this high-SNR 
approximation is actually the optimal estimation-detection rule, regardless of the 
SNR (see Sections 12.2.2 and 12.2.6). 

At this point, it is necessary to take a closer look at the properties of the sync 
parameters 8 to be estimated. In particular, we distinguish between parameters 
8s that are essentially static, such as p, E, cp or time-invariant channels h, and 
parameters 80 that may be termed dynamic in the sense that they are taken from 
time-variant processes, such as flat or selective fading channel process vectors 
c or h, respectively. Usually, there is little or no probabilistic information on 
static parameters other than that they are in a given region. Therefore, p(8s) 
does not exist or can be assumed constant within a finite region. In view of the 
second representation of eq. (12- 1 S), joint detection and static parameter estimation 
thus reduces to maximizing the joint likelihood function p(rla,&) with respect to 
(a, 0s) (see introduction above). On the other hand, probabilistic side information 
on dynamic parameters is usually available and should be made use of. Hence, 
joint detection and dynamic parameter estimation calls for maximizing either the 
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first or second representation of the density function p(r, 80 ]a) [eq. (1%18)]: 

Static sync parameters: 

A 
( ) %@S = arg max p(r(a, 6~) 

a, OS 
Dynamic sync parameters: 

( > 
ii, &J = arg max p(6D Ir, a) e p(r18) 

a, @D 

It is immediately recognized that 6~ is an ML estimate and 6~) a MAP estimate, 
so that one may speak of ML detection with MAP (dynamic) or ML (static) 
parameter synchronization. 

Since there are infinitely many possible realizations of sync parameters 6 
whereas the number of possible sequences a is finite, the most natural joint 
maximization procedure consists in first maximizing the joint likelihood p(rla,&) 
with respect to 8s (ML) or the conditional pdf p(8D I r, a) with respect to 80 
(MAP) for each of the possible a, and then selecting the sequence a with the 
largest likelihood: 

ML estimation of static sync parameters; 

joint likelihood for decision: 

A 
es(a) = w3 max p(r 1 a, 63) 

es 

As(a) = p(r 1 a, e,=&(a)) 

(12-21) 

ii = arg max nsca> 
a 

MAP estimation of dynamic sync parameters; 

conditional pdf for decision: 

n 

@D(a) = arts mm P@D I rj a> 

@D 

AD(a) = p(r I a, eD=bD(a)) ‘p( 80 =bD(a)) 

(12-22) 

ii = arg max AD ca> 
a 
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The first maximization step yields a conditional sync parameter estimate 6(a) 
that is subsequently used in the decision likelihood computation as if it were 
the true parameter. Hence, this procedure resembles the concept of synchronized 
detection. Here, however, each candidate sequence a carries its own sync estimate 
@(a) conditioned on that sequence. 

12.2.2 Optimal Linear Estimation of Static and Gaussian 
Dynamic Synchronization Parameters 

In the previous parts of this book, the estimation of fixed sync parameters 8s 
has been discussed in great detail. Naturally, we shall focus on fading channels 
with dynamic sync parameters 80. On a number of occasions, however, the 
quasi-stationarity assumption on the sync parameters holds (e.g., in the context 
of blockwise channel acquisition), so that we will also deal with estimating static 
parameters es. 

In this section, it is assumed that the observation is linearly dependent on 
8 (this applies to both static and dynamic parameters), i.e., the observation is of 
the form 

r=A-8 + n (12-23) 

with an appropriately defined data matrix A and zero-mean complex Gauss- 
ian noise n with covariance matrix R,. Notice that the transmission mod- 
els of eqs. (12-9) and (12-11) comply with this linearity assumption when 
there is no frequency offset. Concerning dynamic sync parameters 80, we 
shall further assume that these follow a multivariate complex Gaussian distri- 
bution with known mean vector PD = E[@D] and Hermitian covariance matrix 
Ho = E[(@D -pD).(& -pD)H]. Under th ese assumptions the likelihood / 
density functions for ML static / MAP dynamic parameter estimation - as well 
as the likelihood function for detection - are also Gaussian. 

ML Static Parameter Estimation 

In the case of static parameters, only the noise is random, and the likelihood 
function becomes 

p(+, es) = NW% y JL) 
oc exp {-[r - A&IX . Ril . [r - A&]} 

(12-24) 

where N(p, E) denotes the (complex multivariate) Gaussian density function of 
a random vector with mean ~1 and covariance matrix E. Maximizing p(r]a&) 
calls for minimizing the quadratic form (metric) 

m(a, 0s) = [r - A@,# + R;‘n[r - A&] 

= e,H - [A~R;~A] . es - [rHRGIA] . es (12-25) 

-eg. [AHR;‘r] +[rHRilr] 
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By setting the derivative of m(a,Bs) 

0 
%“(“I es> = @ .[A~R;~A]- [PR;~A] 

= ([A~R;~A]+ - [A~R;%])~ 
(12-26) 

with respect to 8s to zero, one immediately obtains the static sync parameter ML 
estimate and its associated error covariance: 

6,(a) = [A~R;~A]-~.[A~R;~] 
k * / 

Q(a) 
Es(a) = [A~R;'A]-~ 

(12-27) 

respectively. 

MAP Dynamic Parameter Estimation 

In the case of dynamic parameters, both the parameters 80 and the additive 
noise n are Gaussian random variables. MAP parameter estimation calls for 
maximizing the pdf p( or> 1 r, a) [eq. (l2-21)], conditioned on the observation 
r, with respect t0 80. 

When two random vectors x and y with means CL,, py, covariances ES, EY 
and cross covariance EC,, are jointly Gaussian, the conditional pdf p(x 1 y) is also 
Gaussian, i.e., p(x 1 y) = N (CL+, E+), with mean and covariance [ 1 l] 

(12-28) 

respectively. With the correspondences x = 80, y = r, the auto- and cross 
covariances evaluate as 

r: x = % = E[(@D-PD) - (@D-PD)H] = RD 

I: XY = &T =E[(~-+L~)+-A~~)~] =RDsAH 

xY =&=E[(r-ApD).(r-ApD)H]=A*R~.AH+R, 

(12-29) 

Recalling the well-known fact that the optimal MAP estimate obtained by maxi- 
mizing p(x 1 y) is equivalent to the conditional mean 

and that its error covariance equals the conditional covariance matrix Xxly [ 111, 
the MAP estimate of a dynamic parameter 80 (which is also conditioned on a 
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here) and its error covariance matrix become 

@D(a) = clz + &,~Jy - py) 

=~D+RDA~(ARDA~+R,)-‘(~-A~D) 

= [RDA~(AR~A~ + RJ1] *II 

+ [I - RDA~(ARDA~ + R,)-IA] *pi 

ED(a) = RD - RDA~ (ARDA~ + R,)-~ARD 

(12-31) 

respectively. 

We remark that MAP estimation formally collapses to ML estimation by set- 
ting Rol to zero. This claim - which is not apparent from eq. (12-31) - is proven 
by using the equivalent expression &D(a) = ED (a) . [AHR;‘r + R,lp~] es- 

tablished below [eq. (12-41)], inserting ED(a) = [AHRilA + R;‘]-’ [eq. 
(12-40)] and then setting Ril = 0 or RD = 00~1. Hence, static parameters -- for 
which statistical side information is not available - can formally be cast into the 
framework of dynamic parameter estimation by interpreting these parameters as if 
they were mutually uncorrelated and of infinite power. 

Decision Metric for Synchronized Detection 

Having obtained a sync parameter estimate &a) and its error covariance 
matrix E(a) associated with a (hypothetical) data sequence a, the estimate @a) 
can now be inserted into the decision metric A(a) of eq. (12-21) in order to perform 
synchronized ML detection using the ML or MAP sync parameter estimate. 

Since all random quantities are Gaussian, we have 

&la, OS> = N(A@s, Rn) 
oc exp {-[r - ABslH . Ril e [r - A6s]} 

p(rb, 0,) = N(A@D, Rn) 

CC exp {-[r - A@D]~ . Ril * [r - ABol) 
(12-32) 

p(@D) = N(pD, RD) 

OC exp -[eD - pDIH - Ril - [eD - PDI} 

where the inverse matrices R;l, Rgl are understood to be pseudoinverses in 
the case that R, and/or RD are singular. This is not just an academic subtlety 
but arises frequently in practice whenever the underlying processes (especially the 
fading channel processes) are band-limited. 

Via eqs. (12-21) and (12-32), the metrics m(a, 0s) cc - In Ip(r 1 a, OS)] 
and ??%(a, 8~) Cc - hr b(r 1 a, 8~) . p(e~)] for ML detection with ML/MAP 
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synchronization, respectively, can be expressed as 

Static sync parameters: 

m(a, 0s) = [r - A@~]~Ril[r - A6s] 

Dynamic sync parameters: 

m(a, 0,) = [r - Atl~]~R,‘[r - A801 + [Oo - pDIHRil[OD - po] 

(12-33) 

Inserting the ML/MAP parameter estimates of eqs. (12-27) and (12-3 1) into 
eq. (12-33) immediately yields the decision metrics m(a) = rn(a, e=e> (to be 
minimized): 

Static sync parameters: 

ms(a) = [r - A6s(a)]HR,1 [r - A6S(a)] 

Dynamic sync parameters: (12-34) 

mD(a) = [r - Ab(a)]HR;l [r - AiD( 

+ [6D(a) - /JD]~R~~ [bD(a) - pD] 

These metrics can be reformulated by expanding the estimate &a). For static 
sync parameters, expanding eq. (12-34) (ML) yields 

- [@(a) e A~R,‘~] - [rHR;‘n&(a)] 

By reformulating the term 

rHRi1Ae8S(a) = E?R,~A.[A~R,‘A]-~ . AHRzlr 

= rHR,lA.[AHR,lA]-l. [A*R;~A] 
k /\ / v v 

QYa) q%) 

. [A~R,‘A]-~ .AHRilr 

& i4 

(12-35) 

(12-36) 

= rHRi’A. Es(a) s AHRilr 
n 

= &j(a) 1 E;l(a) s &(a) 
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one observes that the last three terms of eq. (12-35) are equal. Furthermore, the 
first term can be dropped since it is independent of a. Hence, the decision metric 
based on ML sync can be equivalently expressed as 

ms(a) = rHR;lAe [A~R;~A]-’ .AHRilr 

(12-37) 

The same procedure can likewise be applied to dynamic sync parameters. 
Expanding eq. (12-34) (MAP) yields 

indep. of a 

(12-38) 
In order to obtain a metric expression similar to that of eq. (12-37), let us invoke 
the matrix inversion lemma [ 12, 21: 

E = AHB-lA + C-l 

E-l = C - CAH [B + ACAH] -lAC 

= D - D[C + D]-lD with D = [A~B-‘A]-’ 

whereby the following identities are established: 

ED(a) = [AHR;‘A + RD’1-l = [Es1 + RD’]-’ 

= RD - RDA~ [ARDA~ + &]-‘ARD first 

( > identity 

= Es - %@s + RD]-‘Es 

(12-39) 

(12-40) 

where the second identity is valid provided that Q = &(a) = [AHR;’ A] 
-1 

exists. From eq. (12-40), the term AHRilA+Rsl is identified as the inverse 
error covariance matrix Xsl. Furthermore, with the help of eq. (12-31), the 
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expression 

= J.Q-I-RDA~ 
L 

(R-,1-(Ab~H+Rn)Y4~~H~;1) .I: 
7 / 

(AR~A~+R,,)-'[(A&A~+R,)R-,'-A~A~R-,~] 
\ / 

I 

=~D+RDA~(ARDA~+R,)-'(~-A~D) 
n 

= eD(a) 
(12-41) 

is identified as the MAP estimate 6~ (a). With these identities, the last term of 
eq. (12-38) can be expressed as 

,. 
= [A~R,-'~+R,~~~]~.~~(~) -Xii1(a)-8D(a) 

\ / x- 
dg (4 

6 
= h,"(a) - xii(a). @D(a) 

(12-42) 

so that, once again, the last three terms of eq. (12-38) are equal. This leads to 
the equivalent metric based on MAP sync: 

mD(a) = [AHRG1r + R~'/.JD]~ * [AHR;lA + R>l]wla[AHRilr + Ri’pD] 

= @(a) - [AHR;h + Rjjl] dD(a) --+max 
\ / v a 

~~'(a> 
(12-43) 

In summary, the decision metrics can be expressed in terms of an inner product 
of the ML or MAP sync parameter estimate O(a), whichever applies. 

So far, the results on synchronized detection - especially the detection part - 
have been derived using the high-SNR approximation of eq. (12-21). In the linear 
Gaussian case, however, the ML decision rule of eq. (12-43) [which is based 
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ML decision based on ML sync parameter estimation 

ML estimation inner product 

ML decision based on MAP sync parameter estimation 

MAP parameter 
estimate 

decision 
metric 

Figure 12-l Generation of Decision Metrics via 
ML/MAP Sync Parameter Estimation 

on MAP estimation according to eq. (12-31)] and, as a consequence, all results 
on synchronized detection established in this chapter, are not approximative but 
indeed optimal at all SNR. The proof for this claim is given in Section 12.2.6. 

To summarize the discussion of joint detection and estimation so far, Figure 
12- 1 displays the generation of the ML decision metric based on ML/MAP sync 
parameter estimation. For joint detection and ML estimation, the optimal decision 
metric rns (a) is obtained by first generating the ML estimate 4s (a) [eq. (12-27)] 
and then forming an inner product according to eq. (12-37). Likewise, for *joint 
detection and MAP estimation, the optimal decision metric ?nD (a) is obtained by 
first generating the MAP estimate 80 (a) [eq. (12-3 l)] and then forming an inner 
product according to eq. (12-43). 

Due to its tremendous computational complexity, the full optimal joint detec- 
tion and estimation procedure involving ML detection based on ML [eqs. (12-27) 
and (12-37)] or MAP [eqs. (12-31) and (12-43)] sync parameter estimation will 
most often not be feasible to implement in practice, especially when dynamic 
(fading) parameters are involved. Nevertheless, it is instructive to notice that there 
exists a closed-form optimal solution to the joint estimation-detection problem in a 
fading environment just as for nonfading transmission and reception. The optimal 
receiver for fading channels is derived by applying the same standard elements of 
estimation and detection theory that have been used for nonfading transmission. 
Furthermore, the expressions of eqs. (12-27) and (12-37) [ML] and (12-31) and 
(12-43) [MAP] can serve as the basis for deriving simplified receivers that can 
actually be implemented. 

MAP Dynamic Sync Parameter Estimation via ML Estimation 

In the case that the ML estimate of a dynamic parameter 0~ exists (the MAP 
estimate always exists), it is interesting to establish a link between the ML and 
MAP estimates as well as their error covariances [eqs. (12-27) and (12-31)]. 
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From eq. (12-40) one notices that the error covariance matrix E:s of ML 
estimation also appears in the context of MAP dynamic parameter estimation. 
This observation gives rise to a relationship that can be established between MAP 
and ML linear Gaussian sync parameter estimation, provided that Ils and thus 
the ML estimate exists. As we know, the MAP estimate BD (a) [eq. (12-31)] is 
the optimal dynamic parameter estimate which exploits prior knowledge of some 
statistical channel parameters, Suppose now that we choose not to consider this 
prior knowledge for the moment, the dynamic channel parameters are estimated 
as if they were static, i.e., one ends up with the ML estimate @s(a) of dynamic 
parameters 80. The expressions for 6s (a) and Es(a) of eq. (12-27) are then 
valid not only for (optimal) ML estimation of static parameters but likewise for 
(suboptimal) ML estimation of dynamic sync parameters. 

The existence of an ML estimate of dynamic parameters is by no means 
guaranteed. In the flat fading case (0~ = c), matrices A, R;i [eq. (12-9)] are 
N x N square so that AHR; ‘A is also N x N square and, assuming nonzero data 
symbols ak, full rank and thus invertible. Hence, the ML estimate 6s = 6s of the 
flat fading channel 80 = c exists. On the other hand, in the selective fading case 
@D = h), matrix A is 2(N+L)x2(L+l)N and R;l 2(N+L)x2(N+L) [q. (12- 
11)] so that AHF$‘A is 2(L+l)Nx2(L+l)N square but not full rank. Hence, 
an ML estimate 8s = 6s of the selective fading channel 80 = h does not exist, 
This is intuitively clear since 2( L + 1) N sync parameters h cannot be estimated 
from only 2( N +L) (with L > 1) observed samples 1: without side information. 

Case 1: ML Estimate 6s of 80 Exists (Flat Fading) 

In this case, dynamic sync parameters can also be viewed as if they were 
static, i.e., es = eD = 8. Now the second identity of eq. (12-40) reveals that the 
MAP error covariance matrix ED (a) can be obtained from the ML error covariance 
matrix E:s (a) by a linear matrix operation: 

ED(a) = [I - %(a) a [RD + %(a)]-‘\ %(a) (12-44) 

6 
A similar relationship can be established between the MAP and ML estimates via 
eqs. (12-27) and (12-41): 

bD(a) = [AHRilA + Ri’1-l .[AHR;‘r + R,‘pD] 

= ED(a). [AHR;‘r] + ED(a). [~;lpD] 

= N(a) e Es(a). [AHR;‘r] + [xD(a) .RE1] .pD 
(12-45) 

-- 
Ma) M(a) 

= N(a) . k(a) + M(a) - pD 

Therefore, the MAP parameter estimate 6,(a) can be obtained from the ML 
estimate 6s (a) of the same parameters by premultiplication with a matrix N(a), 
followed by the addition of the weighted mean. From eq. (12-44) it is observed 
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that the MAP error covariance matrix E:L> (a) can be obtained from the ML error 
covariance matrix ES (a) by premultiplication with the same matrix N(a). This 
relationship may be termed the separation property of MAP dynamic parameter 
estimation in the sense that MAP estimation can be performed by the two- 
step procedure of (i) computing the ML estimate from the observation and (ii) 
computing the MAP estimate from the ML estimate: 

observation ML estimate MAP estimate 
e n 

r --+ 8s Cal + 6 Cal (12-46) 
premultiply by premultiply by N(a), 
Es(a) e AHRil add weighted mean M(a) . pD 

The transition matrix N(a) that links both the ML/MAP estimates and the 
ML/MAP error covariances, as well as the weighting matrix M(a) are given by 

N(a) = I - %(a) . [RD + r;ls(a)] -1 

= I - [A~R$A]-~ . (RD + [A~R;~A]-~)-~ 

M(a) = ED(a) - Rgl 

= N(a) - ES(a) - Ril 

(12-47) 

= I - RDA* [ARDA~ + R,]-lA 

As indicated above, ML estimation does not require any knowledge of channel 
parameters other than the covariance matrix & of the additive noise. In the case 
of AWGN, not even the noise power needs to be known since then the matrix 
by which the observation must be multiplied collapses to Es(a) e AHRzl = 
[AHR;~A]-‘.A~R;~ = [ADA]-’ . AH. On the other hand, matrices N(a) 
and M(a) needed for MAP estimation incorporate the prior knowledge about the 
channel, as quantified by the mean ~0 and covariance RD. The reduction in the 
MAP error covariance with respect to the ML error covariance (elements along the 
main diagonal of I30 and E S, respectively) is also determined by the transition 
matrix N(a) and thus the channel statistics. 

Case 2: ML Estimate 6s of 80 Does Not Exist (Selective Fading) 
In this case, the entire vector of dynamic sync parameters cannot be viewed 

as if it were static. However, one may try and find a smaller subset 8s C 80 = 8 
of 80 for which an ML estimate 8s exists. For example, from the vector h of N 
selective channel impulse responses hk (Ic = 0, . . . , N-l), one may select a number 
N of channel “probes” hkK (K = 0, . . . , N- 1) such that the number r+2( L+ 1) 
of unknowns does not exceed the number 2(N + L) of observed samples. Then 
MAP estimation can again be performed using the ML estimate 4s. However, in 
order to make sure that the MAP estimate 6~ so obtained is actually optimal, the 
subset 8s must be chosen tacitly such that ML estimation does not entail a loss 
of information with respect to the observation r. In other words, the ML estimate 
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8, must be a sufficient statistic for MAP parameter estimation. These and other 
aspects are discussed in greater detail in Section 12.2.4. 

12.2.3 Joint Detection and Estimation for Flat Fading Channels 
Let us now further explore joint detection and channel estimation for the - 

seemingly simple - case of flat fading channels. Here, zero frequency offset and 
perfect pulse matched filtering (implying perfect timing compensation) is assumed. 
We remark that close-to-perfect timing estimation may be accomplished by the 
following procedure: (i) store the entire received signal (or a sufficiently long 
section thereof); (ii) in a first processing pass, acquire a timing estimate by applying 
a non-data-aided (NDA) timing estimation algorithm just as for nonfading channels 
(Chapter 5); and (iii) in a second pass, perform timing-compensating matched 
filtering on the entire stored received signal. Thus no data is lost during the timing 
acquisition phase. Then the model of eq. (12-9) [with W(Q’) = I] applies: 

= [ a1 . . . .,) &)+ m W-48) 

\ v / 
z A C 

with dynamic sync parameter vector 8D = c representing the flat fading channel 
process over the duration of the message a, and AWGN m with covariance matrix 
%?I = Nc . I. Further assume that the dynamic channel process {ck} is the 
superposition of a real-valued line-of-sight (LOS) component cs,k = a, (zero 
Doppler shift) with fixed power pS = 1 a, 1” and a complex Gaussian process cd,k 
with average power pd made up of a cluster of elementary scattered rays [see eq. 
(1 l-36)1. The channel process therefore is Rician with K-factor I’ = ps /pd. ‘&e 
total average channel process power p = pb + pd is assumed to be unity, as well 
as the average symbol energy E0 = E{ 1 ak I”}. 

On mobile channels, the scattered component c&k is often modeled to exhibit 
the U-shaped Jakes Doppler spectrum S,, ($‘) of eq. (11-53). The Jakes spectrum, 
which is based on the isotropic scattering assumption, accentuates instantaneous 
Doppler shifts near the cutoff frequency Xb. As we shall see later in this section, 
the actual shape of the Doppler spectrum has no noticeable effect on the estimator 
performance so that, for the purpose of receiver design, the Jakes Doppler spectrum 
may as well be replaced by an ideal lowpass spectrum with the same cutoff 
frequency Xb : 

Jakes Doppler spectrum and respective autocorrelation: 

R&-n) = pd * ad(m) 

otherwise 
with ad(m) = Jo(27rX/D - m) 
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Ideal lowpass approximation: 

if ]$‘I 5 27r& 

otherwise 
with ad(m) = si(2aXb . m) 

(12-49) 
We remark that the lowpass approximation is further motivated in the case that the 
receiver performs some kind of frequency offset estimation and/or Doppler tracking 
in front of the detection and channel estimation stage. The Doppler tracking stage 
attempts to counteract instantaneous Doppler shifts so that the channel estimator 
is left with residual channel variations whose Doppler spectrum tends to be more 
pronounced about zero. 

At any rate, the dynamic sync parameter vector 80 = c is characterized by 
its mean PD = c, = Q~ + 1 = a, . (1 1 . . , l)T (LOS component) and covariance 
matrix 

&I = E[(@D - PD) . (&I - /-JD)~] = E[Cd * $1 

( 

ad(O) . . . a&v-l) (12-50) 
=pd’ ; -.. ; 

&v-l) * . . do) 

As a word of caution we remark that, due to the band-limitation of the underlying 
random process, the matrix Ro is very badly conditioned so that the numerical 
inversion of Ro should be avoided. 

Making use of prior knowledge of the channel statistics pi (thus the IC- 
factor), RD and the noise power No, the optimal MAP channel estimator, condi- 
tioned on data sequence a, and its error covariance matrix become [eq. (12-31)] 

6D(a) = LAHR;‘~+ Ril]-:.[AHR;b + R$pD] 

Eda) (12-51) 

ED(a) = [A~R;~A + RJ -’ 

Noting that AHRilA = (l/No) . P(a) where P(a) = AHA = 
diag(po,p,, . . . ,m-1) is a diagonal matrix containing the symbol powers 
pk = 1 Uk I2 along its main diagonal, the transition matrices N(a) and M(a) [eq. 
(12-47)] can be reformulated using the second identity of eq. (12-40): 

N(a) = I - Es(a) . [RD + zls(a)J-l 

= I - lVoP-‘(a) s [RD + NoP-‘(a)]-’ 

=$+-RD. [RD + NoP-‘(a)]-‘] . RD . P(a) (12-52) 

M(a) = N(a) a ES(a) a R,’ 

= I - Ro . (Ro + lVoP-l(a))-l 

Matrices N(a) and M( a are seen to be dependent on the symbol powers pk = ) 
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1 ak 1” but not the symbol phases, and, of course, dependent on the channel 
parameters I<, Xb, NO. Therefore, the ML and MAP flat fading Rician channel 
estimates and covariances can be cast into the form: 

ML channel estimate and error covariance: 

&(a) = [&(a) - AHR,l] s z = Pml(a)*AH .z 

Es(a) = [A~R;~A]-~ = NO e P-‘(a) 
MAP channel estimate and error covariance: 
CI 
eD Cal = N(a,K AD’, NO) * &(a) + p(a,K AD’, No) 

ED(a) = N(a,K AD’, No) - Wa) 

(12-53) 

with matrix h(m), weighted mean vector /x( l ) = M( l ) e pr> = CY, . M(a) . 1 
(ps = a; = I</( 1 + K)), and channel covariance matrix RD(K, X(, , No) [eq. 
(12-50) with Pd = l/(1 + I<)] given by 

N(a,JQ~,No) = I - NoP-l(a) . [R&K&) + NoP-‘(a)]-’ 

I - RD(IC&) - [R&K&) + Non-‘]-‘] -1 

( 
&j(o) . . . c&b1) 

RD(K,X~) = $-g * i *., i 
C&#&‘-l) . . . ad(O) 

(12-54;) 

According to eq. (12-53), the (conditional) ML channel estimate es(a) is 
computed by attempting to remove the effect of modulation from the observation 
2;; premultiplication by AH removes the phase modulation, and premultiplication 
by P-‘(a) compensates for the amplitude variations. The error covariance in 
the ML estimate is the noise power NO weighted by the inverse (hypothetical) 
symbol powers. The MAP channel estimate 80 (a) is obtained from 8s (a) by 
premultiplication with matrix N(o), being effectively a smoothing operation based 
on the knowledge of the channel dynamics and the noise level, followed by the 
addition of vector p(o) based on the knowledge of the LOS path strength. 

The decision metric m(a) [eq. (12-37)] associated with ML flat fading 
estimation, 

A 
ms(a) = @(a) . Ejl(a). es(a) -+max 

a 

= (zHAP-l). (NoP-‘)-l. (P-‘AHz) 
OCZ H. Ap-lAH .z = ZH*Z / 

(12-55) 

I 

is seen to be useless since it does not depend on the hypothetical symbols a. 
This is because no knowledge about the channel statistics is used; rather, the 
ML dynamic channel estimator assumes that all symbols a as well as all channel 
trajectories c are equally likely. For instance, the noise-free observation sequence 
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z = { 1, - 1, 1, - 1) (very short message length N = 4) may have been produced 
by symbols a = { 1, -1, 1, -1) transmitted through channel c = { 1, 1, 1, l}, or by 
symbols a = (1, 1, 1,l) transmitted through c = (1, -1,1,-l}, or by any other 
symbol sequence. The intuitive notion of a slowly fading (or piecewise constant) 
channel process such as c = { 1 , 1 , 1,l) being more likely than an erratic trajectory 
c = (1, - 1, 1, -1) is part of the prior knowledge which is not made use of by the 
ML algorithm. Hence, joint ML detection and ML estimation of dynamic channel 
parameters is not possible. To circumvent this, one may resort to data-aided (DA) 
dynamic channel estimation where known pilot symbols are transmitted (hence, 
the channel c remains the only random process to be estimated, see Section 14.2). 
Otherwise, ML channel estimation leads to a meaningful decision metric only when 
the channel is static or can be taken to be static for the duration of data blocks. 

The decision metric based on MAP channel estimation, on the other hand, 
is dependent on a, provided that the channel dynamics (most often lowpass) is 
different from the data symbol statistics (most often white). It can be evaluated 
either via eq. (12-34) or eq. (12-43). For example, from eq. (12-34) one obtains 
the metric 

o( I~~-A~~I~'+N~[x~~-Y]~R~[xB~-Y] -+min 
a 

with X = $ [I - (RD + N,,P-‘)-‘R,] P 

Y = (RD + NoP-‘>-’ epD 
(12-56) 

in terms of the squared norm of the error vector z - Abe [same as with ML 
estimation, just b,(a) replaced by do(a)] plus an additional term. Alternatively, 
from eq. (12-43) and with the help of eqs. (12-53), (12-54), and (12-55) one 
obtains the equivalent metric: 

= [N&+ /jH . (NQ)-’ . [N(js+p] 

= -@ [RD+NJ’-~] -%,+ (&+/A)” (&p) (&+P) +//y.‘: 

indep. 

( > of a 

m 6: [RD+~o~-l]-l& - (‘s+P)H($P)(ds+p) + min . 
a 

= 6; [R~+N~P--~]-~& - $32 
L w / 

dgP(I-w 

cx 6; - (PN) . is + [21#(AHz) 

I+ PHI%] PH (AHz) 

+ PHPP] + max 
a 

(12-57) 
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whose second term is seen to vanish in the important special case that the channel 
process is zero-mean. 

Let us now investigate some instructive examples of ML/MAP flat fading 
channel estimation. Consider M-PSK modulated symbols a so that P = I and 
N(o), p(o) become independent of a. Given the message length N and channel 
parameters I<, Xb, No, matrices RD , N and vector ~1 are computed according to 
eqs. (12-53) and (12-54). As a consequence of the separation property, the ratio 
between the error covariances in the MAP estimate b,(a) and the ML estimate n 
OS(a) is given directly by the main diagonal entries of matrix N [eqs. (12-53) 
and (12-54)]: 

In general, the error covariance ratios rk (N) are distinct for each intramessage tap 
index Ic = O,l,..., N-l. 

Figure 12-2 displays the reduction in tap error covariance that can be gained 
by performing MAP channel estimation for tap indices k = 0, . . . ,50 (half of the 
message length of N = 101). Several interesting conclusions can be drawn from 
these results. First, notice that Rayleigh and Rician (h’ = 10) channels yield almost 
the same error covariances, except for tap indices near the margins (start or end) of 
the message, very fast fading (Xb = 0.1) combined with strong noise (No = 0.1, 
i.e., E,/No = 10 dB), and very large I<-factors far beyond 10 (not shown in the 
figure). Thus, exploiting the knowledge of the li-factor does not lead to very much 

Flat Fading MAP Channel Estimation 
message length 101, flat Rayleigh and Rlcian Channel 

f==- K=lO, Is/No=20dB 
..~.~------.....------......-.---.....------.....------.....------......______....---___...... 

..------.....----__.....~-~~-~.....---~.~.....~-~---~....~---~-.....~-----.------------.-.------..-..---- 
Doppler 0.1 

Doppler 0.01 -.....______.._.____---.....------..*..------.....- 
..-_.__.....____--.-...-------.-..------.....~~~.-~.....~~~~~~.....~~~~~. 

tap index 

Figure 12-2 MAP Flat Fading Channel Estimation: Error 
Covariance vs. Intramessage Position 
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of an improvement; this is also supported by the fact that the weighted mean vector 
p is found to be much smaller than the mean ~0 of the channel process itself, 
except for the aforementioned extreme cases. Hence, for quasi-optimal estimation 
it usually suffices to assume Rayleigh fading unless the LOS component is very 
strong. This also simplifies the estimator and the computation of the decision 
metric [the second term of eq. (12-57) is disposed ofJ. 

From Figure 12-2, the MAP estimation gain is observed to increase with 
decreasing Doppler - obviously, the out-of-band noise can be suppressed more 
effectively when the bandwidth of the desired signal (here: channel trajectory) is 
small. In the limiting case of zero Doppler when the channel is quasi-static within 
the message length, the MAP estimator performs a simple averaging operation thus 
reducing the error covariance by a factor of N. Hence, with N=lOl, the error floor 
is-Pklmin mO.01; in Figure 12-2, the factor Q is seen to approach this minimum 
level near the center of the message and for low Doppler A/,=0.001. 

While the ML error covariance is dependent on the noise level only, the 
additional improvement gained by MAP estimation is seen to be very much 
dependent on the fading rate X/,, further on the sequence length N, intrapacket 
tap position k, and, to a much smaller extent, on the SNR. 

As an interesting side remark, note that the estimation error covariance is 
independent of the particular choice of the transmitted M-PSK sequence. In 
contrast to selective channel estimation (Section 12.2.4), there is no constraint 
on the statistical properties (e.g., whiteness) of the data a simply because the 
channel is memoryless. The effect of the modulation can easily be “undone” - 
provided that the hypothesis a is correct - in the ML estimation part of the receiver 
[premultiplication by matrix AH, see eq. (12-53)] so that the MAP estimation part 
reduces to estimating the channel trajectory 9 = c by smoothing its own noisy 
samples 8s = tis. 

Since the estimation problem is linear and Gaussian, the MAP estimate is 
e&Kent, i.e., it attains the Cram&-Rao bound [l]. Figure 12-2 therefore gives the 
error performance of optimal dynamic system identification that is achievable when 
the system (channel) is excited by a finite-length unity-power (PSK) sequence. 
Clearly, this optimum also depends on the intramessage position of the tap. The 
error covariance is largest at the margins of the message (channel taps CO, c~-1). 
In the limit as N __+ 00, this corresponds to optimal jifiltering where the infinite 
future (past) up to the present of both the observation z and the excitation a are 
known. The error in channel taps cl, CN-~ (smaller than the error in co, CN- 1) then 
corresponds to optimal one-step smoothing, the error in taps cz, c~-s to optimal 
two-step smoothing, and so forth. Eventually as N ti 00, the tap error covariance 
in the center of the message converges against the absolute optimum that can be 
attained by cm-step smoothing for a particular Doppler frequency and noise level. 

Since the evaluation of eq. (12-53) for N b 00 is not feasible, the minimal 
error covariance is best evaluated in the frequency domain. The optimal filter 
(smoother) for estimating the stationary process {ck) with psd Sc(ej@‘) [eq. (12- 
49)] from a noisy observation tk: = ck + ?nk - remember that the effect of the 
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modulation is attempted to be undone in the ML estimation part - with noise psd 
Sm (ej+’ ) = No is the well-known Wiener filter [ 131: 

S,(ej+‘) + S&N) 
(12-59) 

with mean-square error: 

Any filter W ej@ : 
( > 

C= $J [(l-W(ej+‘))2Sc(ej+‘) + W2(ej@)Sm(ej@)]d$ 

-T 

Optimal Wiener filter W ej+ : 
( > 

(12-60) 

Recognizing that the error covariance in the ML estimate is the inverse average 
SNR per symbol No = l/‘y-, (rs = E$/Na = l/No), evaluating the minimal error 
covariance (= error covariance of MAP estimation for N d 00) according to 
eqs. (12-59) and (12-60) yields the following ratios r(Xb, 7,) between optimal 
MAP and ML error covariances for the Jakes and rectangular fading spectra of 
eq. (12-49), respectively: 

Jakes fading psd, respective Wiener filter: 
1 

Rectangular fading psd, rectangular Wiener filter; 
(12-61) 

Jakes fading psd, suboptimal rectangular filter: 

The first result is valid for the case that the fading spectrum is in fact Jakes and 
the Wiener filter is optimally matched to this Jakes fading spectrum. The second 
equation applies to the two cases that (i) the fading spectrum is in fact rectangular 
and the Wiener filter is optimally matched to this rectangular fading spectrum 
and (ii) the fading spectrum is in fact Jakes but the Wiener filter is matched to 
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Flat Fading MAP Channel Estimation 
minimum error covariance (message length N->oo), 

relanve uoppler trequency 

Figure 12-3 MAP Flat Fading Channel Estimation: Minimal 
Error Covariance vs. Doppler Frequency 

the rectangular fading spectrum (therefore suboptimal). Evaluating the integral 
I(Xl,, 7,) and the factor F(Xj, ,T,), one finds that: 

. I( XL, 3~~) is only slightly smaller than F(X$, , v8) 

. mlm w%m are close to unity except for very fast fading and strong 
noise. 

This is also illustrated by Figure 12-3 where the ratio Y( Ab, 7,) between MAP and 
ML error covariances is plotted against the (relative) Doppler frequency A’r,. The 
ratio is nearly independent of the SNR Ts, and the curves for Jakes and rectangular 
fading spectra are indistinguishable. In summary, optimal MAP fading estimation 
yields error covariance reduction factors 

(= bandwidth of the T-spaced fading channel process) at all relevant SNR, regard- 
less of whether the Jakes model or its rectangular approximation [eq. (12-49)] is 
adopted in the estimator design. 

It is interesting to note that the matrix N for N - 00 can be obtained by 
transforming the Wiener filter [eq. (12-59)] into the time domain. For instance: 

Rectangular Wiener filter: 

(12-63) 
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leads to the co-dim. Toeplitz matrix 

N= 

. . . . . . . . . 
. . . wo ‘wl w2 

‘. Wl 200 Wl *-. 

w2 Wl wo ‘*. 
. . . . . . . . . 

(12-64) 

Since the cascade of two ideal lowpasses remains to be an ideal lowpass, we further 
have NH-N = [1/(1+2X/,/~,)]eN, so that the expression for the decision metric 
[eq. (12-57) with P = I and ~1 = 0] can be simplified to 

me(a) = @(a) - Nds(a) 
h 

oc 

> 

#(a) - NH - N-&(a) 
matrix N ideal 

lowpass; N+oo 
(12-65) 

= &D(a) II II 
2 

The generation of decision metrics is illustrated in Figure 12-4. This decision rule 
calls for selecting that sequence a for which the MAP channel estimate @D(a) 

generation of flat fading decision metric (any filtering matrix) 

ML channel 
estimate 

MAP channel 
estimate 

decision 
metric 

generation of flat fading decision metric using ideal lowpass filter (N -xx) ) 

ML channel 
estimate 

MAP channel 
estimate decision 

Figure 12-4 Generation of PSK Symbol Decision 
Metrics for Flat Fading Channels 
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has maximum energy. This is intuitively appealing since 8,(a) is generated by 
filtering the ML estimate 

* H OS(a) = A .z = AH . (Ao. co+m) 

= (AHAO) -co + AHm 
(12-66) 

(A0 and cc denote the “true” symbol matrix and channel, respectively) whose first 
term (AH . Ao) . cc passes the Wiener lowpass filter undistorted only if the symbol 
hypothesis is correct, i.e., (AH . Ao) = I, so that, leaving aside the noise effect, 
the energy of the MAP channel estimate 40 (a = ao) based on the correct symbol 
hypothesis is largest. In all other cases, the trajectory (AH . Ao) . cc contains 
high-frequency components that are cut off by the lowpass filter thus leading to 
a reduction in the energy of 80 (a). 

As a side remark, truly optimal channel estimation and metric generation 
(Figure 12-4) calls for noncausal lowpass filtering, in the limit oo-dim. smoothing. 
This implies that all recursive-type joint detection and estimation strategies based 
on the received sequence zk up to the “present” (time index Ic) are clearly 
suboptimal in that they neglect the information contained in the “future” received 
samples. However, for nearly optimal decision and estimation, the smoother lag 
can be fixed to some finite value D (depending on the fading rate, see Figure 
12-2) so that recursive schemes can make a quasi-optimal decision on the symbol 
sequence ak up to the “present” based on the received sequence zk+o up to future 
time index k + D. 

Example of Joint Detection and Estimation for Flat Fading Channels 

Wrapping up the discussion of joint detection and flat fading channel esti- 
mation, let us study a simple example. Consider the transmission of a very short 
binary data message a = (~0, al, 02, aa} (ak E (-1,l)) with length N == 4 
over a flat Rayleigh channel (K = 0). Suppose that z = { $1, +l, + 1, + 1) has 
been received, an observation that may have been generated, for instance, by a 
message a = (1, 1, 1,l) transmitted over a quasi-static channel c = { 1, 1, 1, l}, 
or a = (-1, -1, -1, -1) transmitted over c = (-1, -1, -1, -1). The phase am- 
biguity [message/channel pairs (a, c) and (-a, -c) yield the same observation] 
may be resolved by differential preceding and decoding: 

al, = a&l (2bk--1) 

bl, = f( ak ak-1 + 1) 

(12-67) 

(input bits bkE{O, l}, k = 1,2,3, initial symbol a0 = +l), so that the receiver 
effectively has to decide between eight distinct sequences a = {+l, al, ca2, (la} 
corresponding to N-l = 3 source bits b = { bl , b2, ba} . As discussed above, from 
the eight ML channel estimates 8s (a) = 6s (a) = AHz = [a:zo . . . a:,#, 
the respective MAP channel estimates can be obtained via 8~ (a) = k~ (a) = 
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Joint Detection and Estimation 

1o-3 1o-2 10-l 

relative Doppler frequency 

Figure 12-5 Joint Detection and MAP Flat Fading Channel 
Estimation: Metrics vs. Doppler Frequency 

Nds (a). Here we assume a low noise level of No = 0.00 1 (yJ = 30 dB) in the 
computation of N. The eight decision metrics are best evaluated via eq. (12-57) 
with P = I and p= 0 resulting in mD (a) = @!(a) - N-OS(a) = @(a) - @D(a) 
(Figure 12-4). 

Figure 12-5 displays the eight metrics mD (a) versus the relative Doppler 
frequency Ab for this example. For quasi-static channels (Doppler below Xl, = 
10B3), the matrix N is found to be very close to (1/4)x1 (where 1 is the 4x4 
all-l matrix) so that the metrics mD (a) 

binary symbols a 

(12-68) 

assume values 4 (correct symbol hypothesis), 1, or 0 (incorrect hypotheses) for 
very small Doppler. The corresponding decision noise margin of 3 is seen to 
shrink with rising Doppler until it becomes zero for Xl, = 0.5 where all met- 
rics converge to 4 and thus become indistinguishable. This is to be expected 
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since in the extreme case Xb = 0.5 the sampled channel process has unity 
bandwidth and is therefore as white as the data symbol process. From Fig- 
ure 12-5, one also observes that some metrics are more sensitive to channel 
variations than others; in this example, these correspond to symbol sequences 
a = (1, -1, -1, -l},{l, 1, -1, -l},{l, 1, 1, -1) with only one transition 
+1 --) - 1 or - 1 + + 1 between successive symbols. The respective ML channel 
estimates 8~ (a), which likewise exhibit only one such sign transition, are therefore 
“more lowpass” than “erratic” estimates with two or three sign transitions, hence 
a larger portion of their energy passes the lowpass filter N. 

12.2.4 Joint Detection and 
Let us now explore some 

channel estimation. Assuming 
eq. (12-11) reduces to 

Estimation for Selective Fading Channels 
important aspects of joint detection and selective 
zero frequency offset, the transmission model of 

r = r(o) @ #I 

= A(O) $ A(l) . > ( h(O) $ h(l) 
> 

+ n 
-- (12-69) 

r(i) = Aci> . hq”) + nci) 

h 

with the 2[N + L]-dim. observation r, 2[L + l]N-dim. CIR process vector h, and 
(2[N+L] x 2[L+l]N)-d im. data matrix A. One immediately recognizes that the 
ML estimate [eq. (12-27)] 

es(a) = [A~R;~A]-~. [A%;‘r] (12-70) 

of the dynamic process 8~ = h does not exist simply because the number 2[&l]N 
of sync parameters to be estimated exceeds the number 2N of observed samples 
(for L 1 1 the matrix AHR;lA is not invertible). 

There are two ways of resolving this dilemma. First, one may attempt to 
directly compute the MAP estimate from the observation via eq. (12-31): 

tjo(a) = [Rn - RDA~(ARDA~ + ~)-~ARD] .[AHRilr] 
L J 

w 

x:D(a) 
(12-71) 

= RDA~(ARDA~ +R,)-l-r 

with the 2[L + l]N-dim. dynamic parameter covariance matrix Ro = E[h e hH]. 
As motivated above in the context of flat fading channel estimation, PD = 0 is 
assumed. Due to the large vector/matrix dimensions, the evaluation of eq. (12-7 1) 
quickly becomes unfeasible already for moderate message and channel lengths N 
and L, respectively. 

A second, more elegant approach can be devised by computing the MAP 
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estimate indirectly via the ML estimate of some intermediate parameters . In order 
to keep the analysis manageable, the vector estimate of the entire channel trajectory 

witi hk = hf) $ h(kl) and h(ki) = (12-72) 

should be computed by first forming the individual 2[L + l]-dim. CIR estimates 
&(a), valid at particular time instants Ic, and then arranging the set (&(a)} in a 
vector so as to form an estimate of the entire trajectory 6(a). 

As above [eq. (12-28)], the optimal estimate &(a) is the expected value of 
hk, i.e., the conditional mean of hk, given the observation r and the data a: 

n A 
b,&> = b(a) 

(12-73) 

=Ehr-E,l*r 

xD,lc = xhlr = xh - xhr ’ EL1 ’ EE 

we start evaluating the matrices Ch, xhr, and X:, ZtndOgOUS to eq. (12-29). 
The channel autocorrelation matrix Xh, as defined by eqs. (1 l-73) and (1 l-74), 
is given by 

&a = covFk] = E [hk - hf] 

= &(o) = Rh = ( 
PO PO,1 * * * PO,2L+l 

Pl,O Pl Pl,BL+l 
. . . . . . . . . 

P2L+l,O PBL+l,l * * * P2L+l 

(12-74) 

with tap powers p,, = E[I h+ I”] (v = 0,. . . ,2L + 1) and intertap covariances 
Py,y+p = E[h,;k hLik]. The latter are often set to zero (CL # 0) for the purpose of 
channel estimation since they are small (except for neighboring taps) and difficult to 
estimate in practice - the tap powers pv , on the other hand, can be estimated easily. 
Then the channel autocorrelation becomes diagonal: Rh = diag{pa p1 . . . ~2~3-1) . 

As mentioned above, we wish to perform MAP channel estimation in an 
elegant way via ML estimation of some intermediate parameters. This can be 
accomplished by partitioning the received signal r (somewhat artificially) into a 
number 7 of blocks rK (K = 0, . . . , N - 1). Figure 12-6 displays an example 
of such a partition, together with the definition of some indices. The K-th block 
rK of length RK (in symbol intervals) starts at time index k = NK and ends 
at k = NK -I- RK - 1. Each block rK depends on the data symbol vector 
aK = ( aNK-L . . . aNK+RK-1 )T. Due to the channel memory spanning L 
symbol intervals, data blocks aK pertaining to adjacent received blocks rK overlap 
by L symbols (see Figure 12-6). 
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data symbol 
sequence a 

Figure 12-6 Partitioning of the Received Signal into Blocks 

The reason for introducing block partitioning is that the channel can now 
be safely assumed to be piecewise stationary within such a block rK, at least 
for the purpose of deriving a MAP channel estimator based on intermediate ML 
estimates. This will turn out to be justified in practice (Section 15.2), provided that 
the blocks are sufficiently short and the channel is well underspread, i.e., the fading 
is slow (relative Doppler Ab well below l/&). Then the CIRs within a block 
are approximately equal to the CIR in the center of the block, i.e., hk w hkK for 
allIc= NK,... , NK + RK - 1, where the reference index kK (see Figure 12-6) is 
the nearest integer to NK + (RK-1)/2. The (partial) channel transmission model 
[eq. (12-1) with Q = 0] with the channel memory confined to L symbol intervals 

n=k-L rb=O 

then translates into the simplified block transmission model 

aNK-L 

aNK+l-L 
. 
. . 

ON&&-l . . . aNK+RK-l-L 

A$) h(‘) 
kK 

(12-76) 

with the &dim. (partial) received vector rK , (i) the RK x [L + l]-dim. block 
data matrix Ai), and the [L + l]-dim. (partial) CIR vector h:L. As before, 
the corresponding (T/2)-spaced vectors and matrices rK , AK, hkK , and no 
with doubled dimensions can be constructed by abutting their partial counterparts 
(short-hand operator @). 



12.2 Optimal Joint Detection and Synchronization 665 

With these definitions, we can now proceed in evaluating the matrices Eh,. 
and E,. needed for optimal estimation [eq. (12-73)]. Via substituting rK = 
AK . hkK + nK, the cross-correlation matrix Eh,. between channel hk and 
observation r can be well approximated by 

Likewise, expanding the observation autocorrelation matrix Xr yields 

where the block autocorrelation matrices are well approximated by 

(12-77) 

(12-78) 

(12-79’) 

with R*,K the noise covariance matrix of the Kth block. 

These expressions for Xh, !E:hr , and Z,. can now be inserted into eq. (12- 
73), which yields 

e. , .  

b,k(a) = hk(a) 

(12-80) 

Unfortunately, quantities which may be interpreted as intermediate ML esti- 
mates cannot be identified from this expression. In Section 12.2.6 (appendix B), 
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eq. (12-80) is shown to be equivalent to the following form of the MAP estimate: 
n 6 
fb,k(a) = h(a) 

under the mild assumption that the noise correlation across adjacent blocks is 
neglected, i.e., the noise covariance matrix R, reduces to the direct sum of block 
noise covariance matrices Rn,~. In Section 12.2.6 (appendix B), it is also shown 
that the error covariance matrix I=D,~: = X:h - E:h,. . x,1 . El: [eq. (12-73)] 
associated with the MAP estimate becomes 

%,rc(a) = Rh - R&-ko) i . . . i Rh (k-kr-1) ) 

(12-82) 
Comparing eq. (12-8 1) with (12-70), one observes that the entries of the vec- 

tor on the right-hand side of eq. (12-8 1) resemble the expression for the (nonex- 
isting) ML selective channel estimate of eq. (12-70), with the only difference that 
the “global” matrices A, R, , and vector r have been replaced by their “block” 
counterparts AK, R, ,K, and rK, respectively. Therefore, the vector entries of eq. 
(12-81) are identiced as the desired intermediate ML estimates, viz. ML block 
channel estimates hK which, together with their error covariances, are given by 

, ,  n 

&,K(aK) = hK(aK) = E hkK 1 
no channel 

statistics used I 

(12-83) 

&,K(aK) = [AER,-,+K] -’ 
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The entire intermediate ML estimate 4~ (a) and its error covariance I3s (a) are 
then given by the direct sum of all acquired estimates ~S,K (aK) = hK(aK) and 
of their error covariance matrices I~s,K (aK), respectively: 

( 
%,0(a0) 

&(a) = 
. . . 

zz s,iT-1 aF-l ( > 1 

(12-84) 

Each estimate &K(aK) is a quasi-static approximation to the (slowly varying) 
channel state over the duration of the Kth block. For further processing, &K(~K) 
may be regarded @id at the reference index kK corresponding to the center of 
the block. Thus, hK(aK) may also be termed a (noisy but otherwise unbiased) 
channel snapshot taken from the dynamic channel trajectory (ho, . . . , h+1). Each 
snapshot hK (aK) is dependent on the block observation rK , its own (hypothetical) 
block data sequence aK having an imp?ct on rK (see Figure 12-6), and the 
noise covariance. Notice, however, that hK(aK) is no? dependent of the fading 
channel parameters; the only prerequisite of unbiased snapshot acquisition is that 
the estimation window must be wide enough to accommodate all L + 1 relevant 
(partial) channel taps. 

Of course, all snapshots must exist, i.e., the matrices A~R~,~AK must 
all be invertible for a particular data hypothesis a. Even if this is the case, the 
error covariances )=S,K(aK) of snapshots (and thus the error covariance of the 
final estimate) are strongly dependent on the properties of the data a. Clearly, 
this is a major drawback of joint detection and selective channel estimation when 
compared to joint detection and flat channel estimation where ES (a) is independent 
of the statistical properties of a (except for the symbol magnitudes). Here, on the 
other hand, it is, in principle, necessary to select an appropriate block partitioning 
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(Figure 12-6) and compute ES,K(aK) for each and every hypothesis a. For some 
(however pathological) data sequences, such a partitioning does not exist at all; 
think, for example, of the all-l sequence for which Aff R, YAK is a rank-l 
matrix (assuming white noise), no matter which kind of partitioning is selected. 
However, the rationale for this discussion will become apparent in the context of 
the data-aided channel estimation techniques discussed in Section 15.2. 

Let us now proceed to the second step of MAP selective channel estimation. 
Via eqs. (12-81) and (12-84), the desired MAP estimate 8o,k(a) = &(a) can be 
computed from the acquired ML estimate es(a) by a vector/matrix operation: 

n , .  

%(a) = hb(a) 

= Rh(k-ko) i . . . i Rh (k-krw,) ) [AfR,-,l,Aorl -1 

+ 
. 

. 

[ A$o1R; b-1 AT-l] , 

 ̂
0s (a> 

(12-85) 
This again reflects the separation property of MAP dynamic parameter estimation, 
as illustrated by eq. (12-46). Analogous to the notation of eq. (12-45), the matrix 
by which the ML estimate is to be premultiplied may be abbreviated by Nk(a) 
(here, however, dependent on the intrapacket index k for which the MAP channel 
estimate is to be generated). Then the mapping ML _+ MAP can be written in 
its concisest form as: 

&I,&) = &(a). es(a) (12-86) 

with the 2(L + 1) x N . 2(L + 1)-dim. transition matrix 

Nk = Rh(k-ko) i . . . : Rh (k-kywl) ) 

. . . R/a (ko+w,) 
. 

: : :Rh ($&k,l) 

[AfR,-,‘,Aor’ 
. 

[ iiml R-& Ax-, ]- ’ 
T 

1, 

=(a> 
(12-87) 
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The expression for the MAP error covariance, given by eqs. (12-111) [Section 
12.2.6 (appendix B)] and (12-82), likewise contains the matrix Nk(a): 

%,k(a) = Rh - &(a) . (12-88) 

Here, however, xD,k(a) is no more given by the relation xD,k(a) = Nk(a) . 
Es(a) [eq. (12-44)] simply because Es(a) and xD,k(a) have different dimen- 
sions so that Nk(a) is not square. 

To summarize this discussion on the concept of joint detection and selective 
channel estimation, it has been shown in this section that the MAP estimate h 
eda) = h(a) of the entire selective channel trajectory can in principle be 
computed by the following two-step procedure: 

1. ML channel snapshot &acquisition: 
mapping @,a> - &(a) 
via mappings of blocks (rK,aK) - b,,,(a,) = f&(aK) [eq. (12-83)], 
without using any knowledge on channel statistics 

2. MAP channel estimation from the ML estimate: 
mapping d,(a) - 6, (a) 
via mappings @s(a) - eD,$(a) for all k = 0,. . . , N- 1 [eq. (12-86)], 
using the knowledge on channel statistics. 

12-7. We remark that the sequence 
shown in Figure 12-7 in fact follows an 

data symbol 
sequence a 

k 

k 

k 

k 

Figure 12-7 Two-Step MAP Estimation of Selective Fading Channels 
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erratic trajectory for wrong data hypotheses a. Only in the special case of correct 
(apart from a constant phase shift) data hypotheses a the snapshots are unbiased 
estimates which follow the smooth trajectory of the (lowpass) fading process. 

Having obtained conditional MAP estimates and associated error covariances 
of the entire channel trajectory for all data hypotheses a, the set of decision metrics 
may be evaluated according to eq. (12-43): 

n 

mD(a) = @(a) .  x,‘(a) -  80(a) + max 
a 

(12-89) 

TO summarize this section, the generation of decision metrics based on MAP 
selective channel estimation via ML snapshot acquisition is visualized in Figure 
12-8. The detection part is identical to that of Figure 12-1 displaying the more 
general case of detection based on MAP sync parameter estimation, while the 
channel estimation part is now split into the two subtasks of blockwise ML snapshot 
acquisition and MAP channel estimation from these snapshots. Analogous to the 
flat fading case [eq. (12-65) and Fi ure 12-41, the o rations erformed on the 
sequence of conditional snapshots f&,K(aK)} = p,(aK)p [here: filtering 

by matrices Nk(a) and computation of inner products b,“(a) . Xi’(a) . bD(a)], 
can be interpreted as lowpass filtering operations. The decision metrics ??‘$D(a) 
may thus be viewed as measures of how well the conditional snapshot sequence 

{&7,&w)} = {L(w)} follows a smooth lowpass trajectory. Even though 
conceptually simple, the detection part entails an even higher computational burden 
than selective fading channel estimation. Therefore, we shall not pursue this kind of 
detection further but turn to realizable detection and channel estimation techniques 
in Chapters 13 to 15. 

12.2.5 Main Points 
. By virtue of the Bayesian approach to joint detection and estimation, basic 

receiver structures following the concept of synchronized detection on fading 

N MAP chan- 

MAP estimate of 
entire trajectory de&ion 

inner product 

Figure 12-S Generation of Decision Metrics via 
MAP Selective Channel Estimation 
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channels have been derived. In the linear Gaussian case, the optimal decision 
metric 

n 

ms(a) = &(a) - ZESl(a) - 8,(a) 
h 

mD (a) = bg(a) - xc’(a) - e,(a) 
(12-90) 

[eqs. (12-37) and (12-43)] is expressible in terms of the optimal ML static 
or MAP dynamic parameter estimate: 

&(a) = (A%;~A)-~ . fPR;'r 

bD(a) = pi + RoAH(AR~AH + Rn)-‘. (r - AND) 
(12-91) 

[eqs. (12-27) and (12-31)]. 
. In the case that the ML estimate of dynamic parameters exists, the estimator 

part can be partitioned into two distinct steps: (i) ML estimation from the 
observation r [eq. (12-27)], disregarding any knowledge on channel statistics, 
followed by (ii) MAP estimation from the ML estimate 8s(a) -+ 6~ (a), 
using the knowledge on channel statistics: 

h 

@D(a) = N(a) - es(a) + M(a) *cl0 (12-92) 

[eq. (12-45)]. 
Concerning the estimator part of joint detection and estimation for flat Rician 
channels, MAP channel estimation via ML estimation is always possible. The 
ML-MAP gain ratio Q is almost independent of the noise and, in the case 
of virtually infinite message length, very close to the fading bandwidth 2Ab. 
Simplified - yet quasi-optimal - channel estimation is achieved by matching 
the estimator to Rayleigh fading with an ideal - or near-ideal - lowpass 
Doppler spectrum. In the case of M-PSK signaling, both channel estimation 
and detection can be further simplified. 
Concerning the estimator part of joint detection and estimation for selec- 
tive slowly fading channels, MAP channel estimation via ML estimation 
is accomplished by partitioning the received signal into a set of N blocks 
rK = AK . hkK + nK and performing the two-step procedure of (i) ML 
acquisition of the set of N channel snapshots &(aK) 

[_eq. (12-83)], followed by (ii) MAP estimation of the entire channel trajectory 
h(a) (set of N CIR vectors) from the set of snapshots 

n n 

@D,k(a) = hk(a) 
6 

= b(a) . es(a) 

n h 

@~(a) = h(a) 
(12-94) 

= @,&) . . . @+l(a))’ 

[eqs. (12-81) and (12-86)]. 
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12.2.6 Appendices 

Appendix A: Proof of Optimality of the Joint Detection 
and Estimation Metric in the Gaussian Case 

The results on joint detection and estimation established in this chapter have 
been derived using the high-SNR approximation of eq. (12-21). We now wish to 
prove that, in the Gaussian case, these results are indeed not an approximation but 
optimal at all SNR. This is shown by relating the decision rule for synchronized 
detection [i.e., the ML decision rule of eq. (12-43) based on MAP estimation 
according to eq. (12-31)] to the optimal decision rule. The latter is derived from 
the likelihood function for the Gaussian case [14], 

oc exp {-[r - F]* . RF1 . [r - F]} 

H 

$AfbAHw+ FL)-) - AND] 

RF’ 

(12-95) 

which can, in theory, be evaluated without the need for explicit parameter estima- 
tion. Reformulating R; 1 via the matrix inversion lemma [eq. (12-39)] and taking 
the logarithm yelds the optimal log-likelihood metric (to be maximized), 

mD,+(a> = -[r - A~D]H(ARDA~ + Rn)-‘.[r - AND] 

= -[r-ApD]q 

( 

R;’ -R,-lo [R;;~+A~R;~A]-~A~R;~ .[r-ApD] 
\ v 

Q(a) ’ 1 
(12-96) 

On the other hand, expanding the metric of eq. (12-43) yields 

mD(a) = [AHRilr + Rz1j.8D]H.xD. [AHRi’r + Ri’pD] 
- - 

$34 b(a) 

[r-ApD]HRilA -t- & 
(12-97) 

- (AHR$[r-ApD] + x,+&) 
= [r-Al-Q]HR;lA%AHR;;l[lr_ACLD] + /.@,‘~D 

-I- [r-APD]HRilApD -I- &AHR;;‘[r-ApD] 
The last two terms can be reformulated as 

[r-ApD]HRilApD + &AHRil[r-ApD] 

= rHR$ApD - 2 - &AHRilA~~ + &AHRG1r (12-98) 

= -[r-Al.Q]HR;‘[r-ApD] - &AHRilAp~ + rHRilr 
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SO that mD(a) can be expressed such that one of its terms is identified as the 
Optimal metk mD,opt (a) [eq. (12-96)]: 

m&a) = [~-A~D]~R;~AE~A!R;~[I-A~~] + &E,~/.JD 

- [r-Ap&t;‘[r-AND] - &AHRilAp~ + rHRilr 

= [r-Ap~]~(R$iX~d’%;~ - Ri’)[r-ApD] 

+ &(E~‘-AHR$A)p~ +rHRilr 

= mD,opt(a) + pg R2+AHRi1A -AHRilA 

1 * ’ 

pD + rHRilr 

IEf: 

= mD,opt(a) -I- &R;~D + rHRilr 
\ / 

independent of a 

m mD ,opt (a> (12-99) 

Hence, in the Gaussian case, the decision metric ?nD (a) of synchronized detection 
iS equivalent t0 the Optimal metI& mD rapt (a). 

Appendix B: Derivation of the MAP Channel Estimate 
from an Intermediate ML Estimate 

In this appendix, we wish to reformulate the MAP estimate such that an ML 
estimate of intermediate parameters can be identified, With the abbreviations (used 
only in this appendix) RK;E = Rh (k - k~) and RK~ ,K~ = Rh (key - kK2), the 
MAP estimate according to eq. (12-80) is of the form 
n ,. 

@D,k (a) = hda) 

H i R1;k.Af i . . . iR--,,;. .AgBl 

H 
. . . AoR,,~.,A~~, . . . . . . A&+,,+% - +$~.~,F..&-, 

= 

AT-1 

. . . 

A R AH 

. 
= Ro;k : . . . . :RTBl+ . AH . , 

-1 

r0 
. . 

( 1 

. . 

57.-l 

(12-100) 
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By invoking the matrix inversion lemma [eq. (12-39)], 

E=AHB-lA+C--l 

E-'=C-CAH[B+ACAH]-lAC 
(12-101) 

one obtains for the term E-l 

= R,l -R;lA.[R-l+AHR;'A]-l.AHR,' (12-102) 
k -r / 

F-l 

Reformulating the term F-l in the same manner yields 

F-l = [R-'+AHR-1 n A]-' 
= (A~R;~A)-~ - (A~R;~A)-~ 

. [R+(AHR$A)-~]-~.(A~R;~A)-~ 

= (A~R;'A~'. (I- [R+(A~R;~A)-'~-T(A~R;'A~~) 

so that the expression AH . E-l is evaluated as 

AHE-l = AHR-$ - AHR,lA. [R-l + AHR,lA]-l .AHR,l 

(12-103) 

= [R+(AHR;~A)-l J! (AHR;~A)-~AHR;~ 
(12-104) 

Ignoring the noise correlation across adjacent blocks, the noise covariance matrix 
Rn and its inverse can be approximated by the direct sum of block noise covariance 
matrices Rn ,K and their inverses, respectively. Hence, the matrix AH . R; 1 and 
the inverse matrix (AH. R; ’ . A) -’ can be simplified to 

AHR,% 
&I 

j 
H 

. -_ 1, . 

AT-1 

AH 

-1 
n,O 

. ,I ‘* . 

R&1 , - 1, 
WR,’ 

fe R,,b . . . 
- 1 A$,R--&1 

, - 

(12-105) 
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(12-106) 

respectively. Then the MAP estimate of eqs. (12-80) and (12-100) can be 
equivalently expressed as 

n h 

BD, k (a) = hk (a> 

. 
~3 Ro;k : . , . iRF-l*k 9 

AHE-’ 

. 
= Rr-j;k : . . . :Rvwl.k * . , 

>r 

R+(AHR;‘Arl]-!(AH&A)-tAHR;‘. 

(12-107) 
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(12-108) 
from which eq. (12-81) follows immediately. 

The error covariance pertaining to the MAP estimate is easily evaluated by 



6’76 Detection and Parameter Synchronization on Fading Channels 

observing that the MAP estimate GD,~ (a) = !Z:h,. . 2; ’ . r and the MAP error 
covariance matrix I]D,k = E:h -Ehr *IZ; 1 .$r [both given by eq. (12-73)] contain 
the same matrix expression Xh,. . E,’ Furthermore, we have Ich = Rh = Rh(O) 
and 

Jg. = (12-109) 

[eq. (12-74)]. Hence, the MAP error covariance matrix xD,k is given by the 
expression for the MAP channel estimate, eq. (12-108), with block observations 
rK replaced by the entries AK . RK H of I$. As a result, the (approximation to 

the) MAP error covariance matrix becomes 

xD,k(a) = Rh - 
. 

Ro;rc : . . . ! RT.1.k 1 > 

(12-110) 

ED,&) = Rh - 
. 

Ro,k : . . . . :Rr-l.k I > 

. 

(12-111) 

12.3 Bibliographical Notes 

For fundamentals of estimation and detection theory, the reader is referred 
to the textbooks [ 11, 12, 1, 2, 131. Recent approaches to joint detection and 
estimation are found in [lo, 5, 3, 8, 91. An early paper by Kailath [ 141 gives a 
good introduction into optimal receiver structures for fading channels. 
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Chapter 13 Receiver Structures 
for Fading Channels 

In this chapter, realizable receiver structures for synchronized detection on flat 
and selective fading channels are derived and discussed. Keeping the interaction 
between synchronization and detection paths at a minimum results in receivers of 
low complexity. As motivated below, we shall concentrate on the so-called inner 
receiver, its components, and the necessary synchronization tasks. 

13.1 Outer and Inner Receiver for Fading Channels 

In compliance with Shannon’s third lesson learned from information theory: 
“make the channel look like a Gaussian channel” [ 11, we have distinguished 
between an outer and inner receiver [2] in the introduction of this book. The 
sole - yet by no means trivial - task of the inner receiver has been identified 
as attempting to provide the decoder with a symbol sequence that is essentially 
corrupted by white Gaussian noise only. If this can be accomplished, the inner 
transmission system serves as a “good” channel for the outer transmission system, 
i.e., the source and (possibly) channel decoding system. 

If the channel is nonfading and Gaussian, the inner receiver aims at delivering 
an optimally preprocessed and synchronized signal, typically the matched filter 
output sequence i& = ck + ?nk Serving as an estimate Of the symbol sequence and 
sometimes termed “soft decision”. If the inner receiver were perfect (i.e., perfect 
frequency, timing and phase synchronization, matched filtering, and decimation to 
symbol rate), no loss of information would entail. In practice, the imperfections 
(sync errors, word-length effects, etc.) translate into a slight increase of the noise 
power as seen by the outer receiver, i.e., a small SNR loss. 

In the case of fading channels, the situation is more intriguing, since synchro- 
nization and prefiltering alone do not suffice to establish a nonfading Gaussian inner 
transmission system. Even if the timing and the fading trajectory6 {ck) (multi- 
plicative distortion, MD) were perfectly known, the compensated pulse matched 

6 For this more g eneral discussion, it is immaterial whether fiat or selective fading is assumed, except 
for the discussion on multipath diversity resulting from frequency selectivity (see below). 
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filter (MF) output sequence [uncompensated signal eq. (1 l-22) divided by the MD] 

Uncompensated pulse MF output: 

zk = ck ak + mk 

Compensated pulse MF output (soft decision) : (13-1) 

ck 

remains to be de 
s 
endent on the fading via the time-varying instantaneous noise 

power (No/l ck 1 ). Hence, the noise is AWGN as desired, but the SNR per 
symbol, Ys;k = 1 ck I2 Ts With ;J, = l/No, is time-varying and may deviate 
strongly from the average SNR per symbol y8. During very deep fades, the 
decoder faces a signal &l, that is buried in noise and therefore useless. 

Conceptually, there are two basic ways to resolve this dilemma. The first, 
very popular solution is to leave the structure of the inner receiver unchanged 
[i.e., it delivers the soft decisions tik of eq. (13-l)] and thus accept that the inner 
transmission system does not reproduce a stationary AWGN channel, but have 
the inner receiver generate an additional signal, termed channel state information 
(CSI), that is used to aid the outer decoding system. Of course, the CSI should 
be matched to the particular decoding system. When trellis-coded modulation is 
employed, the optimal CSI is given by the sequence of instantaneous MD powers 
1 ck I2 which are used to weigh the branch metrics in the Viterbi decoder [ 31. 
In the case of block decoding, it often suffices to form a coarse channel quality 
measure, e.g., a binary erasure sequence derived from I ck I2 by means of a simple 
threshold decision [4]. 

The second principal solution consists in augmenting the structure of the inner 
transmission system in such a way that it approaches compliance with Shannon’s 
lesson above. Since in most cases of interest the transmitter does not have knowl- 
edge of the instantaneous fading power and thus cannot adaptively match the trans- 
mit powers and rates to the short-term channel conditions, the inner transmission 
system must provide for a means of levelling out the signal variations introduced 
by fading without knowing in advance which signal segments are affected by deep 
fades. This can be accomplished very effectively by providing for explicit or im- 
plicit forms of signal diversity [5]. By virtue of its averaging effect, diversity aids 
in “bridging” deep signal fades so that the outer decoding system faces a signal 
whose disturbance resembles stationary AWGN to a much higher degree than with- 
out diversity. Explicit forms of diversity include D-antenna (or spatial) diversity 
(message is transmitted over D distinct independently fading physical paths cd,k), 
fkequency diversity (message is transmitted simultaneously over several channels 
spaced in frequency), and time diversity (message is repeatedly transmitted). The 
latter two methods suffer from a very low bandwidth efficiency and are therefore 
not pursued further. Implicit forms of diversity include multipath diversity (mes- 
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sage is transmitted over several independently fading resolvable paths cm,k of a 
frequency-selective channel), and time diversity provided by channel coding (each 
uncoded message bit ba is mapped onto a number of channel symbols Uk which 
may then be further spread in time by means of interleaving so that they undergo 
mutually independent fading). These implicit forms of diversity are particularly 
interesting since they have the potential of achieving large diversity gains without 
compromising the power and bandwidth efficiency. 

To illustrate the beneficial effect of diversity, consider the - grossly simplified 
- scenario of combined Dth-order antenna diversity reception (D channels cd;k), 
ideal equalization of M resolvable multipaths of equal average gain (M “channels” 
c,,+), and ideal Cth-order coding diversity (C “channels” c,;k), provided, e.g., 
by trellis-coded modulation where each (uncoded) message bit bi affects, via the 
encoding law, C consecutive symbols ai. By virtue of interleaving, the symbols 
ai are then mapped onto channel symbols ak which undergo independent fading. 
The parameter C, sometimes termed efictive code length (ECL), can therefore be 
viewed as the order of diversity resulting from this kind of channel coding. As a 
result, a total of L = D M C independent “paths” cl:k (I = 1, . . . , L) contribute 
to the received signal. A discrete-equivalent transmission model thus consists of 
L parallel branches with flat fading path gains cr;k: plus additive noise processes 
?nr;k making up L received signals Zr;k. Under the assumptions of perfect timing, 
equal average path gain powers E{ 1 cr;k I”} = l/L, and branch noise powers 
E{l ml;k 1”) = NO, the optimal combiner [S] - modeling the antenna diversity 
combiner (or any other kind of diversity combiner), ideal equalizer, and channel 
decoder - forms a weighted sum of the received signals %l;k. As shown below 
[eqs. (13-15) and (13-17)], the combining operation and optimal weights @;$ are 
given by 

L 

iik = 
c ql;k * Zl;k 

(13-2) 

respectively. The entire Lth-order diversity transmission system can then be 
modeled as an equivalent system consisting of a single path weight of 1 (i.e., 
the variations of the useful signal have been levelled out complete1 

l? 
) and a noise 

process ?7k with time-variant power &/I ck 12, where I ck I2 = (CIcl I cl;k I”) is 
the power of the composite path process. Both the diversity transmission system 
and its equivalent are depicted in Figure 13-1. Obviously, the effect of diversity 
manifests itself in the statistics of the equivalent noise power and thus the composite 
path process power I ck 12. Realizations of I ck I2 illustrating the averaging effect 
of diversity are shown in Figure 13-2 for L=l, 2, 4, 8, and 16 Rayleigh fading 
diversity branches cl,k with Jakes Doppler spectrum and relative Doppler frequency 
&=O.Ol. 
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ak 

, i optimal combiner 

akA;w.w No/ kk i2 ’ 

Figure 13-1 Lth-Order Diversity Optimal Combiner and 
Equivalent Diversity Transmission Model 

0 200 400 600 
sample Index 

600 

Figure 13-2 Realization of Lth-Order Diversity 
Equivalent Channel Trajectory 1 ck I2 

Assuming independent Rayleigh fading of the diversity branches, the com- 
posite path weight power 1 ck I2 and hence the instantaneous SNR per symbol 

ys;k = I ck 12/Nc behind th e combiner follows a x2 distribution with 2L orders 
of freedom [5]. The pdf p(r) of the random variable T = y8;k /% , being a mea- 
sure of the variability of the SNR about its average “J,, and also the probability 
P( r < R), being a measure of the probability of deep residual fades (behind the 
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optimal combiner) below a small threshold R << 1, are then given by 
LL 

p(r) = (L rL-l CL+- 

RL 

s xG1eBx dx 

P(r < R) = WV)--r&W = o 
(L - l)! (L - l)! 

683 

(13-3) 

(0 5 R << 1) 

respectively, with r(a, 2) = s,” x’-le+ respectively, with r(a, 2) = s,” x’-le+ dx the incomplete gamma function. The dx the incomplete gamma function. The 
pdf p(r) and probability P(r < R) are illustrated in Figures 13-3 and 13-4, pdf p(r) and probability P(r < R) are illustrated in Figures 13-3 and 13-4, 

P(r) 

1.5 : 1.5 : 

1.25 : 1.25 : 

Figure 13-3 Probability Density of Normalized SNR for L&Order Di versity 

_____ - -..-.-- ------- 

Figure 13-4 Probability of Normalized SNR Being below 
a Threshold R for Lth-Order Diversity 
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respectively, for L= 1, 2, 4, 8 and 16. The SNR variations are seen to become 
smaller with rising L until, in the limiting case of (L --) oo)-dim. diversity, the 
fading channel in fact approaches the stationary AWGN channel [p(T) reduces to a 
Dirac pulse at T = 11, which is exactly the goal that the inner transmission system 
is supposed to strive for. 

From eq. (13-3) and Figure 13-4, the probability P(r < R) of deep residual 
fades behind the optimal combiner is seen to be essentially proportional to the Lth 
power of the threshold R. For example, with a threshold of R = 0.1 (instantaneous 
SNR below average by 10 dB or more), we have P(r < 0.1) = 0.095 without 
diversity (L = l), P(r < 0.1) = 0.0175 with dual diversity (L = 2), P(r < 0.1) = 
7.76 x 10m4 with L = 4 and P(T < 0.1) = 2.05 x 10V6 with L=8. Deep fades 
thus occur with much smaller probability already for low orders of diversity (L= 2 
or 4), which is easily achievable, e.g., by appropriate interleaved channel coding. 
However, some mild SNR fluctuations remain even for high orders of diversity (see 
also Figure 13-2); for instance, with a threshold of R = 0.5 [instantaneous SNR 
below average by 3 dB or more; here the approximation (third row) of eq. (13-3) 
is no more valid], we have P(T < 0.5) =0.39, 0.26, 0.143, and 0.051 for L =l, 
2, 4, and 8, respectively. In summary, however, these results demonstrate that 
providing for and making 
look stationary Gaussian. 

use of diversity is very effective in making a channel 

Following Shannon’s argument, the inner transmission system may be taken to 
encompass all transceiver components that help transform a fading channel into an 
“equivalent”, almost stationary Gaussian channel (as seen by the outer receiver). 
Since diversity has been shown to play a key role in this context, the inner trans- 
mission system not only has to take care of synchronization and prefiltering (as in 
the case of AWGN channels), but, in addition, it has to provide for and make use 
of diversity. More specifically, the inner transmit system should provide for diver- 
sity, e.g., via explicit tranmit antenna diversity and/or appropriate channel coding, 
and the inner receiver has to exploit as many diversity mechanisms as possible, 
e.g., explicit antenna diversity (if available) via optimal combining, polarization 
diversity, multipath diversity via equalization (if the channel is selective), and/or 
time diversity via channel decoding, given that the code has been designed for a 
large diversity gain rather than a coding gain 7. A block diagram of such an inner 
transmission system is depicted in Figure 13-5. 

Unfortunately, the diversity-like effect resulting from channel coding is often 
difficult to analyze in practice, especially in the case of concatenated coding, so that 
it is really a matter of taste whether the channel coding system should be considered 
a part of the inner transmission system or not. In the case that the channel 
encoder/decoder pair is well separated8 from the rest of the digital transceiver, 

7 A diversity gain (on fading channels) essentially calls for a large effective code length @CL), while 
a large coding gain (on nonfading AWGN channels) calls for a large minimum EucIidean distance [6]. 
* For instance, the decoder is well separated if it receives a soft decision and possibly some additional 
channel state information from the inner receiver. The opposite is true if there is feedback from the 
decoder back into the inner transmission system. 
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digital receiver 
V 

/ 

b~r2nately 
n stationary AWGN 

Figure 13-5 Inner Transmission System for Fading 
Channels, High-Order Diversity 

it should be viewed as part of the outer transmission system, as we shall do in the 
sequel. The tasks that remain to be performed by the inner transmission system are 
still formidable and include modulation, filtering, channel accessing, equalization, 
diversity combining, demodulation, and synchronization. 

Main Points 

Generally, the inner transmission system should serve as a good - i.e., 
Gaussian - channel for the outer transmission system. On fading channels, the 
inner system should therefore not only perform synchronization and preprocessing 
of the received signal, but also provide for and make use of signal diversity. By 
virtue of the averaging effect of high-order diversity, signal fading is effectively 
mitigated so that the inner system approaches a stationary Gaussian channel. 

13.2 Inner Receiver for Flat Fading Channels 

The inner receiver for flat fading includes a preprocessing unit (pulse matched 
filtering, decimation, frequency offset correction) which generates the T-spaced 
signal zk (or diversity signals z+), and a detection unit which attempts to extract 
the information on symbols uk from zk. The clue to deriving the detector structure 
is the recursive formulation of the optimal decision rule. This derivation - which 
is due to Hab [7] - is found to yield not only expressions for decision metrics and 
metric increments, but also the synchronizer structure necessary for non-data-aided 
(NDA) channel estimation discussed in Section 14.1. 

Setting r = z in eq. (12- 19, the optimal decision rule reads 

ii = arg max P(a]e) 
a 

(13-4) 

Denoting the data and received sequences up to time Ic by ak and zk, respectively, 
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the probability P(ak 1 zk) can be expressed in terms of the probability P(a&1 1 
zk-1): 

P(aklzk) = 
p(ak j zk-1 7 zk) 

p(zk 1 zk) 
- 9 

= P(zk Izk-1 j ak) P(ak, zk-1) 

dzk Izk-1) P(zk-1) (13-5) 

= P(akIZk-l)P(ZkIXk-l,ak) 

P( zk Izk-1) 

oc P(ak lak-1) &k Izk-1, ak) P(ak-1 bk-1) 

where the denominator p(zk I z)- 1) has been omitted since it does not depend 
on the data a. 

The first term P(Uk I ak- 1) reflects the structure of the message and the 
memory of the modulated symbols. If ck is a known (training) symbol, then 
f@k 1 ak-1) = 1 for that symbol and 0 for all other symbols. If a is an 
encoded message, P(ak I ak-1) is dependent on the particular code; most often 
all allowed symbols are equally likely so that, if there are & such symbols ak, 
we have P(ak I ak-1) = l/Q if (ak is an allowed symbol and zero otherwise. 
In the case of memoryless uncoded M-QAM or M-PSK transmission, we have 
P(uk 1 ak-1) = l/M for all ak. Assuming that only allowed (coded or 
uncoded) equally probable data sequences are “tested” in the decision unit, the 
term P(ak I ak- 1) may also be omitted. 

The second term J?( zk I zk- 1, a,) is the pdf pertaining to the one-step 
prediction & Ik _ 1 of the received sample zk , given the “past” received signal zk - 1 
and the data hypothesis ak up to the “present”. Assuming that all random quantities 
are Gaussian, this pdf is determined by the conditional mean and variance 

iklk-1 = E[zk izk-1, ak] 

6,2;k,k-l (zk-ik,k-l(21 zk-l+k] 
(13-6) 

respectively. Observing the transmission model zk = ckak + ?-r&k, the predicted 
channel output &lk- 1 and its covariance a2 

z;klk-1 can equivalently be expressed 
in terms of the channel prediction &lk- 1 and its error covariance a2 
spectively : 

c;klk-1’ re- 

2k 1 k-l = ak E[Ck 1 zk-1, ak-l] = Qk cklk-1 

2 
%;klk-1 = E la&k- eklk-1) + mki21 zk-l+k-1 1 = Pk “:;k,k-1 + No 

(13-7) 
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Recursion eq. ( 13-5) therefore becomes 

P(akJzs) 0~ ~(3 ~Q-I, ak) P(ak-1 Izk-I) 

= (~ uz;k,kBl exp { -‘zk(p$}) ~bk-llzk-l) 

( 

1 

> { 

I - akeklk-1 I 
2 

= 

( 

exp - 
7r Pk q;k,&l+No PT&,k 1+No 

,) 
P(ak-1 la-l) 

, - 
(13-8) 

Taking the logarithm and inverting the sign then yields the recursion for the 
decision metric (to be minimized): 

m;k(ak) = pk ~f;klk-+b +m;k-1 (ak-1) 

I 

AmD,k(ak) 

(13-9) 
The metric increment Anto,k (ak) is seen to depend not only on the “new” 
symbol c& and its energy pk, but also involves the “online” computation of the 
NDA channel estimate &I k _ 1 and its error COVahnCe fff;kIk _ 1. The increment 

AnaD;k (ak) is not memoryless even in the case of memoryless uncoded modulation 
since the information contained in the entire (hypothetical) past symbol sequence 
ak - 1 is absorbed in the respective channel estimate &l k _ 1. In the case that known 
training symbols aT are available, the NDA estimate &lk _ 1 may be replaced by the 
data-aided (DA) estimate & obtained from aT (Section 14.2). Then 6k and its error 
covaiiance 0z.k are to be inserted into eq. (13-9) in lieu of f?klk-l and az.kik.l, 
respectively. In the following, let us denote the channel estimate in general (NDA, 
DA, or any other kind) and its error covariance by & and +, respectively. 

Channel estimation, in particular NDA l-step prediction, yields estimates & 
which are clearly suboptimal with respect to the smoothed estimates of Chapter 12. 
Nevertheless, the metric ?nD (a) = mD;k=N-l(ak=N-1) at the end of the message 
remains to be optimal for detection; it just has been computed in a recursive 
manner. Like in Chapter 12, it needs, in principle, to be evaluated for each and 
every symbol hypothesis a. 

The expression for the decision metric eq. (13-9) may be cast into a simpler 
form as follows. Assuming steady-state channel estimation, the error covariance 
0; = gz;k is the same for all k. Normalizing the MAP estimation error covariance 
a: to the error covariance NO/pk = 1/(pky8) in the ML channel estimate 
&;k = (a;/pk)zi, [eqS. (14-6) and (14-7)], 

errOr Cov. in ?k 
rc;k = 

error cov. in &;k 
= EL.,2 

No ’ 

1 
P, = -CT: 

NO 
= Tj 0; 

(13-10) 
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the metric increment of eq. (13-9) reads 

(13-11) 

The second term can safely be neglected since it is much smaller than the first; 
for phase-modulated symbols or in the limiting case of perfect sync (Tc + 0) it is 
independent of al, anyway. For instance, with 16-QAM, Ts =20 dB and Tc = 1, 
the second term assumes values between 0.002 and 0.01, whereas the first term 
is in the order of 0 if ak is correct, and in the order of 0.14 to 0.34 otherwise. 
Furthermore, the denominator of the first term is usually not much dependent on 
pk and thus can be omitted also, leading to the simplified metric increment 

AmD;k(ak) a 
IZk-akek12 

1 + ?‘k’i’c 
2 ‘%k --a&l2 (13-12) 

which is seen to have collapsed to the squared Euclidean distance between the 
estimated channel output & = a& and the actual received signal zk. 

The decision metric of eq. (13-12) calls for the inner receiver to generate the 
signal pair (zk , &). As shown below, the inner receiver may equivalently generate 
the signal pairs (&k ,I f?k 12) or (&k, ys;k), with soft symbol decisions: 

(13-13) 

obtained by compensating for the fading, and CSI given either by the (estimated) 
instantaneous channel energy 1 ?k I2 M 1 ck 1’ = Ek or the (estimated) instanta- 
neous SNR 1 & 12/Nc w 1 ck I”/Ne = Ek/Na = ys;k: 

2 

AmD;k(Uk) ?! ‘%k-a&‘2 = l&l” k/& -Qk 

ii- 

= ‘e,‘” ‘kk --ak12 
(13-14) 

bk 

= ‘ck12 ‘iik -ak12 cx Ys;k IGk -ak I2 

Hence, this form of the (simplified) metric increment reduces to the squared 
Euclidean distance between the soft decision kl, and the trial symbol fxk, weighted 
by the instantaneous energy or SNR of the channel. 

In the case of diversity reception (D received signals %d;k and channel 
estimates f&), the decision metric can be computed in the same manner. However, 
the soft decisions tik are now formed by diversity combination 

itk = c qd;k Zd;k (13-15) 
d=l 
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with weights $+, and the CSI is now given either by the (estimated) in- 
stantaneous combined channel energy (Cy=, 1 &;k I”) M (Cf=‘=, 1 cd;k 12) = 
J?k or the (estimated) instantaneous combined SNR (xf=‘=, I cd;k 12)/i’Va M 
(cf;‘., I cd;k 12)/Na = Ek/Nc = ys;k. The combiner weights can be optimized 
by inspection of the residual error tik - ak, assuming that the trial symbol ak has 
actually been transmitted: 

hk -ak = [ ($,,;k,;,) -+k+ ($,,;km,;,) (13-16) 

The minimization [8] of the combined noise power of qk = (CT==, qd;k md;k ) 
[second term of eq. (13-16)] subject to the constraint (~~=, qd;kcd;k) = 1 [then 
the first term of eq. (13-16) is zero] yields optimal combiner weights: 

(13-17) 

Strictly speaking, eq. (13-16) - and thus the optimization - is correct only for the 
true channel cd;k, but cd;k may Safely be replaced by its estimate in eq. (13-17) 
as long as cd;k is reasonably accurate. 

A block diagram of the detection path of an inner receiver including pre- 
processing and fading correction units is shown in Figure 13-6 (upper part: no 
diversity, center part: Dth-order diversity combining). The fading correction unit 
is a very simple equalizer that attempts to “undo” both the amplitude and the phase 
variations of the fading process ck by a rotate-and-scale operation: the MF output 
Signal(S) z[q;$ are phase-aligned Via multiplication by C; (no diversity) or ci;I, 
(diversity) and scaled via division by El, = 
El, = (& 1 Cd;k 12) W’ 

I ck I” [no diversity, eq. (13-13)] or 
iversity, eqs. (13-15) and (13-17)]. In the absence of 

diversity, fading correction may likewise be performed implicitly by scaling and 
rotating the QAM or PSK decision grid. If ck (or its estimate) is very small or 
exactly zero, it suffices to suppress the rotate-and-scale operation and output an 
erasure flag. 

Using optimal combiner weights [eq. (13- 17)], the minimum combined noise 
power results to be &/(Cf..r 1 cd;k 12) = &/& = l/y+ The entire discrete- 
equivalent inner system (bottom of Figure 13-6) is therefore characterized by 
AWGN qk = (cf;‘=, Q &km&$) with time-Variant power c;;k = N&f& = l/78$ 

or time-variant SNR (per symbol) y8;k = Ek/Na = EkT’,. 

As opposed to the nonfading channel case, the sequence of soft decisions tik 
[eqs. (13-l), (13-13), and (13-15), and Figure 13-61 alone is not sufficient for 
near-optimal detection. Rather, a sufficient statistic for detection - to be generated 
by the inner and transferred to the outer receiver - is given by the signal pair 
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Flat Fading Inner Receiver without Diversity 

/ 
same as for AXGN channel 

timing (fine) frey 
pulse mat- interpolator, wncy MD com- 

‘Ys=l/No) ck 

fit’ {c,;k, . . . . CD.,} &=l/No , 
sync parameters 

Discrete-Equivalent Transmission System (Correct Sync) 

r\k (instant. SNR Ysk ) 
I I 

Figure 13-6 Inner Receiver for Flat Fading Channels without and with Diversity 

(za , &) or, if MD estimation and compensation are reasonably accurate, the signal 
pairs (4, b) or (h, 74. 

From this discussion of the inner receiver’s detection path it is once again 
apparent that its synchronization path must strive for generating up-to-date and 
accurate estimates of relative frequency $7, timing E, and the MD ck (MDs cd;k 
for diversity reception). Since frequency and timing estimation have been discussed 
thoroughly in the previous chapters, we shall concentrate on MD estimation, 
keeping in mind that the MD is often taken to absorb a stationary oscillator phase 
and/or a very small frequency shift since it is immaterial whether these effects 
stem from oscillator imperfections or the physical channel. 
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. 

. 

Main Points 

Exact and simplified expressions for the decision metric and metric increment 
for flat fading channels have been derived by means of the recursive formu- 
lation of the decision rule. The near-optimal metric increment can be cast 
into the form 

[eqs. (13-12) and (13-14)] with soft symbol decisions & [eqs. (13-13) and 
(13- 15)]. The inner receiver should therefore deliver one of the signal pairs 
(Q, b), (b, b) or @b, 7h;k). 
Synchronized detection according to eq. (13-18) necessitates an explicit flat 
fading channel estimate &. This estimate may be generated by one-step 
prediction L$lk-l in the case of online NDA synchronization (Section 14.1), 
or by estimation from training symbols in the case of DA synchronization 
(Section 14.2). 

13.3 Inner Receiver for Selective Fading Channels 

The inner receiver for selective fading has to process the (T/2)-spaced 
received signal r = r(‘)$r(l), where XT(~) = H(“) . a + nti) [eq. (12-lo), 
zero frequency offset]. As in the flat fading case, this receiver input signal 
can be directly used for synchronized detection (next subsection). For many 
channels of practical interest, however, it is more advantageous to apply appropriate 
preprocessing such that r is transformed into another signal v which remains to 
be a sufficient statistic but is much better suited for reduced-complexity detection. 
For this purpose, the finite-length whitening mtched$lter (WMF) will turn out to 
be a particularly effective preprocessing device. 

13.3.1 Recursive Computation of the Decision Metric 
Since part of this material resembles that of the previous section, we shall 

sketch the derivation of the recursive decision metric for selective fading channels 
only briefly. Again, the starting point is the optimal decision rule of eq. (12-15): 

&= arg max P(alr) (13-19) 
a 

Denoting the data and received sequences up to time Ic by al, and rk = r(kO)$rr), 
respectively, and omitting terms that are not dependent on a, the probability 
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P(ak 1 rk) can be expressed in terms of P(ak-1 1 rb-1): 

P(ak Irk) OC P(rklrk-1, ak) +k-1 Irk-l) (13-20) 

[see eq. (13-5)], where p(yk rk-1, ak) is the pdf related to the one-step prediction 
?$&l Of the tuple Tk = I (‘k O), I-P)) of part’ 1 la received samples, given the past 

(O) received signal r&l = (rk-l, rk-1 (l)) and the data hypothesis ak up to the present. 
In order to simplify the metric computation (and later also channel estimation; 

Chapter 15), the partial received signals 

(13-21) 

[i = 0, 1, eq. (12-l), finite channel memory, zero frequency shift, no diversity] are 
assumed to be essentially uncorrelated, even though this is in fact not true since 
(i) pulse shaping makes the T/2-spaced channel taps correlated (Chapter l), and 
(ii) the T/2-spaced noise samples are in general also correlated due to receiver 
prefiltering. As noted already in Chapter 12 [remarks following eq. (12-74)], 
intertap correlations pV,+ = E{ h,,kh* *;$ } (CL # 0) are difficult to estimate in 
practice and are therefore neglected so that, for the purpose of receiver design, the 
channel autocorrelation matrix Rh may be taken to be diagonal. Hence, the pdf 
p(rp’, r-r) 1 rE\, rr\ , ak) reduces to the product II:=, p(rt’ I rtzl, ak). Also, 

the pdf p(rF) I r& , ik) is Gaussian with mean F(‘) klk-I and covariance 0ztij so that, 
after taking the logarithm and inverting the sign, the metric and metric increment, 
respectively, become 

wI;k (ak) = A”o;e(ak) + mD;k-1 @k-l) 

1 

( 

I 
$1 _ $1 2 

c 
k’kml = I 

6ftiJ 
+ In [7r a,2(,,] 

a’=0 
i 

(13-22) 

As this result has been derived by neglecting inter-tap correlations pV,,+ for 
,X # 0 the metric of eq. (13-22) is truly optimal only if the random channel 
tap processes are indeed uncorrelated, implying that the channel transfer function 
is in general nonzero over the entire bandwidth l/T8 = 2/T represented by the 
digital transmission model. Most often, however, the channel is bandlimited to 
B = (1 + a) (l/T) < 2/T by virtue of the (sampled) pulse shaping filter &‘, 
(Section 11.2). Hence, the metric eq. (13-22) will in practice be suboptimal in 
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the sense that it neglects the SNR variations over frequency and thus does not 
suppress noise beyond the signal bandwidth or in deep channel notches. Truly 
optimal reception calls for channel matched filtering discussed in Section 13.3.3. 

Co$dering the transmission model of eq. (13-21), the predicted channel 

output Q\ k-1 and its error covariance U:(i) are linked with the predicted channel 

tap estimates h$, kB1 and their error covariances a2 la,(*) through the relations 

Defining the average tap error covariance ratio as 6”’ = a2 /NO = U~(i,~~, the 

metric increment thus obtained 
hl”’ 1 

AND ;k(ak) = h 
a’=0 + 5 pk-J *if) No 

I=0 > 
(13124) 

depends not only on the present symbol ok but also on the symbols c&l, . . . , c&-L 
residing in the channel tap delay line (channel “memory”). Since coping with 
(historically: attempting to undo) the channel memory is referred to as equalization 
[9] and the channel can be viewed as a finite-state machine (FSM), these symbols 
may also be termed equalizer state sk t+ {a&l, . . . , U&L ). 

Motivated by the same arguments as in the previous subection (metric incre- 
ment for flat fading rece 

E 
tion), both the second term In [. . .] and the denominator 

of the first term, (1 + x1=o . . .) NO, may be dropped so that the metric increment 
reduces to the familiar Euclidean branch metric for ML sequence detection [ 10, 111: 

with the only difference that the actual channel impulse response (CIR) $2 has 

been replaced by its one-step predictor estimate iL[!jlk-l (online NDA channel 

estimation) or, in general, the estimate Li$ 
, 

obtained by any kind of channel 
-49 estimation. For M-PSK or in the limiting case of perfect sync (rl + 0), the 

simplified metric eq. (13-25) is equivalent to the original metric since then the term 
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(1 + I20 . . .) of eq. (13-24) is independent of the particular symbol hypothesis 

{ak, Sk) * {ak9~k-l,~~~~~k-L}~ 

In the case of diversity reception (D received signals rd;k and channel 

estimates if{.,), it is in general not possible to achieve near-to-optimal co- 
phasing of signals by means of a memoryless combiner operating directly on 
the received signals rd;k. Hence, it is more appropriate to combine the individual 
metric increments Ar-nD,d,k(ak) (d = 1, . . . , D). By a lengthy but straightforward 
analysis, the optimal combiner weights are found to be equal for all diversity 
branches, so that the combined metric increment is obtained by simply adding up 
all individual branch metric increments: 

AmD;k(ak) = 2 AmD,d;k(ak) = 5 & lr$! - 5 h$j;ka&ji2 (13-26) 
d=l d=l i=O l=O 

13.3.2 Maximum-Likelihood Sequence Detection 
As discussed above, the inner receiver should generate soft symbol decisions 

iik - along with channel state information - so that as much information as possible 
is passed on to the outer receiver. In systems employing channel coding, however, 
the encoded symbols are most often spread in time by means of interleaving in 
order to provide for implicit time diversity. Then the code memory (uninterleaved 
time scale) and the channel memory (interleaved time scale) are decoupled which, 
in general, precludes recursive-type symbol decoding. Therefore, equalization of 
symbols al, (index Ic: interleaved time scale) is usually performed independently 
from the process of decoding the symbols ai (index i: noninterleaved or dein- 
terleaved time scale). An important exception discussed in Section 15.2 is the 
method of combined equalization and decoding (CED) [ 12, 131 made possible by 
coordinate interleaving. 

In the common case that equalization and decoding are viewed as two tasks 
being well separated by the deinterleaving device, there should be little or no 
feedback from the decoder back into the equalizer. A very powerful technique 
avoiding any such feedback is the symbol-by-symbol maximum a posteriori (MAP) 
equalizer [14] which generates the set of probability estimates (metrics) (P(ak 1 
r)} for each possible channel symbol ak, given the entire received signal F. These 
probability metrics incorporate the channel state information and can be regarded as 
soft symbol decisions indicating the likelihood that a particular symbol ak has been 
sent. Using the deinterleaved sets (P(ai 1 r)} for decoding yields near-optimal 
performance , but the forward and backward recursions necessary for generating 
the sets { P(ak 1 r)} are extremely complex. 

A simpler, yet suboptimal technique is the so-called soft-output We&i algo- 
rithm (SOVA) equalizer [15] which delivers the most likely sequence 6 of hard 
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symbol decisions & (ML decision), along with a sequence of (estimated) soft 
probability metrics Pk indicating the reliability of these symbol decisions. The de- 
coder then makes a final decision based on the deinterleaved symbols & and their 
reliabilities Pi. Since the basic SOVA equalizer does not have or use any knowl- 
edge of the code, its deinterleaved output sequences are not necessarily allowed 
code sequences. For this reason, more advanced SOVA algorithms introduce some 
degree of feedback from the decoder to the equalizer. For instance, the generalized 
Viterbi algorithm (GVA) [16] delivers not only the (single) ML symbol sequence 
but a list of several most likely sequences; the decoder then searches that list until 
an allowed code sequence is found. Searching for the most likely allowed code 
sequence may also be performed in an iterative 
between the equalizer and the decoder. 

manner, switching back and forth 

The most straightforward method of equalization and decoding consists in a 
simple concatenation of equalizer, deinterleaver, and decoder without any feed- 
back. A conventional equalizer [linear equalizer (LE) with or without noise predic- 
tion [ 171 or decision-feedback equalizer (DFE) [ 1811 generates hard or (preferably) 
soft decisions & to be delivered to the outer receiver. Due to noise enhancement 
and coloration (LE) or unreliable hard decisions at low SNR (DFE), these decisions 
are, in general, much less reliable than those of the MAP or SOVA algorithms. 

For uncoded transmission, ML detection - also known as ML sequence 
estimation (MLSE), ML sequence detection (MLSD), or Viterbi equalization (VE) 
- is the optimal equalization algorithm [lo]. In the case of coded transmission 
with interleaving, ML detection remains to be an integral part of many important 
equalization algorithms, most notably the SOVA and GVA, but also the LE with 
noise prediction [ 191, the DFE - which can be interpreted as the simplest reduced- 
complexity variant of the ML detector [20] - and even the MAP algorithm, in 
particular its popular near-optimal variant with maximum rule (MR-MAP) [21, 
221. For this reason, we shall now discuss in some detail several optimal and 
reduced-complexity ML sequence detection algorithms and their implications on 
parameter synchronization. 

For sequence lengths N exceeding the channel memory length L, ML se- 
quence detection is best performed recursively via the well-known Viterbi algo- 
rithm (VA) [lo] based on Bellman’s optimality principle of dynamic programming 
[23]. The Viterbi algorithm takes advantage of the finite channel memory L < N 
in a way that the computational effort for performing an exhaustive search over 
all QN candidate sequences a is reduced to an effort not exceeding cc QL << QN 
at any given time instant k. The quantity Q, denoting the number of allowed 
candidate symbols ok given the previous symbols ak-1, is less than or equal to the 
cardinality A4 of the M-PSK or M-QAM symbol alphabet. 

Each received sample VP) ’ or ~$1 [eq. (13-21)], as well as the metric increment 
A?n,;k(ak) of eq. (13-25) or (13-26), do not depend on the entire sequence ak but 
Only on the mOSt recent symbol al, and the eqUdiZer State sk H { ak, 1, . . . , ak-L} , 

For this reason, the minimization of the decision metric may be performed in a 
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recursive manner as follows: 

6 = arg min mD (a) 
a 

= a% min mD ; N+L-1 (aN+L-1 ) = arg min AmD,k (ak > Sk) 
a \ k=O a 

I 

= arg min min 

\ d ep. on aO,sL+l 

\ dependent 0; a1 and SL+ 

dependent on aI&2 and SN+L-1 

dependent on a&I and SN+L 

(13-27) 
The Viterbi algorithm thus starts with accumulating the first L+l metric increments 
(branch metrics) AmD;o(ae, so), . . . , fimD;L(a~, SL 

J? 
during time instants k = 

0 .‘> 
k’= 

L. The resulting path metric mD;L(aL) = (&=o AmD;k(Uk, Sk)) at time 
L depends on the set of symbols { ac, al, . . . , UL} H { uc, sh1) and therefore 

has to be formed for all Q&l possible sets { a~, s&l} = { SL, a~;}. Since the 
sum contains all metric increments which are dependent on the first symbol aa, 
the first minimization step (iteration k = L --) L+ 1) can be carried out with 
respect to a~, yielding the QL possible symbol sets (al, . . . , UL} * ~~3-1, along 
with the “survivor” sequence aL (including the symbol a~) associated with each 
“new” state {al, . . . , UL) c-) s&l. 

The second minimization step (iteration k = L + 1 + 15 + 2) then starts 
with augmenting each of the QL states (~1, . . . , UL} w SL+~ and survivor se- 
quences aL by Q possible new symbols u&l, giving a total of QW1 “extended” 
states (u~,...,uL,uL+~} H {~~~,a~~} = {ul,s~~} and survivors a-1. The 
path metric mD;L(aL) associated with an “old” state s~fl is likewise extended 
to mD;L(aL) + ArnD;&l, where the symbols {al, . . . , U&I} needed to com- 
pute the branch metric AmD;L+l(ul, . . . , u&l) are those of the extended state 
{sL+~, u-1 > = (ur , s&2} of a particular state transition sr;tl ---) 8~2. There are 
Q extended states merging in a particular new state s&2, and these differ only in the 
symbol al. The second minimization is now carried out with respect to al, yield- 
ing the best of the “paths” ending in the new state scf-2, along with the associated 
survivor a&l and path met& ?‘nD;&l(a&~) = min(mD$(aL) + AmD;&l]. 

The procedure of iteratively minimizing the ML decision metric via the Viterbi 
algorithm is illustrated in Figure 13-7 for the simple example of uncoded BPSK 
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Viterbi Algorithm for ML Sequence Detection; BPSK, Channel Memory L=2 

equalizer 
state sk 

iak-l’ ak.2 lo time 
index 
k 

index n T t-t t 
min(...) min(...) min(...) min(...) min(...) min(...) 
aO a1 aN-L-2 aN-L-l aN-L aN-l 

Figure 13-7 The Viterbi Algorithm for ML Sequence 
Detection on Selective Channels 

transmission (&=2) and a channel memory length L=2 [i.e., the (partial) channel 
(i) ha three taps Voik, l;k, 2;k h(‘) la(“) }] so that there are QL=4 states and Qfi’ =8 extended 

states. In the trellis (state transition diagram) of Figure 13-7, the states and possible 
state transitions are shown for each time instant Ic. During ordinary operation of the 
VA (iterations Ic = L + L+l, . . . , N-l + N), there are &=2 branches originating 
from each old state, and also &=2 branches merging into each new state. Of these 
merging paths, the VA selects and keeps the best one. During the startup phase 
(iterations Ic = 0 ---) l,...,L-1 -+ L) while the algorithm just accumulates the 
branch metrics ArnD,k , the trellis expands until all QL=4 states can be reached. 
During the final phase (iterations k = N + N+l,. . ., N+L-1 + N+L), the 
algorithm just performs survivor selection by metric minimization until a single 
state sN+L remains, here sN+2 c-) { cN+l, QN}. The detected message h is then 
given by the (first N symbols of the) survivor sequence aN+&l associated with 
that final state. 

In Figure 13-7, the initial state SO c-) (a- 1, u-2) has been arbitrarily set 
to { -1, -1) but can as well be any other state if the message is preceded by a 
preamble. Likewise, the final state sN+L = sN+2 ++ { UN+1 , UN), which also has 
been set to (-1, -1) in Figure 13-7, can be any other sequence if the message is 
succeeded by a postamble. Notice also that neither the preamble nor the postamble 
symbols need to be of the same symbol alphabet as the message; they just need to 
be known for metric computation. Hence, ML symbol detection does not impose 
any constraint on the design of pre- and postambles or any other training segments 
within the message (Section 15.2). 

13.3.3 Reduced-Complexity ML Sequence Detection 
When the channel memory L is large, optimal ML sequence detection search- 

ing the entire trellis by means of the Viterbi algorithm quickly becomes unfeasible 
since the number QL of equalizer states rises exponentially with L. Therefore, 
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M-Algorithm for Selective Fading 

average SNR per bit (and channel) [dB] 

Figure 13-8 Performance of M-Algorithm Equalizer 
Working on the Received Signal 

reduced-complexity variants of the VA have been devised which search only a small 
subtrellis and thus retain a small number of survivors, say M < QL, and drop 
all other sequences (M algorithm [24]). In the simplest case when M = 1, the 
M algorithm reduces to the operation of the backward filter of the very popular 
decision-feedback equalizer (DFE) [ 181. 

However, the M algorithm with small M << QL is often found to be 
ineffective when working directly on the received signal r [25, 26,271, even in the 
case of simple uncoded transmission and ideal channel estimation. As an example, 
consider the simulated bit error curves displayed in Figure 13-8 for BPSK and 4- 
PSK transmission over the GSM hilly terrain (GSM-HT) channel (Section 11.3.2). 
Despite of the small PSK signal alphabets and the mild intersymbol interference 
(ISI) spanning at most L=4 symbol intervals, the number M of equalizer states to 
be considered by the M algorithm must be quite large, especially when diversity 
is not available. If the “convergence” of BER curves with rising M is taken as a 
measure of (near-) optimality, M should be 8 (no diversity) or 4 (diversity) with 
2-PSK, and as large as 64 (no diversity) or 16 (diversity) with 4-PSK. Similar 
results have also been obtained for a two-ray fading channel with equal average 
path gains, delay r/=2, and L=4. Since the full Viterbi algorithm would have 
to consider QL- -16 (2-PSK) and 256 (4-PSK) states, the reduction in complexity 
achieved by the M algorithm working directly on the received signal r is far from 
the desired goal M << QL. 
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In addition to the suboptimality mentioned in Section 13.3.1, the dominant 
mechanism responsible for this insatisfactory behavior is the fact that, on fading 
channels, the first arriving multi ath ray may undergo deep fading. During such 

(8 (0 a deep fade, the “first” taps {h,:,, , hlth, . . .} of the channel impulse response are 
virtually zero. With zero ho,k, 
metrics AmD,k(ak) = 

(‘I the term hg)kak is also zero so that the branch 
Amd,k(ak, Sk) [eq. (13-25)] are no more dependent on 

the latest symbol ck. Thus all Q extended metrics mD;k-1 + AmD;k(ak, Sk) of 
paths that have originated from a particular predecessor state Sk are equal. When 
the first two taps hf$., h(,‘:), are zero, we have h$.ak + hriak-l=o so that all 
Q2 extended metrics of paths that have originated from a iarticular state Sk- 1 
(two time steps ago) are equal, and so forth. Therefore, the number of contenders 
having virtually the same path metric may quickly rise when the first multipath ray 
undergoes a deep fade. This is no problem with full Viterbi processing, but with 
reduced-complexity sequence detection where only few contenders are kept after 
each iteration, the correct path is very likely to be dropped from the survivor list. 

There are two basic methods of resolving this dilemma. The first method 
consists in having the sequence detection procedure still operate directly on r 
but augmenting it with some adaptive control unit which continually monitors 
the actual CIR (hf$, hti, . . .} and adjusts the ML sequence detector accordingly 
such that the detrimental mechanism explained above is avoided. For instance, the 
set of extended equalizer states {ak, Sk} t+ {c&k, a&l, . . . , ck-L} considered for 
sequence detection may be truncated to (Qk-F, . . . , c&k-L} where ck-F is the symbol 
weighted by the first nonzero channel coefficient h$ik above a certain threshold 
[26]. Because the position F is unknown and may vary, this “precursor control” 
- the first channel taps {ak, . . . , a&(F-l)} are temporarily ignored - necessitates 
a considerable control effort. Also, when h$fk is barely above the threshold, the 
correct survivor is more likely to be dropped than if hgik were a strong tap. On 
the other hand, precursor taps {ak, . . . , ak-(F-i)} barely below the threshold lead 
to an irreducible noiselike effect in the detection process. 

The second basic method whereby frequent droppings of the correct sur- 
vivor can be counteracted consists in preprocessing the received signal rk: ci> by 
a prefilter uk and a decimator to symbol rate, thus transforming the (T/2)- 
spaced received signal rk = rk (0) $ $1 into a T-spaced signal vk. Denoting 
the resulting equivalent T-spaced transmission system - accounting for the cas- 
cade of physical channel, pulse shaping filter, prefilter uk and decimator - by 
fk = (...,f-l;k,fO;k,fi;k,~~~,fL;k,fL+l;k,~ . .}, the equalizer faces the signal 

‘t)k = Cf 1;k ak4 +qk (13-28) 

where qk is the decimated noise behind the filter uk. 
We have seen that the shape of the impulse response hk or fk “seen” by the 

equalizer is most critical to the performance of reduced-complexity ML sequence 
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detection. From the discussion above it follows that fk should have the following 
desired properties: 

0 The length of the equivalent response fk should not exceed that of hk so 
that the number of equalizer states does not increase. Hence, fk must be 
Jinite-length (FIR) with no more than L+ 1 nonzero coefficients. 

. Allowing noncausal preprocessing filters, the FIR response fk can always 
be made causal so that the desired equivalent channel becomes fk = 
{fO;k, fi;k > . - -, fL;k}- 

. The taps of fk should be maximally concentrated near zero delay, i.e., the 
first coefficients, in particular fO;k, must be as strong as possible with respect 
to the postcursors of fk. Then variations in the symbol ak (now weighted by 
the strong tap fo;k) immediately translate into large variations in the branch 
metrics Arn~;k (ak , Sk) and thus the extended branch metrics. Trellis pruning 
to M < QL survivors then affects only weak postcursors, so that the correct 
survivor is dropped with much smaller probability. The branch metrics are 

(9 computed like in eq. (13-25), now with rk and taps I$2 replaced by the 
decimated prefilter output ‘uk and the equivalent channel taps fr;k , respectively: 

Amo;k (ak) = 111* - (13-29) 

. Preprocessing should aim at (near-) optimal noise suppression, or should at 
least avoid noise enhancement. 

. Finally, preprocessing should not destroy the whiteness property of the noise. 

Obviously, the first three objectives can be satisfied by choosing the desired fk 
to befk = {l,o,... , 0}, which calls for perfect channel equalization by means 
of a zero-forcing linear equalizer uk. Optimal equalization based on the LE 
output ?& is still possible, but the noise enhancement and coloration have to be 
counteracted by means of a noise predicting @-state Viterbi algorithm. Reducing 
the complexity by disregarding the noise correlation, i.e., performing symbol-by- 
symbol processing of uk without noise prediction, is far from optimal. For these 
reasons, maximizing the SNR and preserving the whiteness property of the noise 
are very desirable constraints to be imposed on the choice of uk and fk. As a 
consequence, the preprocessing device (filter uk plus decimator) should have an 
allpass response so that qk remains white (assuming that the noise nk (a) before 
prefiltering is white) and the SNR is maximized or at least not compromized. On 
the other hand, the filter uk must remain to be implementable, i.e., of finite length 
with a certain number of coefficients, say 2U + 1 (T/2)-spaced taps spanning U 
symbol intervals, where the tap weights can be adapted to the changing channel 
conditions. 

The structure and coefficients of a suitable preprocessing device complying 
with the above objectives can be devised by combining two important elements 
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of communication theory: (i) the canonical receiver structure for ML sequence 
estimation in the presence of ISI, originally derived by Forney [3], and (ii) the 
structure of a finite-length decision-feedback equalizer [ 181. In Forney’s receiver, 
the ML sequence detector - or, in the case of coded transmission with interleaving, 
any other equalizer such as MAP or SOVA - is preceded by a whitening matched 
filter (WMF). 

Before explaining why the WMF is the optimal prefilter and how to obtain 
its coefficients, let us establish the relationship between the WMF and matched 
filtering discussed before. This is more than a theoretical subtlety since the WMF 
is often implemented as the cascade of the T/S-spaced channel mtchedflfilter (MF) 
mh, a decimator to symbol rate l/T, and a T-spaced whitening filter (WF) wit:. 
In Chapters 4 and 1, the filter matched to the (partial T-spaced) transmitting pulse 
shape g$ln(~) [eq. (ll-18)] or the [(T/2)-spaced] pulse gT,v(E), followed by a 
decimator to symbol rate l/T, was established to be the optimum prefilter in the 
case of AWGN or flat fading channels without ISI, in the sense that the decimated 
MF output is a sufficient statistic for symbol-by-symbol detection at rate l/T. In 
the presence of ISI, the decimated output of the (T/2)-spaced MF rnk matched to 
the channel hk (pulse shape convolved with the physical channel impulse response) 
is also an optimal sufficient statistic for detection at rate l/T, but the MF does 
not remove the ISI. On the contrary, the MF spreads the IS1 over 2~5 (L noncausal 
and L causal) symbol intervals [eq. (13-3 l)]. The T-spaced WF wk following 
the decimator then attempts to cancel the noncausal precursor IS1 - hence, the WF 
is sometimes also termed precursor equalizer [20]. The resulting structure of the 
canonical inner receiver is visualized in the upper part of Figure 13-9. 

The T-spaced equivalent channel fk seen by the equalizer incorporates the 
transmit rate converter l/T * 2/T, CIR hk, channel MF rnk, decimator 2/T + 
l/T, and the WF wk. As discussed above, the MF, decimator, and WF can be 
merged into the (T/2)-spaced WMF uk followed by a decimator. Both alternatives 
are also visualized in the lower left part of Figure 13- 10. 

In the case of Dth-order diversity reception (central part of Figure 13-9), the 
processing for each of the D prefiltering branches is the same as above, with the 
channel MF rnd;k and WF wdik now matched to the respective diversity channel 
hd;k. The dth equivalent T-spaced channel seen by the optimal combiner is again 
denoted by fd;k. 

13.3.4 Adjustment of Inner Receiver Components 
for Selective Fading Channels 

In the course of discussing the adjustment of time-variant receiver component 
parameters - also termed parameter synchronization - it will soon become appar- 
ent why the WMF (or MF+WF) is the optimal prefilter for reduced-complexity ML 
sequence detection. Disregarding frequency shifts Q’, a sufficient statistic for pa- 
rameter synchronization (Figure 13-9) is given by the channel impulse response(s) 
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Figure 13-9 Inner Receiver for Selective Fading 
Channels without and with Diversity 

h(d);k, and - less importantly - the (combined) noise power or average SNR T3 
per symbol. In other words, the CIR(s) and the noise level can be viewed as the 
“system state” from which all other sync parameters can be derived by a mathe- 
matical mapping. Hence, channel estimation is the most important synchronization 
task; it is discussed thoroughly in Chapter 14. 

In the following, the tasks to be performed for parameter synchronization 
based on the knowledge of the channel(s)’ will be discussed, viz. the mappings 
from the CIR hk onto the MF ml,, WF wk (the WMF uk is then the convolution 

y The diversity channel index d is dropped here. 
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Recalling the fact that we are primarily interested in large “first” coefficients of 
the equivalent channel, in particular fo;t, another interesting strategy for reduced- 
complexity prefiltering consists in the partitioning of the instantaneous CIR ht: 
into two parts, viz. unwanted precursors or “early ethos” hE;k preceding a 
strong “center tap”, and postcursors or “late ethos” hLik following the center 
tap. Let LE and LL denote the precursor and postcursor lengths, respectively, 
with LE + LL = L the total CIR length. Then the prefilter can be adjusted so as 
to cancel the precursor IS1 h E;k only; the corresponding mapping hE;k b wE;k 
is of reduced complexity thanks to the smaller filter length WE (depending on LE 
instead of L) of wE;]c and thus the smaller dimension of the system of equations 
to be solved. However, the position of the center tap needs to be continually 
monitored, and the noise in the resulting equivalent channel is colored since w,ZJ;k 
is no true whitening filter. 

13.3.6 Main Points 
. 

. 

Exact and simplified expressions for the metric and metric increment for 
synchronized detection on selective fading channels have been derived, again 
by means of the recursive formulation of the decision rule. The near-optimal 
metric increment for ML sequence detection (MLSD) based on the received 
signal r is given by 

(13-42) 

[eq. (13-25)]. 
i=o 1 I=0 I 

The effort associated with an exhaustive search over all QN candidate se- 
quences can be reduced by applying the Viterbi algorithm (VA) to ML se- 
quence detection. The VA searches a trellis with QL equalizer states in a 
recursive manner. 
Reduced-complexity ML sequence detection by means of searching a subset 
of M<QL equalizer states (M algorithm) often performs poorly on fading 
channels when the metric increment [eq. (13-42)] is based on the received 
signal r. An effective remedy is the use of preprocessing the received signal 
and performing ML detection on the prefilter output ?&: 

Am,;, (ak) = lvk - ( f$kak-j (13-43) 

[eq. (13-29)], where fk is the equivalent transmission system seen by the 
ML detector, i.e., the cascade of channel hk, prefilter uk, and decimator to 
symbol rate. 

. The optimal preprocessing device prior to the reduced-complexity MLSD (and 
most other types of equalizers) must transform any channel response hk into 
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Figure 13-10 Ideal and Finite-Length Prefiltering 
and Decision-Feedback Equalization 

of fk is maximally concentrated near zero delay, thanks to the minimum-phase 
property of Fk: (2). A transfer function Fk ( .z) is (loosely) minimum phase if all 
L zeros of J’k(z) lie inside (or on) the unit circle, which implies that the energy 
of the first coefficients (fo;k, fi;k, . . .) is as large as possible among all impulse 
responses with the same magnitude of the transfer function, or equivalently, that 
the postcursor IS1 (fi;k, fi;k . . .) is minimized with respect to the center tap fO;k. 

As a consequence, the ideal whitening filter transfer function We is given 
by the inverse of the second part F,*(l/z*) of the spectral factorization. Since 
F~(.z) is (loosely) minimum-phase and stable, all zeros and poles of J’k (z) lie 
inside (or on) the unit circle so that all zeros and poles of F,*(l/z*) lie outside (or 
on) the unit circle. Hence, the inverse filter We = l/F,*( l/z*) is maximum- 
phase and, in order to be stable, the WF W ( ) k z must be anticausal. The ideal 
transmission and prefiltering system in the z-domain is visualized in the upper left 
part of Figure 13- 10. 

Unfortunately, the canonical WF transfer function Wk (z) = l/F,* (l/z*) 
generally translates into an injbzite-length anticausal filter response wk o-o Wk (2). 
Observing the finite-length constraint (W + 1 coefficients spanning W symbol 
intervals), the WF response wk cannot be easily determined in the z-domain. 
This is where the structure of a decision-feedback equalizer comes into play. The 
(infinite-length) anticausal DFE feedforward (FF) filter, optimized according to 
the zero-forcing (ZF) criterion, is known to be identical to the ideal canonical 
WF Wk (z), and the causal DFE feedback (FB) filter is identical to the strictly 
causal part 8’:(z) of the equivalent channel F~(z) [ 1 l] (see upper right side of 
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Figure 13- 10). These correspondences originally established in the z-domain can 
now be transferred to jinite-length time-domain prefiltering [28]. Hence, the WF 
coefficients wk are given by those of the length (W+ 1) DFE-FF filter, and the 
strictly causal equivalent channel coefficients fi- = {fl;k, . . . , fL;h} are identical 
to those of the DFE-FB filter. These correspondences are visualized in the lower 
part of Figure 13- 10. 

The DFE-FF and FB filter coefficients can be computed from the channel 
autocorrelation xk and the noise power No/Ek behind the matched filter as follows. 
The DFE forms a symbol estimate i& by filtering the MF output yk via wk - this 
operation cancels most of the precursor IS1 - and subtracting from the DFE-FF 
filter output wk an estimate of the remaining postcursor IS1 formed via fz and 
past symbol decisions: 

(13-33) 

vk =,,f 'yk f+*& 
k 

(see also lower right side of Figure 13-lo), where yk and & denote the MF output 
samples in the DFE-FF delay line and the past symbol decisions in the DFE-FB 
delay line, respectively. 

For a given prefilter length W, the DFE coefficients are now determined so as 
to minimize the error & - al, in the symbol estimates (correct decisions 6k = al, 
assumed). Since a finite-length w wk cannot cancel noncausal “precursor” IS1 
completely, the DFE filter coefficients should be optimized according to the mean- 
square-error (MSE) criterion whereby the composite noise power resulting from 
residual IS1 and additive noise is minimized. The derivation of the optimal FF 
(=WF wk) and FB (= fk+) coefficients via the orthogonality theorem [29] yields 

coefficients of noncausal WF wk: 

with elements of Hermitian matrix @I, : 

Coefficients of causal equivalent channel fi,: 
0 

f n;k = c W Xn-1 (n = 0,. . . , L) 

(33-L 
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where xt = {xc x1 . . , XL 0 . . . 0) denotes the channel autocorrelation vector 
padded with zeros so that its dimension is augmented to [W+ l] 1 L. 

For the purpose of performance evaluation, the entire equivalent channel 
fk = xk * wk is of interest, particularly its noncausal part f; = {. . . , f-2;k, f- l;k} 
being responsible for residual precursor ISI. The response fk including fc and the 
minimum MSE associated with finite-length prefiltering are given by 

f- = 5 n;k w 2n-l (n = -[W+L], . . . , -1) 

f l=n-L 
n;k = (xk * wk), = 0 

h;k=, ~Lwh-4 (n=o,-.,L) 
=- 

c min;k = E Ii& -ak12 
[ ] 

(13-35) 
For quasi-perfect prefiltering where the impact of residual precursors f: can be 
neglected, the equivalent transmission model in front of the equalizer (ML sequence 
detector or its variants) shown in the bottom part of Figure 13-9 [see also eq. (13- 
29)] reduces to 

L 

vk = 
c fl;k ak-4 + rlk 

I=0 

‘+‘l,i”] = lifkll” 2 = llfkl12 1 
?‘s;k 

(13-36) 

llfkl12 Ek 

“;’ = E [,llk12] = x 

In the case of diversity reception (center part of Figure 13-9), quasi-optimal 
diversity combining may be performed by weighting the WF outputs 2]d;l, of the 
diversity branches according to the instantaneous channel energies Ed;k [30]. The 
combined equivalent channel fk is then given by the weighted sum of the individual 
channels fd;k , 

qd;k 
= E4k 

Ed 
(cd= l,...,D) with Ed= g,$+k 

d=l 
D 

fk = c qd;k fd;k 

d=l 

(13-37) 

For quasi-perfect prefiltering, the equivalent diversity transmission model in front 
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of the equalizer (see again bottom part of Figure 13-9) reduces to 

L 

vk = 
Cf 1;k ak-4 + vk 

I=0 

E [lvk12] = (fi lqdiki2 llfd;kl12 5) = 
= +-(g q&k llfd;,ll2) (13-38) 

= 
No 

= 

Hence, the equivalent transmission model seen by the equalizer is essentially 
the same as for nondiversity reception, except that the equivalent channel is the 
weighted superposition of all diversity channels and the instantaneous SNR ys;k 
is determined by the combined channel energies. 

Concluding this subsection, it has been shown how the components of the 
inner receiver for selective fading channels can be obtained from the channel 
impulse response(s) and the noise level. In particular, the MF coefficients mk are 
given by the mapping hk + mk [eq. (13-30)], the WF coefficients wk by the 
mappings hk + xk [eq. (13-32)] and Xk + wk [eq. (13-34)] Using Ts;k and the 
parameter w, and the equivalent channel fk is given by the mapping xk , wk -+ fk 
[eq. (13-34)]. If needed, the noncausal part f; of the equivalent channel and the 
MMSE &&;k can also be obtained from IQ, wk [eq. (13-35)]. 

For diversity reception, these same mappings apply to each of the D diversity 
branches, Viz. hd;k + md;k, hd;k + Xd;k, x&k -+ wd;k, and Xd;k, Wd;k -+ fd;k. 
In addition, the combiner weights p&k and the combined equivalent channel fk 
are given by the mappiIlgS {&;k) + {p&k} and {fd;k,pd;k} + fk [eq. (13-37)], 
respectively. 

13.3.5 Example: Inner Receiver Prefiltering 
for Selective Fading Channels 

To illustrate the effect of prefiltering, consider the simple example of a single 
(no diversity) two-ray channel: 

l/J, (v = 0) 

h v;k = a/d= (= ah@) (v = 2L) (13-39) 

0 (else) 

with energy llhkl12=1, memory length L, and two nonzero weights hv;k, where 
h v=2L;k = ahy=O;k. Notice that this example is artificial in the sense that two 
isolated spikes in the T/a-spaced CIR do not represent a band-limited channel (see 
Chapter 1). This, however, is immaterial since the three-tap respective channel 
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autocorrelation xk could as well have been produced by a band-limited channel 
in cascade with its respective matched filter. Behind the normalizing MF [eq. 
(13-30)], the T-spaced channel correlation [eq. (13-32)] has three nonzero taps 
zg;k=l and xT~;k = a/(1 + u”). 

Let us assume a whitening filter with span W, where W = ZL is a multiple 
of the channel length L. Since only two channel taps and three autocorrelation 
coefficients are nonzero, the (W + 1)-dim. system of equations for the mapping 
xk -+ wk [eq. (13-34)] collapses to the (2 + 1)-dim. System of eqUatiOnS: 

Coefficients of T-spaced noncausal WF wk: 
e 

d 
. . . 
. 

f 

. . 

. . 
e k. 

= 

wk 

1 
XL 

0 
-2 

t 
xk (13-40) 

with elements of vector xt and matrix !kk : 

x~=kohLI=z 
a 

=l$ 

c =1+x;+ $, 

f = xi 

1 
d=l+2x;+ -, 

78 

(for convenience, time indices k have been dropped). The (2 + 1) nonzero WF 
coefficients Wk can now be used to compute the (Z+ 2) nonzero WMF (cascade 
of MF and w) coefficients uk, (Z+l) noncausal equivalent channel taps f; , two 
causal taps fk, and the minimum MSE: 

Coefficients of (T/Z)-spaced whitening matched filter uk: 
Lo wo (n = 0) 

un = 

{ 

h,,o w, + hv=2L w,+x (n = -2L,. . . , -2ZL) 
h u=2L w-2ZL (n = -qg+l]L) 
0 (else) 

Coefficients of T-spaced equivalent channel f; , fk : 
wn + XL(W+L + we) (n = -L, -2L,. . . , -[z--l]L) 

f; = w-ZL + XL w-[Z-l]L (n = -2L) (13-41) 
XL w-ZL (n = ++l]L) 

0 (else) 

wo + XL W-L (n = 0) 
fn = XL wo (n = L) 

0 (else) 

Minimum mean-square-error &in;k : 

c min - - 1 - wfj - XL W-L 
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Figure 13-11 Numerical Example of Finite-Length 
Prefiltering for Parameter a=2 and 0.5 

Some interesting conclusions can be drawn from a closer investigation of eqs. 
(13-40) and (13-41). In Figure 13-l 1, the coefficients hV;k (channel), &;k (channel 
acf), w,;I, (WF), uV;k (WMF), and fn;k (equivalent channel) are shown for the 
numerical examples of a = 2 (first channel tap hV=();k is twice as large as second 
tap; left side of Figure 13- 11) and a = 0.5 (second channel tap h”=L;k is twice as 
large as first tap; right side of the figure). In this example, the instantaneous SNR 
has been chosen as y8;k=10 dB, and 2 has been set to 2 so that the WF spanning 
w = ZL = 2L symbol intervals has 2 + 1=3 nonzero T-spaced taps, and the 
WMF spanning U = 3L symbol intervals has 2+2=4 nonzero (T/2)-spaced taps. 

First of all, one observes that the channel autocorrelation xk , WF wk, and the 
equivalent channel fk are independent of whether a is 2 or 0.5. The same applies 
to the MMSE &in= -9.56 dB [eq. (13-41)], which is only 0.44 dB worse than 
with ideal (infinite-length) prefiltering. So it doesn’t matter whether the first or 
second channel tap is larger; prefiltering in both cases yields an equivalent channel 
fk that has the desired properties. 

When a > 1 (first channel tap hv=o;k larger than the second tap hv=2L;k; 
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left-hand side of Figure 13-1 l), the WF attempts to “undo” the effect of the MF, 
i.e., all noncausal precursors of the WMF uk vanish as W, U ---) oo and SNR 
ys;k + 00, and the equivalent channel approaches fk oc hk. This is because 
the CIR hi, = {h@;b 0 . . . 0 hv=2L;k } has already the desired properties 
(minimum phase) so that, if the channel were known to satisfy a > 1 at all 
times, there would be no need for prefiltering at all. Finite-length prefiltering then 
unnecessarily produces precursor IS1 and thus may become counterproductive if 
W is too small. This adverse effect of prefiltering is worst when both channel 
taps are equal (a = 1). 

On the other hand, when a < 1 (first channel tap hv=o;lc smaller than the 
second tap hv=2L;k ; right-hand side of Figure 13-1 l), the WMF uk approaches 
an allpass filter response as IV, U + 00 and Y8;k + 00, shifting the phase such 
that the equivalent channel approaches fk oc {h,,=2L;k 0 . . . 0 hu=o;lc). Hence, 
the stronger second channel tap hv=2L;k has essentially been “moved” to the first 
position fO;k as desired. 

In order to explore the MMSE performance of prefiltering, Figure 13-12 
displays MMSE curves for the prefilter cascade (MF + finite-length WF) versus 
the WF length w. Parameters are the SNR per symbol (Y$;k + 00 and y8;k =2O 
dB) and the ratio a = (hv=2L;k/hv=O;k) between the second and first channel 
taps. From Figure 13-12, a coarse estimate of the WF filter length necessary for 
reliable reception can be deduced. Given a certain expected channel ISI profile 

T 
thus L and a rough estimate of factor a - as well as a certain SNR threshold 

average SNR v?,) necessary for reliable transmission - this SNR threshold again 
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Figure 13-12 Minimum Mean-Square Error of Prefilter Cascade MF+WF 
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depends on the symbol constellation and the power of channel coding - the WF 
length should be chosen such that the MMSE resulting from precursor IS1 alone 
remains well below the noise level. If this is accomplished, the symbol estimates 
&k corresponding to the correct survivor are dominated by additive noise only. If, 
for example, equal-gain channels occur frequently (a =0 dB) and the (average) 
SNR is 20 dB, Figure 13- 12 reveals that the WF should span no less than 4 or 5 
channel lengths. If, on the other hand, the expected IS1 is milder, say a = ~6 dB, 
the WF needs to span only one (SNR 10 dB) or two (SNR 20 dB) channel lengths. 
These figures, by the way, have proven to be useful guiderails in the design and 
implementation of modems for mobile and high frequency (HF) communications 
[3 1, 321. At any rate, the choice of the whitening filter length W is a very typical 
trade-off between performance and complexity. 

The beneficial effect of prefiltering on the BER performance is demonstrated 
in Figure 13- 13 for the GSM-I-IT channel with Doppler 0.001 and 0.01. In the 
SNR region of interest (below 20 dB), WF filter lengths of W = L =4 (2- and 
4-PSK), W = 2L =8 (8-PSK), and W = 4L =16 (16-PSK) have been found (by 
simulation) to be sufficient for the mildly selective GSM-HT channel. In the case 
of severe selectivity (“GSM-2-ray” channel with equal average gains, r’ =2 and 
L =4), WF filter lengths of W = 2L =8 (2-PSK) and W = 4L =16 (4-, 8-, 
16-PSK) are found to be necessary for near-optimal performance. These figures 
are close to those suggested by the guiderails established above. 

M-Algorithm for Selective Fading 
GSM hilly terrain (HT) channel, rect. Doppler spectrum 

- Doppler 0.001 and 0.01, 2-,4-,8-, and 16-P% 

8 I I I I I I I 

average SNR per bit [de] 

Figure 13-13 Performance of M-Algorithm Equalizer 
Working on MF+WF Prefilter Output 



712 Receiver Structures for Fading Channels 

Comparing the BER results of Figure 13- 13 with those of Figure 13-8 above 
(M algorithm equalizer working directly on the received signal), prefiltering results 
in the BER curves “converging” much faster with rising M. In fact, the simple 
DFE (M = 1) almost always yields quasi-optimal performance when the channel is 
only mildly selective. Selecting an M larger than 1 (M =4 in Figure 13-13) leads 
to a slight improvement only in the case of denser symbol constellations (8- and 
16PSK) and low Doppler. One further observes that the BER results of Figure 13- 
13 are 2 to 3 dB better than those obtained without prefiltering. As mentioned in 
Section 13.3.1, this can be attributed to the matched filter attempting to minimize 
the noise power in its output signal v, while, without prefiltering, all the noise 
in the received signal r - including some noise outside of the signal bandwidth 
- contributes to the distortion in the decision metric. In summary, the use of 
prefiltering significantly improves on the BER performance. It does necessitate 
more complex parameter synchronization but greatly reduces the computational 
burden on the equalizer side. The only drawback of prefiltering is the somewhat 
increased sensitivity against fading: at Doppler Xl, =O.Ol, an irreducible BER 
level of about 2 x 10 -4 (2-PSK) and 2 x 10 -3 (4-PSK) is observed from Figure 
13- 13. Notice, however, that Xb =O.Ol (assuming l/T =135 kBd) corresponds 
to a vehicle speed of 1500 km/h (900 MHz) or 750 km/h (1800 MHz), which is 
much larger than can be tolerated by the GSM system. 

Of course, there are many variations on the theme of receiver prefiltering. 
For example, the MF and WF filters may be merged into a single (T/2)-spaced 
WMF uk whose coefficients are computed directly from the channel hk via a 
system of equations similar to eq. (13-34). Thus, a degradation is avoided in 
case the channel is already minimum phase. In that case, the WMF reduces to a 
simple memoryless weighting operation (all noncausal coefficients zero), whereas 
the cascade of MF and WF does so only for W + 00. This modest advantage, 
however, has to be paid for by a higher computational effort. Given a certain span 
W(WF)orU= W+ L (WMF) of the prefilter, 2U+ 1 = 2( W + L) + 1 (T/2)- 
spaced WMF coefficients must be adjusted, a figure more than twice as large as 
the number W + 1 of T-spaced WF coefficients computed via eq. (13-34). 

Since the computation of prefiltering coefficients via a system of equations is 
costly, reduced-complexity algorithms are desirable. The per-symbol effort can be 
drastically reduced by performing the mapping hk -+ (m, w, f& only once every 
I symbol intervals. The resulting parameter sets (m, w, f)K valid for time instants 
k = ICI, I< = 0, 1,2,. . . may then be interpolated linearly so as to obtain the 
parameters valid for intermediate time indices k [33]. The parameter I naturally 
depends on the fading dynamics and the frame structure of symbol transmission. 
If the fading is very slow so that the channel does not change significantly during 
I symbol intervals, one may use the same parameter set for the entire block of I 
symbols until the next set is computed. This is frequently done in time-division 
multiple access (TDMA)-like burst or packet transmission where one set of receiver 
parameters is computed from a pre- or midamble and used for the entire packet. 
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Recalling the fact that we are primarily interested in large “first” coefficients of 
the equivalent channel, in particular fo;k, another interesting strategy for reduced- 
complexity prefiltering consists in the partitioning of the instantaneous CIR hk 
into two parts, viz. unwanted precursors or “early ethos” hE;k preceding a 
strong “center tap”, and postcursors or “late ethos” hL;k following the center 
tap. Let LE and LL denote the precursor and postcursor lengths, respectively, 
with LE + LL = L the total CIR length. Then the prefilter can be adjusted so as 
to cancel the precursor IS1 h E;k only; the corresponding mapping hE;k -+ wE;it: 
is of reduced complexity thanks to the smaller filter length WE (depending on LE 
instead of L) of wE;k and thus the smaller dimension of the system of equations 
to be solved. However, the position of the center tap needs to be continually 
monitored, and the noise in the resulting equivalent channel is colored since w&k 
is no true whitening filter. 

13.3.6 Main Points 
. Exact and simplified expressions for the metric and metric increment for 

synchronized detection on selective fading channels have been derived, again 
by means of the recursive formulation of the decision rule. The near-optimal 
metric increment for ML sequence detection (MLSD) based on the received 
signal r is given by 

fhD;k(ak) N 2 T’f) - 2 ii);; f3lo-I 

2 

(13-42) 
i=o l=O 

[eq. (13-25)]. 
. The effort associated with an exhaustive search over all QN candidate se- 

quences can be reduced by applying the Viterbi algorithm (VA) to ML se- 
quence detection. The VA searches a trellis with QL equalizer states in a 
recursive manner. 

. Reduced-complexity ML sequence detection by means of searching a subset 
of M<QL equalizer states (M algorithm) often performs poorly on fading 
channels when the metric increment [eq. (13-42)] is based on the received 
signal r. An effective remedy is the use of preprocessing the received signal 
and performing ML detection on the prefilter output vk: 

AmD;k (ak) = jv* - (@;ko,_i) j (13-43) 

[eq. (13-29)], where fk is the equivalent transmission system seen by the 
ML detector, i.e., the cascade of channel hk, prefilter Uk, and decimator to 
symbol rate. 

. The optimal preprocessing device prior to the reduced-complexity MLSD (and 
most other types of equalizers) must transform any channel response hk into 



714 Receiver Structures for Fading Channels 

an equivalent channel response fh which is causal, of finite length L, and 
minimum-phase so that the first coefficients { fe;k, fi;k, . . .} are as large as 
possible. All of this is accomplished by the ideal whitening matched filter 
(WMF) with transfer function Uk (z) being the cascade of the matched filter 
(MF) Mk(z), decimator, and the whitening filter (WF) whose transfer function 
w&) = l/F,*(l/z*) ’ g is iven in terms of a spectral factorization. 
The optimal finite-length approximation wk to the ideal WF - the WMF 
uk is again given by the cascade of MF mk [eq. (13-30)], decimator, 
and WF wk - is identical to the feedforward filter of a decision-feedback 
equalizer (DFE) optimized according to the MMSE criterion. The causal 
portion of the equivalent channel fk is identical to the feedback filter of the 
DFE. The coefficients of both the WF wk and the equivalent channel fk can 
be determined from the channel response hk and the SNR Ys;k through a 
systems of equations [eqs. (13-32) and (13-34)]. 

13.4 Spread Spectrum Communication 

In digital radio communications, spread-se&rum (SS) techniques, in particular, 
code division multiple access (CDMA), is becoming increasingly important. This 
section describes how SS communication relates to the baseband model discussed 
so far. We assume that the reader is familiar with the principles of CDMA. 

13.4.1 Modulator and Demodulator Structure 
The basic building block of a spread spectrum QPSK modulator is shown in 

Figure 13-14. 

The same binary input symbol a, is modulated by two PN (pseudo-noise) 
sequences d, (I) (in-phase) and $iQ) (quadrature-phase), respectively. The spreaded 
signal is subsequently modulated onto a sinusoidal carrier. The reason for using 
both quadrature channels is to avoid any dependence on the carrier phase, see 
Chapter 2.3.2 of [34]. Notice that a BPSK modulator uses only one of the two 
signals in Figure 13- 14. Introducing the complex PN sequence 

d v= d$,I) + jd$Q) (13-44) 

Binary 

J input an 

X 7 cos(cl+)t + (3) 

&in&J + (3) 

Figure 13-14 Spread-Spectrum QPSK Modulator 
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with independent PN sequences d, (I) and dLQ), the transmitted signal can be written 
as 

s(t) = &A Re c a, Ng’ d, g(t-n5!‘- vTc --Ecz) ejcwot+‘) (13-45) 
n v=o 

with T’ the chip duration, &c a fraction of T,, T the symbol duration, and NC the 
number of chips per symbol. There are two extreme cases for the pulse shaping 
filter, viz. (i) the pulse g(t) is a constant rectangular pulse of duration T,, and 
(ii) G(w) is strictly band-limited to B = l/2 Tc. In both cases successive chip 
outputs are uncorrelated. 

The receiver performs the corresponding operations shown in Figure 13- 
15. These operations include downconversion, chip matched filtering with the 
conjugate complex of the transmit filter g(t), and sampling at the chip intervals. 
Subsequently, the signal is despreaded. This is accomplished by correlating the 
received samples with a synchronized replica of the PN code. The result is a 
baseband signal. It can be readily verified that the squared magnitude Pn is 
independent of the carrier phase. It is used for noncoherent detection and, as will 
be shown shortly, also for the synchronization of the PN sequence. 

N : Number of chips per bit 

(W 

Figure 13-15 Spread Spectrum Demodulator 
(a) Complex Representation, (b) Real and Imaginary Representation 
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In a multipath environment, the correlator output is weighted by the magnitude 
of the (cluster of) multipath ray(s) whose delays are in alignment with the replica 
of the PN code. If the chip duration TC is much shorter than the relative 
delays between multipaths, then (by virtue of the cross correlation properties of 
PN sequences) these multipath rays can, in principle, be resolved by using a 
number D > 1 of cross correlators per symbol, each matched (local replica of 
the PN sequence synchronized) to the particular multipath delay. By virtue of 
the uncorrelated-scattering assumption on multipath propagation, the D correlator 
output signals so obtained can be viewed as having undergone independently fading 
“channels” which, given that the symbol duration is much longer than the largest 
multipath delay, behave like flat fading diversity channels. The D correlator output 
signals may then be combined. Such a scheme (sometimes termed RAKE receiver) 
is equivalent to the inner transmission model for flat fading channels with Dth- 
order diversity as shown in Figure 13-6. The diversity branches, however, are now 
unequally weighted according to the average powers of the individual multipath 
rays or ray clusters. Given that only a few of these resolvable multipaths are 
of significant strength, most of the multipath diversity gain inherent in selective 
channels can be recovered. Hence, a spread-spectrum system in principle faces 
the same performance limit (viz., matched filter bound) as a serial transmission 
system occupying the same bandwidth. 

13.4.2 Synchronization of Pseudorandom Signals 
The process of synchronizing the locally generated replica(s) of the transmitted 

PN sequence (“code synchronization”) is accomplished in two steps. The first 
step consists in bringing the local spreading signal into coarse alignment with the 
(delayed) transmitted code sequence. In principle, this requires a search over the 
entire period of the PN sequence. The ML estimator can readily be shown to 
be a device which correlates the incoming samples with the local replica &+M 
and searches for the delay M which maximizes the magnitude-squared correlator 
output r), (see Figure 13-15b). Once the signal is acquired within U-“/2, the fine 
alignment and tracking of the fractional delay Ed is accomplished by means of an 
error feedback system. The error signal is obtained by computing an early (late) 
version delayed by T,/2 (-T,/2) of the variable Pn, see the following example. 
Once the PN code is synchronized, symbol timing recovery is completed since the 
PN code and symbol clock are locked. 

Example: l’ime Racking Loop 
Assume that the acquisition process is completed. Then, for an unmodulated pilot 
sequence, the baseband signal of eq. (13-45) reads 

U(t) = C dy(Ee) g(t-VT,-c,T,) eje 

v 
(13-46) 

Following exactly the steps of Section 5.3 we leave it as an exercise to the reader 



13.5 Bibliographical Notes 717 

to verify that the low SNR approximation of the log-likelihood function for (0, Ed) 
is independent of 0 and given by 

J%) = FU Iz(YT,s&Tc)(2 (13-47) 

1 

where z(t) is the output of the analog chip matched filter g* (-t) taken at 
UT, = &CT=. The error signal is obtained by computing L+(E,) and L-(E,), 
respectively: 

e(e,> = L+(Ec) - L--(G) (13-48) 

where 
&(G) = c I+& f 772 + G)12 (13-49) 

u 

The error feedback system is called a delay-locked loop (DLL) in the literature. 
A crucial issue in cellular multiuser CDMA communications is to ensure that 

the power at the base station received from each user (uplink) is nearly equal. 
This requires elaborate power control algorithms which are discussed in Chapter 
4.7 of [34]. 

13.5 Bibliographical Notes 

Material on the diversity-like effect of coding and soft decision decoding 
is found in [35, 361 and [37, 3, 4, 381. Methods of combined equalization 
and decoding based on coordinate interleaving are presented in [ 19, 13, 12, 391. 
References [ 10, 14, 40, 41, 421 give details on MAP equalization. Publications 
on the Viterbi algorithm and its applications include [23] on Bellman’s principle 
of optimality, [15, 40, 431 on soft-output Viterbi equalization, and [16, 441 on the 
generalized Viterbi algorithm. Details on decision-feedback equalization and the 
M algorithm are found in [45, 46, 20, 181 and [24, 25, 26, 271, respectively. 

Optimal receiver structures for IS1 channels are discussed in Forney’s papers 
[3, lo] and a number of standard textbooks, e.g., [20, 51. Methods of adjusting 
receiver components, founded in estimation and adaptive filtering theory [29, 81, 
are detailed in [30, 51. Applications include modem design for mobile and HF 
communications [33, 3 1, 321, and many more. 

The initial application of spread spectrum was in military and guidance sys- 
tems. The books by Simon, Omura, Scholtz, and Levitt [47] and Holmes [48] pro- 
vide a comprehensive discussion of the subject with many references to the pioneers 
of this technology. Spread spectrum multiple access communication (CDMA) has 
a number of unique properties which make it attractive for commercial applica- 
tions. A detailed discussion of CDMA is found in the highly recommended book 
by A. J. Viterbi [34]; in particular, synchronization is treated in Chapter 3. 
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Chapter 14 Parameter Synchronization 
for Flat Fading Channels 

In Chapters 14 and 15, important aspects of digital receiver synchronization 
for fading channels are discussed. The two sections of Chapter 14 concentrate on 
linear sync parameter estimation for the flat fading case, i.e., flat fading channel 
estimation. The derivation of many of the algorithms presented here draws from 
the ideas and results of Chapter 12. However, while the optimal algorithms of 
Chapter 12 are, in most situations of interest, far too complex to realize, we shall 
now turn our attention to reduced-complexity yet close-to-optimal synchronizer 
structures and algorithms that can actually be implemented using today’s DSP or 
ASIC technology. 

14.1 Non-Data-Aided (NDA) Flat Fading Channel 
Estimation and Detection 

In this section, data detection on flat fading channels without the aid of known 
training symbols is investigated in more detail. Following again the concept 
of synchronized detection (Chapter 12), we consider estimation-detection type 
of receivers with “online” one-step channel prediction (Chapter 13) which are 
simplified in a systematic way so as to arrive at realizable receivers. In the next two 
sections, optimal and near-optimal methods for NDA one-step channel prediction 
are discussed in detail. Finally, suboptimal but simple decision-directed (DD) 
channel estimation and symbol detection is investigated. 

14.1.1 Optimal One-Step Channel Prediction 
In Section 13.2, the one-step predictor estimate i+i of the flat fading channel 

gain ck has been identified as the sync parameter necessary for metric computation 
[eq. (13-12)] in NDA synchronized detection. The optimal channel predictor 
estimate is given by the conditional expected value 

i’klk-l = E[Ck lzk-1, arc-11 (14-1) 

given the “past” observation zk- 1 and symbol sequence ak- 1 [ 11. The transmission 
model for zk-1 is given by the vector/matrix equation (12-48) which is now 
truncated at index k: - 1, i.e., zk-1 = Ak-i . ck-1 + ml,-1. As in Section 12.2.2, 
the desired quantity ck and the observation zk-1 are understood to be jointly 
Gaussian dynamic parameters. Furthermore, as motivated by the discussion in 
Section 12.2.3, ck can, for the purpose of channel estimation, safely be assumed 
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to be zero-mean even if a LOS path is present. Then the optimal channel predictor 
and its MMSE are given by 

[see [l] and eqs. (12-28) and (12-30)]. Similar to eq. (12-29), the matrices !ZICk 
(scalar), X:Ck,Zk-l (1 x k), and I=,,, (k x k) evaluate as 

I3,, = E 1 kl ] c 2 = 1 

lil - E [ck * ZEl] Ck,Zk-1 - = $;kel AE1 

x Zk-I = E [z&l * ZE1 1 = b-1 h;k--1 A:, + %n;k-1 

(14-3) 

where RD,~- 1 denotes the truncated channel autocorrelation matrix of eq. 
(12-50) [dynamic part only, i.e., ad(m) = o(m) and pd = 11, rD;k-1 = 
(a(k) . . . a(2) ~(1))~ the vector of channel autocorrelation samples, and 
R,,+- 1 the truncated noise covariance matrix. Inserting EC,, , ‘ck,zk-l, and 
Il zk-1 into eq. (14-2) yields 

&lk-1 = r :;k-lAEl ’ (Ak-&b;k-lA~l + %;k-I) -’ * zk-1 

2 
(14-4) 

%;klk-1 = 1 - r~;k&‘$ * (Adb;d~l + &n,k-1) -leAk-lPD;k-l 

which is of the same form as eq. (12-31) except for the zero mean. By invoking 
the matrix inversion lemma eq. (12-39) twice (similarly as in Section 12.2.6), eq. 
(14-4) can be reformulated to 

(14-5) 

The term AEIRzk-, Ak-r ( 
-1 

> - A@;kal . z&l has the same form as eq. (12- 
27) and is therefore identified as the ML t&mate &k-l (8&l) of the past channel 
trajectory up to time k - 1. Hence, optimal prediction is again separable into ML 
estimation from the observation z& 1 and the data hypothesis ak- 1, followed by 
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MAP prediction from the ML estimate, making use of the channel parameters: 

ML channel estimation: 
-1 

&;k-1 @k-l) = 
( 

A:lR;;k-lAk-l) 

MAP channel prediction from ML estimate: (14-6) 

ekjk-1 = r:;kvl (b;k-1 + [A~~R~;k-,Ak-~~l~fes;k-l(ak-l) 

O:;k,k-1 = 1 - rg;k-l ’ (b;k-1 + [A~lR~;k-,Ak-l]-l~~rD,k-l 

If the noise is AWGN with power NO, eq. (14-6) can be further simplified. 
Since the MAP estimator and its error covariance are not much depE:dent on 

the noise power (Figures 12-2 and 12-3), the term [ 
A~-&k.~$-,Ak-l 1 = No - 

I?i.i (a&i) may be safely simplified to No1 even if there are amplitude variations; 
i.e., for the purpose of channel prediction from the ML estimate, pk is set to 1 
as if amplitude variations in M-QAM symbols were not present. Then eq. (14-6) 
boils down to [see also eq. (12-53)]: 

ML channel estimation: 

b;k-1 (ak-1) = Pi:l(ak-1) * AH,, . zk-1 

%;k-1 (ak-1) = NO - pill @k-l) 

MAP channel prediction from ML estimate: 

ZkIk-1 = $;k-l(b;k-1 + NOI)-’ h;k-l(ak-.-1) 

(14-7) 

WEI 
2 flc;klkvl = 1 - r g;kml - (RD;k-4 + NOI)-1 . m;k-1 

MAP channel prediction from &;k- 1 (as- 1) and the (nominal) prediction error . 2 
covmance bc;k l k _ 1 remain to be dependent on the channel parameters (XL, No), 
but have become entirely independent of the data ak- 1. Thus, a single set of 
real-valued Wiener predictor weights wk- 1 can be precomputed and used for all 
data hypotheses 8k _ 1. 

14.1.2 Reduced-Complexity One-Step Channel Prediction 
Up to this point, the optimal decision metric can be computed recursively [eq. 

(13-g)], but optimal channel prediction still needs to be performed nonrecursively 
by means of finite-impulse-response (FIR)-type filters wk-1 [eq. (14-7)]. These 
filters are causal - as opposed to the smoothing filters of Chapter 12 - but dependent 
on the time index k, regarding both the filter length (=k - 1) and the tap weights. 
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In theory, N - 1 sets of predictor filters wc , . . . , WN-~ need to be precomputed, 
stored, and used for prediction. Hence, this procedure is still not simple enough 
for implementation. 

Reduced-complexity one-step prediction may be accomplished by eitherfinite- 
length FIR- or recursive infinite-impulse-response (IIR)-type filtering. The former 
method is an obvious modification to optimal Wiener prediction in that the number 
of filter coefficients is fixed at an arbitrary number u; the predictor therefore 
reduces to a single, time-invariant v-tap FIR filter w = (wc 201 . . . ~~-1)~. Its 
tap weights and error covariance are obtained from eq. (14-7) with time index set 
to k = u. During the transmission startup phase when only k < v - 1 samples 
of the ML estimate &;k-1 (ak-1) are to be processed, one may either use shorter 
k-dim. optimal filters wk-1, or otherwise simply the k last taps of the length-v 
filter w. Performance results on both optimal and length-v Wiener prediction are 
presented at the end of this section. 

The second solution to reduced-complexity prediction consists in recursive 
IIR-type filtering. Then both metric computation and channel prediction are 
performed recursively. If the dynamics of the fading process {ck) can be cast 
into a (here: stationary) state-space Gauss-Markov process model 

-+l =F-xl,+G-wk 

ck =@%Ck 
(14-8) 

(system state x]c , system noise wk, system matrix F, input matrix G, output matrix 
HH), the optimal IIR-type predictor is given by the Kalrnun filter (KF) [2] 

State update recursion: 

kklk-1 = F * (i&+-2 + &-1 * [&,k-I - n ck-11 k-2 I> 

Predictor estimate: 
(14-9) 

eklk-1 = HH +.lk.ml 

where both the (time-variant) Kalman gain &-1 and the state error covariance 
xZ;k lk - 1 can be precomputed via the Kalman Riccati equations [ 11. If the time- 
variant noise power (Nc/pk) in the ML estimate &;k- 1 (a& 1) is replaced by its 
average NO, these computations yield a Kalman predictor which again is entirely 
independent of the data hypothesis. 

The block diagram of the Gauss-Markov process model for (ck}, followed 
by the modulator (multiplication by “true” symbols apil), the AWGN mk-1, 
ML channel estimator (multiplication by a;- r/pk- r), and the Kalman channel 
predictor, is shown in Figure 14-1. 

Unfortunately, the actual channel dynamics, in particular a strictly band- 
limited fading process {ck} [eq. (l&49)], can only be represented with sufficient 
accuracy by a high-order Gauss-Markov process model. Then, however, the 
complexity of the corresponding Kalman predictor quickly rises beyond that of 
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mk-l 

1 -step Kalman channel predictor 

Figure 14-1 Gauss-Markov Flat Fading Channel Model 
and One-Step Kalman Predictor 

the length-v FIR Wiener predictor. For this reason, Kalman filtering based on 
high-order process modeling is not pursued further. 

In order to keep channel prediction as simple as possible, let us constrain the 
Kalman filter to be a fzrst-order stationary IIR filter with scalar gain Kk- 1 = I<, 
unity system matrix F = 1, state estimate jikl k - 1 = &lk- 1, and output matrix 
HH = 1 (Figure 14-1). The recursive channel predictor then simplifies to 

Qlc-1 = bl(k-2 + K (~S;k-1 - &4k-2) 

= (1 - K) &l&2 + I< es;&1 
(14-10) 

This algorithm is identical with the well-known least-mean-square (LMS) adaptive 
filter [3] with gain factor K, so that this filter may also be termed LMS-Kalman 
predictor. Its z-transform and 3-dB cutoff frequency are given by 

H(z) = 
z-;-K] 

A&,, = & cos-l 

[ 

(1+ [l-K]2) - A/%@ (14-11) 

2(1-K) 1 
respectively. 

Unfortunately, the gain K (and also the Kalman filter error covariance) cannot 
be determined by means of ordinary Kalman filter theory (Riccati equations [ 11) 
because of the mismatch between the (high-order) process model and the (first- 
order) prediction filter. Thanks to the simple form of eq. (14-lo), however, the 
gain Ii may be optimized directly by means of a prediction error analysis. Using 
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eq. (14-lo), the prediction error A, = ck - Ek:lk _ 1 can be expressed as 

A, = ck - $el 

= (Ck -c&l) + (Q-1 -&-1) -K 
-- 

Sk b-1 

(14-12) 

where Sk = ck - q-1 is the channel trajectory increment from time step k - 1 to 
k. Assuming correct symbol hypotheses ak-1 := *Ei, the channel error recursion 
reduces to 

A, = (1 - K) ,!&-I + 61, - K ii&-l (14-13) 

where the noise tibl = (& /pk-l)mk-l has time-variant power No/j&-l. This 

recursion may be split into two independent recursions for the “lag” error Af) 
and the “noise” error AiN), driven by fading 6I, and noise 6&-r, respectively, 
whose solutions are given by 

Af' = (I-I()AEj +61, 
= (&-K)'6k) (14-14) 

AkN' = (I-I()Ai;? -h?ikwl = -Ii' 
i 

&+?&.-~~ 
I=0 1 

Assuming white noise fik-1 and setting the time-variant noise power NO/p&r to 
its average NO, the average noise error in the channel predictor estimate is easily 
evaluated as 

The lengthy but straightforward analysis of the average lag error yields the steady- 
state (k --) 00) result: 

[ 

k-coo k-too 

= E c c (l-K)“(l-K)j &a 6i-j 
a’=0 j=o 1 

2K 
= (2-K)(l-K) 

(2 (l-4qrn is@)) 
na 1 = 

(14-16) 

with E(m) = l- o(m) the complementary channel autocorrelation function. 
In order to facilitate the optimization of K, a simple functional approximation 

to ((i:;k,&l) CL) would be of great value. Considering the special case of Jakes 
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and rectangular lowpass Rayleigh Doppler spectra, a Taylor series analysis of the 
corresponding E(m) [eq. (12-49)] about m = 0 yields E(m) M r2 ( Xb)2m2, valid 
for both Jakes and rectangular Doppler spectra as long as (Xl, m) 5 0.2 (less 
than 5 percent error). Using this parabolic approximation in eq. (14-16) for all 
m = O,... , 00 yields ( az:lE,ro-l)(L) = 27r2(Xb)2/K2. Since the summation has 
been carried out over some’m for which the approximation (Al,m) < 0.2 is not 
valid, this result should be used with caution. Nevertheless, onemay surmise that 
the approximation would be of the form 

(14-17) 

Then the expression for the total error covariance becomes 

(14-18) 

In essence, a wider prediction filter bandwidth (K larger) reduces the lag 
error but increases the noise error, and vice versa. Assuming for the moment 
that this approximation is correct, the optimum gain I~(*@) and the minimum I . . 
error covariance (a:) (min) = (0:;,,,,) 

Cm1nl 
or, equivalently, the minimum ratio 

(min) _ 2 (min) 
. r 

f-C - (oe) /No between ML and MAP error covariances, are found by 
setting the derivative with respect to K to zero. Setting CL = 12 (see below) and 
using K/(2 - K) % K/2 (K < 1) then leads to the result 

( > A(, 2 - 
NO 

( > 
62 (min> 

$nin) = c 
No 

M 2.7 - 
J 

(14-19) 

3 (xii)” 3 K(*@) =- 
No 4 

Using this K(*pt), the 3-dB cutoff frequency A’, of the optimized filter 
iY(*@)(z) [eq. (14-1 l)] turns out to be much larger than the Doppler frequency 
Xb, and the filter response H(*pt) ej2*” 

( > remains close to unity (0.98,...,1) in 
the passband region 1 X’ ] 5 X/,. Hence, predictor performance is sensitive to 
passband distortions whereas the stopband filter response is of minor importance. 
It therefore does not make sense to employ higher-order filters of the form 
H(x) = KM/(2 - [l -K])M; the corresponding error analysis yields reduced 
noise (sharper cutoff) but a larger lag error due to increased passband distortion. 

Of course, the validity of the approximative result [eq. (14-19)] has to be 
checked. A numerical evaluation shows that eq. (14-17) is indeed valid as long 
as I< is larger than some minimum Kmin Ab . Within that range, CL is found 

( > 
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Table 14-1 Optimal Kalman Gains and Minimum Error Covariance 
of LMS-Kalman Flat Fading Channel Predictor 

K(OPt> K(OPt> 

Xl, \ No 0.1 Xl, \ No 0.1 

to be only weakly dependent on K or Xb, so that fixing CL at 12 is correct 
(accuracy flO%) for Km;, 

( 
xl, = 0.001 

> 
a 0.02, I<min 

( 
XL = 0.01) B 0.1, and 

K A; min 
( 

= 0.03) 53 0.22. Examining eq. (14-19), one finds that lU”pt) > ICmin 
is always satisfied for relevant noise powers No < 1. 

However, I< must satisfy not only I( > Kmin but also I< << 1 SO that 
the filter “memory” remains sufficiently large. From Table 14-1 it is seen that 
the optimization according to eq. (14-19) calls for very large I{ (I< > 1 left 
blank in Table 14-1) in the case of large Doppler A:, and/or small No = l/7,. 
Hence, an optimal trade-off between noise and lag error [eq. (14-19)] is only 
achievable for small Doppler Xl, 5 3 x low2 (average SNR per symbol ;J, =lO 
dB), A/, 5 1 x 1O-2 (Ya =20 dB), and A/, 5 3 x 10B3 (ys =30 dB). When the 
fading is fast, the lag error becomes dominant and the gain K must be fixed at 
some value < 1. 

Wrapping up the discussion of channel prediction, let us compare the perfor- 
mance of optimal Wiener FIR prediction, its finite-length variant, and first-order 
IIR prediction using /~;,““S-T”hn;~ algorithm. Figure 14-2 displays the respec- 
tive optimal ratios rc = (a,) /No for Doppler frequencies between lo-” 
and 10-l and SNRs (per symbol) of ys = 10, 20, and 30 dB. 

Optimal Wiener prediction is seen to be only slightly dependent on the 
noise power - this has already been observed in Chapter 12 where rirnm) is 
almost independent of the noise 

(min? 
ower - and it yields a gain with respect to 

memoryless ML estimation (rc below 0 dB) for Doppler frequencies up to 
about XL m 5 x lo- 2. Beyond that, the predictor estimate becomes worse than 
the ML estimate; the lag error increasingly dominates so that rimin) rises faster 
with Xb. 

Compared with infinite-length prediction, the length- 10 Wiener prediction gain 
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Figure 14-2 Error Performance of Wiener FIR and 
LMS-Kalman IIR Flat Fading Channel Predictors 

factor experiences a bottoming effect for very small Doppler, simply because the 
noise reduction factor of a length-v averaging filter is limited to l/v. On the other 
hand, the FIR predictor performs quite well in the critical region of large Doppler, 
which is particularly useful since LMS-Kalman prediction cannot be applied in 
that region. Furthermore, the predictor is tolerant against a mismatch in the SNR 
assumption; the filter matched to *J, =lO dB but used when the actual SNR is 
7s =20 dB leads to a certain loss (see Figure 14-2), which, however, is quite 
moderate. 

Finally, the simple LMS-Kalman IIR predictor with optimized gain performs 
well in the region where it can be applied. At Xb = 5 x 10B3 the performance 
is almost the same as with length-10 FIR filtering (VI 520 dB), and at very low 
Doppler, the LMS-Kalman algorithm has advantages thanks to its simplicity and 
good noise averaging capability. However, IIR-type channel estimation is more 
popular when it comes to selective channels where the fading is usually slower 
(Section 15.1). 

14.1.3 Decision-Directed (DD) Flat Fading Channel 
Estimation and Detection 

Whether the decision metric mD(a) [eq. (13-9)] is computed recursively 
or not, an optimal decision can only be made after the entire message has 
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been processed. Fortunately, the recursive form of the metric rng;k(ab) = 
AmD;k (ak) + mD;k-1 (a&l) [eq. (13-g)] allows for systematic simplifications. 
In particular, the receiver can perform premature symbol detection before the end 
of the message. For instance, at time instant k, one may decide on the symbol 
ak-S - and thus the sequence a@ - corresponding to the sequence ak with 
the best metric ?nD;k (ak) at time instant k. Then the first k - S + 1 symbols 
{aa,. . . , a&s} of ak can be taken to be known, and only Qs (instead of QN) 
distinct partial sequences { ak-$+l, . . . , c&k} (S 2 1) and their metrics mD;k(ak) 
need to be processed. This procedure would be quasi-optimal if S were in the 
order of the channel memory length; choosing S = l/AL, however, remains to 
be far from being implementable. 

The simplest suboptimal receiver is obtained when all previously transmitted 
symbols a&l are taken to be known (S = l), which is most often accomplished 
by DD online detection [2]. However, online DD detection is, in general, 
unable to incorporate deinterleaving so that symbol detection must be separated 
from deinterleaving and decoding. Hence, detection is performed suboptimally 
on a symbol-by-symbol basis as if uncoded M-QAM or M-PSK symbols were 
transmitted. Since only one sequence a&l = &+1 and its metric ?nD;k-l(&-~) 
has “survived”, the decision on symbol al, is based solely on the metric increment 
AmD;k(ak) [eq. (13-g)], which, in turn, depends on the single channel predictor 
estimate &I k-1 . 

The performance of the receiver with decision-directed one-step prediction 
can be assessed by assuming that the past decisions &- 1 are correct. Hence, 
the BER curves analytically derived here have the character of best-case lower 
bounds; the effect of error propagation resulting from incorrect decisions has to be 
determined by simulation. Using the simplified metric of eq. (13- 12), the average 
pairwise symbol error event probability can be expressed as 

with 

P, = P [AmD;k (a’,“) < fhD;k (af’)] 

YO = zk -ar’ tk)kBl 
(1) A 

yl = Zk-ak ck(k-1 

(14-20) 

(14-21) 

where af’ # ap’ (0) is an incorrect and ok the correct symbol hypothesis. Since 
YO and Yl are complex Gaussian random variables, the error event probability is 
given by [2, 4, 5, 61 

P e = 0.5 (1-p) 
&I - Roe 

P = 
&oo + &I)~ - 4RolRlo 

(14-22) 

Rij = E [xyj*] 
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Assuming Rayleigh fading, the expected values &a, &, Rol, RIO are evaluated 
as 

Roe = E[lyo12] = (1 + po%)l\r, 

Rll = E[IYli2] = (1 - Mop2 + (1 + po~,)No (14-23) 
ROI = E[YoYJ = (1 + po%)Na 
RIO = EIYIY;] = Rol 

(1) with squared distance d2 = ] ok (0) 2 - ok I and symbol energy PO = pk (O) . Inserting 
these quantities into eq. (14-22) yields 

(14-24) 

In the important special case of M-PSK we have po = pr = 1 and Tc = TV = 
2 g+lk-1T8. Considering only error events with minimal distance d2 = (a& = 

2 (1 -cos[27r/M]) (PSK symbol constellation), p reduces to 

PMPSK = 
2 ’ ( l+r, ) 1 

(14-25) 

1+ 1 - cos [27r/M] 1 - re/Ts K 

Assuming that a symbol error entails only one bit error (Gray coding), and denoting 
by nb = ld[M] the number of bits per symbol, by Nb the number of neighboring 
symbols with minimal distance (1 for 2-PSK and 2 otherwise), and by vb = vTd /nb 
the average SNR per bit, the average bit error probability can be approximated 
(lower bounded) by 

Pb;MPSK M $(I - /.JMPSK) 
b 

Nb =- 
2nb 

1 

2 
” nb(l-cos [%/M]) 

l+r, 1 
l-rc/[nbTb] > % 

(14-26) 

For Dth-order diversity with independent diversity branches, the approximate BER 
is given by [2, 71 
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Letting rc -+ 0 in /JMPSK yields the well-known result for coher- 
ent M-PSK detection with perfect synchronization. Hence, the term 
rl = (1 - ~c/[~a~al>l(l + T,) < 1 is identified as the SNR degradation 
factor resulting from imperfect one-step channel prediction. 

For a particular prediction algorithm, Doppler frequency Xb and SNR T*, 
the ratio rc may be extracted from Figure 14-2 or computed from eqs. (14-7) 
(optimal or finite-length Wiener) or (14-19) (LMS-Kalman) and inserted into eq. 
(14-26) or (14-27) to obtain the best-case BER curves for decision-directed sync 
on flat fading channels. These results, along with reference curves for perfect 
sync, have been generated for 2-, 4-, 8- and 16-PSK modulation, Wiener-channel 
prediction via optimal (00 length) as well as length-l0 FIR filtering, and for no 
diversity (D=l) as well as dual diversity (0=2). As an example, Figure 14- 
3 shows resulting BER curves for Doppler Ab=O.O05 and no diversity. The 
other results are concisely summarized in Table 14-2. The BER performance 
of 4-PSK is only very slightly worse than that of 2-PSK so that the respective 
curves are indistinguishable in Figure 14-3. When the fading is relatively slow 
(Xl,=O.OOS), optimal prediction requires a small extra SNR of O-34.7 dB compared 
with perfect sync (both without and with diversity), and length-10 Wiener (as well 
as LMS-Kalman) prediction costs another 0.4-1.9 dB. As expected, the higher PSK 
constellations are somewhat more sensitive against imperfect channel estimation. 
When the fading is fast (Xb =0.05; see Table 14-2), the minimum extra SNR needed 

Decision-Directed Flat Fading Sync 

10" y. 
flat Rayleigh fading, rect. Doppler spectrum 

-w. _ Doppler 0.005, Z-,4-,8-, and 16-PSK, 
no diversity, no error propagation 

length-10 Wiener 
channel prediction 

10.0 15.0 20.0 

average SNR per bit 

Figure 14-3 BER Performance of Receiver with DD Flat 
Fading Channel Prediction, Doppler 0.005 
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Decision-Directed Flat Fading Sync 
flat Rayleigh fading channel prediction, rect. Doppler spectrum 

Doppler 0.005 and 0.05, 2-PSK, SNR/symbol 10 dB 

symbol time index k 

Figure 14-4 Flat Fading Channel Estimate of DD Predictor, 
Doppler 0.005 and 0.05, SNR/Symbol 10 dB 

for optimal prediction rises considerably to 2.44 dB @ BER=lO-” and 2.6-5.3 
dB @ BER=lO -3. On the other hand, the additional SNR required for length-10 
Wiener prediction, ranging between 0.4 and 1.9 dB, is moderate for both slow 
and fast fading. 

The analytical BER results [eqs. (14-26) and (14-27)] have been obtained 
under idealistic assumptions. In reality, not only minimum-distance error events 
(the receiver decides on a neighboring symbol, and only one bit error is made 
thanks to Gray coding), but also error events with larger distance (then more than 
one bit error may ensue) contribute to the BER. Also, the bootstrap mechanism 
of alternating between detection and synchronization (symbol decisions depend on 
the predictor channel estimate, and vice versa) may give rise to error propagation. 
Isolated decision errors are usually leveled out by the predictor memory, while 
error bursts may lead to phase slips which cannot be resolved by a coherent 
symbol-by-symbol detector. This effect is visualized in Figure 14-4 where the 
magnitudes and phases (27r normalized to unity) of the channel predictor estimates 
are displayed for the first 450 iterations, along with the magnitudes and phases of 
the actual channel. One observes that the magnitudes are tracked well, even at low 
average SNR (10 dB), for both slow (Xb =O.OOS) and fast (Xb=O.OS) fading. Phase 
sync, however, is lost after some tens or hundreds of iterations. In Figure 14-4, 
the first such cycle slip (2-PSK: =t?r) occurs after about 400 (X’,=O.O05) and 260 
(Xl,=O.O5) iterations. Figure 14-4 also reveals that these cycle slips correspond 
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Decision-Directed Flat Fading Sync 

average SNR per bit 

Figure 14-5 Simulated BER Performance of Receiver with DD 
Flat Fading Channel Prediction, Doppler 0.005 

with very deep fades where the symbol decisions are likely to be incorrect. In 
order to avoid catastrophic error propagation resulting from the loss of an absolute 
phase reference, coherent detection of long symbol sequences must be aided by 
some kind of differential preceding. 

The combined detrimental effect of all these mechanisms on the BER perfor- 
mance is best assessed by simulation. At each iteration k - 1 --+ k, upon reading 
the new received (diversity) signal sample(s) .?$$ , the simulation module performs 
(diversity) channel prediction &d;k-l, w --) f&l&l from the (old) ML channel 
estimate vector(s) eSd;&i, computation of combiner weights c&$1&i ---) Q”d;k, di- 
versity combination Zd;k , Gd;k -+ til, , detection &k + ?&, and decision-directed ML 
channel estimation z&k, cl, -+ cSd;k needed for the next iteration. 

Figures 14-5 and 14-6 display simulation results of differentially preceded 2-, 
4-, 8- and 16PSK detection (without diversity) based on length-10 Wiener channel 
prediction for Doppler frequencies X$, =0.005 and 0.05, respectively. Correspond- 
ing simulations have also been performed for dual diversity with maximum ratio 
combining (see Section 13.1 and Figure 13-6); the results are included in Table 
14-2. The table lists both analytically derived and simulated SNR levels (per bit, 
per channel) necessary to achieve bit error rates of 10B2 and 10B3. The simu- 
lation runs were terminated after lo7 symbols or lo5 symbol errors, whichever 
occurred first. While phase slips occurred frequently (Figure 14-4), catastrophic 
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Figure 14-6 Simulated BER Performance of Receiver with DD 
Flat Fading Channel Prediction, Doppler 0.05 

error propagation was never observed in any of the simulation runs, this being 
due to the constant-modulus property of PSK symbols which have been matched 
filtered and sampled at the correct timing instants. In the lower SNR regions, 
one observes losses of about 2-4 dB (no diversity) and l-2 dB (dual diversity) 
with respect to the analytically derived BER curves (length-10 Wiener prediction). 
Without diversity, however, the curves begin to flatten out at high SNR when the 
fading is fast (Ab =0.05, Figure 14-6); for 16-PSK, the error floor even exceeds 
10-2, whereas with dual diversity such a bottoming effect is observed only at BER 
levels below lo- 4. The use of diversity is therefore not only effective in aver- 
aging out deep fades but also in mitigating considerably the effects of imperfect 
channel estimation. 

In summary, the decision-aided receiver is a good candidate for suboptimal 
detection of differentially preceded (but otherwise uncoded) M-PSK transmission 
with alphabet sizes up to M=8 or even 16. Without diversity, the very simple 2-, 
4- and 8-PSK receiver is robust against up to 5 percent Doppler. When the fading 
is slow or diversity is available, even 16PSK is a viable option. In order to aid 
the decoder in the case that coding with interleaving is employed, the receiver can 
be made to output channel state information, viz. the channel predictor estimate 
+-I or its power ] &lk-1 12, and/or soft symbol decisions given by the symbol 
estimates &k in front of the slicer. 
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Table 14-2 BER Performance of Receiver with DD Flat Fading Channel Prediction 

1 Analysis (without error propagation) 

I I perfect optimal length-10 
sync Wiener Wiener 

Simulation 

length-10 
Wiener 

SNR [dBj per bit and channel @ BER=lO 

b 
-2 

D = 1 1 2-PSK 17.0 I 19.8 

I 13.9 I 14.3 I 16.6 I 15.0 I 17.1 17.0 I 20.3 

19.3 I 23.9 

22.8 

7.8 I 9.1 

f:: 

7.8 I 9.3 

10.6 I 12.2 

14.8 I 17.0 

-3 SNR [dB] per bit and channel @ BER=lO 
Doppler Xl, = 0.005]0.05 

27.2 I 32.7 D = 1 2-PSK 

4-PSK 

8-PSK 

16-PSK 

D = 2 2-PSK 

4-PSK 

8-PSK 

16-PSK 

24.0 24.5 I 27.8 25.5 I 29.1 

24.0 24.5 I 27.8 25.5 I 29.1 27.2 I 34.0 

29.7 I 38.0 

33.3 

1 13.8 I 14.2 I 17.1 1 15.0 I 18.0 16.5 I 19.0 

I 17.7 1 18.2 I 21.4 I 19.2 I 22.8 20.6 I 24.2 

14.1.4 Main Points 
l Optimal MAP one-step flat fading channel prediction as part of the NDA on- 

line detection process (Chapter 13) can again be performed via ML estimation: 

ML channel estimation: 

k+l (w-1) = P&(ak.-1) - AEl - zk-1 

MAP channel prediction from ML estimate: 
(14-28) 

;klk-1 = WE1 - b;k-l(ak-1) 

[eq. (14-7)] where w&l is the length-k optimal Wiener filter. 



14.2 Data-Aided (DA) Flat Fading Channel Estimation and Detection 739 

. Channel estimator complexity is reduced by truncating the Wiener filter to a 
fixed-length FIR filter w or by adopting an IIR Kalman filtering approach. 
Simplifying the Kalman filter to first order leads to the LMS-Kalman algorithm 

ZkIk-1 = (1 -K) tk-Ilk-2 + K &!;k-1 (14-29) 

. 

[eq. (14-l@]. Through minimizing the total error covariance &lk-l, an 
approximate expression for the optimal gain factor K as a function of Xb 
and Nc has been derived [eq. (14-19)]. The LMS-Kalman algorithm is best 
suited to slow fading (up to about Ab -5 x 10m3) while the FIR Wiener filter 
performs quite well in the critical region of large Doppler above 10e2 where 
LMS-Kalman is no more applicable. 
The decision-directed (DD) receiver for online detection and synchronization 
features just a single NDA channel estimator being fed by symbol-by-symbol 
decisions. The BER performance of DD reception has been assessed analyti- 
cally (best-case lower bound) and by simulation. In the case of slow fading 
(Xl,=O.OOs>, the extra SNR required for (both LMS-Kalman and length-10 
Wiener) DD estimation is moderate. The use of antenna diversity not only 
reduces this SNR loss (here from 3-4 dB to 2.5-3 dB), but also mitigates the 
effects of faster fading. Differentially preceded M-PSK detection with LMS- 
Wiener DD channel prediction is feasible also for fast fading (A’,=O.OS) and 
symbol constellations up to 8-PSK (no diversity) and 16-PSK (dual diversity). 

14.2 Data-Aided (DA) Flat Fading Channel 
Estimation and Detection 

In this section, linear coherent data-aided (DA) detection and flat fading 
channel estimation is investigated where known training symbols are multiplexed 
into the unknown information-bearing data symbol stream. The received signal is 
then demultiplexed into “training” and “data” signal streams. If channel estimation 
is based on training signals only, estimation and detection - which have hithereto 
been viewed as tasks to be performed jointly - become well-separated tasks. As 
opposed to the feedback-type DD receiver, the DA receiver is of an entirely 
feedforward nature; channel estimation does not rely on past data decisions, nor 
can the decision process be disturbed by errors in the channel estimate other than 
those caused by additive noise and possibly aliasing. 

Feedforward DA reception using training or pilot symbols multiplexed into 
the data stream in a TDMA (time division multiple access) -like fashion has been 
proposed independently by Aghamohammadi and Meyr [8] (“smoothed synchro- 
nization”), Cavers [9] (“pilot symbol aided modulation”, PSAM) and Moher and 
Lodge [lo] (“trellis-coded modulation with pilot”, TCMP). It has been shown 
that this method outperforms the more traditional pilot tone assisted modulation 
(PTAM) where the fading process is estimated continually via a pilot tone (some- 
times two tones) embedded in the information-bearing signal such that data and 
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pilot are orthogonal (similar to frequency division multiple access, FDMA). Using 
an orthogonal FDMA-like pilot tone necessitates fairly complex in-band filtering 
for tone separation, consumes extra bandwidth (considering realizable filters), is 
sensitive against frequency shifts, and it aggravates adjacent channel interference 
(ACI) if the tone is placed at the edge of the useful signal spectrum. Also, the 
composite transmitted signal exhibits a larger peak-to-average power ratio thus 
placing more stringent requirements on the linearity of the transmitter amplifier. 

Naturally, training symbol insertion has to be paid for by a slightly reduced 
power and bandwidth efficiency. On the other hand, there are a number of favorable 
consequences associated with DA channel estimation and detection. First of all, 
DA reception is of relatively low complexity since channel estimation (carrier 
synchronization) and detection are totally decoupled. Due to the phase ambiguity 
being resolved by training, fully coherent demodulation can be maintained at any 
time, even during and following deep fades. Catastrophic error propagation is 
circumvented, as long as the positions of training symbols in the data stream are 
known or have been detected correctly (“frame sync”). Also, amplitude-sensitive 
multilevel symbol constellations (M-QAM) can be employed and demodulated 
as easily as M-PSK since the fading compensation unit or diversity combiner 
of the inner receiver (Figure 13-6) acts as an inherent amplitude gain control 
(AGC). As discussed in Section 13.1, providing for and making use of diversity 
techniques requires the synchronizer to operate at conditions where the noise power 
is comparably high as on nonfading AWGN channels. Whereas DD channel 
estimation is based on unreliable detection at low SNR, synchronized DA diversity 
reception still functions in these lower SNR regions since DA channel estimation 
deteriorates gracefully (and not catastrophically) with increasing noise. Interleaved 
channel coding - being a particularly interesting form of diversity - is thus made 
possible also. Moreover, there is no need for the inner receiver to generate 
hard decisions at all; transferring soft symbol decisions tik along with the CSI 
r8;k (Figure 13-6) through the outer receiver’s deinterleaving device preserves 
all relevant information needed for hard detection at the end of the inner/outer 
receiver chain. 

Further advantages of data-aided reception include its applicability to mul- 
tiuser TDMA-based channel access since DA estimation exhibits a robust behavior 
- no significant transient effects - near the ends of short messages (this is proven 
in Section 14.2). As opposed to DD reception, channel estimation via training can 
make use of information contained in “future” samples (smoothed sync, see Chap- 
ter 12). Furthermore, DA reception can - if necessary - be further improved by 
iterative detection and estimation: in the first pass, tentative symbol decisions are 
generated (most often delayed) based on pure DA channel estimation; in the sec- 
ond pass, tentative decisions (or a subset of reliable decisions) may be used for 
improved channel estimation as if they were training symbols [ 111. 

All receivers based on the flat fading assumption are subject to serious 
degradation in the case that this assumption is violated. Naturally, DA reception 
also shares this high sensitivity to IS1 resulting from delay spreads. As a rule of 
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thumb, the error floor varies as the square of rms delay spread rb. For example, 
with uncoded BPSK or QPSK DA reception and bandwidth expansion factor a=0.2, 
rms delay spreads ~b of 0.01 and 0.1 lead to BER floors in the order of lOa and 
10-2, respectively. A wide bandwidth expansion factor of cu=l reduces the BER 
floors by about one order of magnitude [ 12, 131. 

14.2.1 DA Flat Fading Channel Estimation 
Essentially, all kinds of optimal channel estimation discussed in this book are 

variantions on the same basic theme, viz. optimal linear estimation of a desired 
quantity (channel) via an intermediate ML estimate of a related quantity (channel 
samples or a subset thereof), based on appropriate subsets of received samples 2: 
and transmitted symbols a, respectively. For instance, the optimal receiver for 
synchronized detection (Chapter 12) performs ML estimation 6s(a) = cs (a) = 
P-l(a) . AH . z attempting to generate a modulation-free channel trajectory, 
followed by MAP estimation 6D(a) = i?(a) = E[cjz,a] = N(a) + &(a) [p(a) 
set to zero] from the ML estimate, attempting to suppress as much noise as 
possible by smoothing [eq. (12-53)], making use of the entire observation z and 
the entire symbol sequence hypothesis a. Similarly, the optimal DD receiver 
(previous subsection) performs ML estimation its;k-l(ak-l) = Pi:. (a~-1) + Afel . 

zk-1 followed by one-step prediction &p+1(a~-l) = E[ck Izk-1, ak-I] = w& . 
iis;k-l(a~ml) [eq. (14-7)], making use of past observations zk-1 and symbols 
ak-1 only. 

By the same token, the optimal DA receiver performs ML and MAP channel 
estimation based on the subset of N training symbols 

T 
aT = ako akl ak2 . . . 

located at positions k = ko, ICI, . . . , kFwl within the length-N message a, and the 
associated “punctured” observation 

ZT =AT-CT + IIIT (14-31) 

with diagonal symbol matrix AT = diag 1 ak,, , akl, . . . , ak--, , and punctured ) 
channel CT and noise mT vectors. Note that appropriately chosen training symbols 
aT can also be used for purposes other than channel estimation, viz. frame sync, 
estimation of small frequency offsets s2’ [eq. (12-g)], and synchronization of other 
receiver components, e.g., deinterleaver and decoder. 

Analogous to joint detection and estimation [eq. (12-28)J and one-step 
prediction [eq. (14-2)], the optimal DA channel estimator and its MMSE are 
given by [ 11” 

(14-32) 

lo Again, the channel is assumed to be zero-mean Gaussian even if a LOS path is present (see Section 
12.2.3) so that only the dynamic part is considered for channel estimator design, i.e., W(m) = cy(7n) 
and Pd = 1. 
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The quantities 11,, (scalar), E:Ck,ZT (1 x p), and C,, (N x F) evaluate as 

EC, = E[lck[2] = 1 

II ck ,zT = E [ck . $1 = rgiTAg (14-33) 

II ZT d3[ZT -zT”] = ATRD;TA; + %;T 

where 

+o --ho) cr(ko-El) * . . 

RD,T = 
a(h -ko) a(kl-kl) . . . 

. . 

a(,,;_,,) o(k&kl) 1:: 

rD,T;k = a(k-ko) a(k-kl) . . . +-h))T 

are the “punctured” channel autocorrelation matrix [eq. (12-49)] and the vector 
of channel autocorrelation samples with regard to the particular position k of the 
desired channel sample ck, respectively, and R,,T the punctured noise covariance 
matrix. Inserting EC, , ECk ,zT, and EzT into eq. (14-32) and applying the matrix 
inversion lemma [eq. (12-39)] twice yields the result [analogous to eq. (14-6)]: 

ML channel estimation: 

A~R~,TAT 
-1 

&T(aT) = 1 AFRz,T * ZT 

&,T(aT) = (AgR:,TAT)-l 

MAP channel estimation from ML estimate: (14-35) 

If the noise is AWGN with power N 0, eq. (14-35) can be further simplified 
-1 

via replacing the term A$~R~,TAT 1 = NO . PT1 (aT) by No1 (see previous 
section), so that eq. (14-35) reduces to 

ML channel estimation: 

h,T(aT) = p;‘(,,) - Ag - ZT 

&,T(aT) = NO e PT’(aT) 

MAP channel estimation from ML estimate: 

ek = +?‘;k * (RD,T + NoI)-’ %,T(aT) 
(14-36) 

-- 
Wkn 

2 
%;k = 1 - r&-;k + (RD,T i- NoI)-’ a rD,T;k 

wk 
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optimal flat fading channel estimation (Wiener smoothing) 
for joint detection and estimation 

a 

decision-directed (DD) optimal 1 -step flat fading channel, prediction 

data-aided (DA) optimal flat fading channel estimation 

Figure %4-7 Optimal Flat Fading Channel Estimation: Wiener Smoothing (for 
Joint Detection), DD Estimation, and DA Estimation 

[see also eqs. (12-53) and (14-7)]. Again, ML estimation depends on the particular 
choice of training symbols aT , while MAP estimation from &,T (aT ) as well as the 
(nominal) error covariance c,.~ 2, depend on the channel parameters (X’,, NO) and 
the positions Ice, ICI, . . . , k7~ of the training symbols relative to the position Ic 
of the desired channel estimate &. In theory, a distinct set of (real-valued) Wiener 
coefficients wk needs to be computed for each instant k. 

The scenarios of all three types of optimal flat fading channel estimation, viz. 
Wiener smoothing using all symbols (joint detection and estimation), optimal one- 
step channel prediction using past symbols (DD receiver), and Wiener smoothing 
using training symbols (DA receiver), are illustrated in Figure 14-7. Depending on 
the position k of the desired channel sample, DA estimation is seen to encompass 
the tasks of optimal channel interpolation (if there are both past and future training 
instants kK relative to k), extrapolation (if there are only past or future training 
instants kK), and jiltering (if k corresponds to one of the kK). 
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14.2.2 Uniform DA Channel Sampling and Estimation 
On a more abstract level, data-aided channel estimation calls for the recon- 

struction of a band-limited random process (the channel trajectory c) from its own 
noisy samples (ML estimate i?S,T). Hence, DA estimation is intimately linked 
with concepts of sampting theory. In fact, the sampling theorem has been and re- 
mains to be the theoretical basis of most practical DA channel estimation schemes 
where the training symbols are spaced F symbol intervals apart such that the 
channel is sampled at or above the Nyquist rate 2Xb, i.e., F 5 l/(ZXb). Con- 
versely, aspects of sampling and signal reconstruction can be viewed from the 
perspective of estimation theory. In that vein, linear Wiener MMSE estimation 
- in particular, Wiener smoothing according to eq. (14-36) - constitutes a more 
general mathematical framework within which conventional reconstruction of uni- 
formly sampled random signals via sin(z)/a: interpolation (regardless of whether 
the signal is noisy or not) is just a special case. Over and above that, Wiener esti- 
mation effectuates optimal noise suppression, optimal interpolation, extrapolation, 
and signal reconstruction from unequally spaced samples. In all of these scenarios, 
estimator performance (noise and/or aliasing) remains completely analyzable via 
eq. (14-36). This also extends to intercellular cochannel interference (CCI) which 
can be treated as if it were AWGN with power equal to that of the interfering 
signal(s) [ 141. The Gaussian approximation holds with high accuracy for both 
uncoded and coded systems at all relevant SNR levels. 

Let us now study in further detail uniform DA channel sampling and es- 
timation under best-case conditions. In particular, we assume quasi-continuous 
transmission (message length much larger than the channel coherence time, i.e., 
N >> l/AL), steady-state Wiener filtering (time index k far from either end 

of the message, i.e., k >> l/XL and N - k >> l/xb), and channel over- 
sampting through uniformly-spaced training symbols positioned at time instants 
kK = KF (K = 0, * . .) N - 1, F 5 1/(2A’,)). With uniform sampling and 
steady-state receiver processing, only F sets of interpolation filter coefficients wkj 
[eq. (I4-36)] need to be precomputed, one for each relative (“intrablock”) position 
k’ = O,...,F-1”. 

With infinite-length uniform filtering, the set of coefficients wk! (k’ = 
0 .‘> F-l) can easily be determined as follows. The sequence &,T;k = cS;K of 
ML channel probes, sampled at rate l/F2 from a channel trajectory with Doppler 
frequency AD,, has the same statistical properties as a sequence &;k of channel 
probes, sampled at symbol rate l/T from a channel trajectory with F times larger 
Doppler frequency F s X0. Making use of the approximations discussed in Chapter 
12, the filter coefficients are therefore given by those of the “rectangular” Wiener 
filter for optimal smoothing [eq. (12~63)], with Xl, replaced by FX/, and index 

li The relative position k’ of a symbol (or channel sample) with respect to the previous training symbol 
(at position k = kK) corresponds to the absolute position k = kK + k’. 
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Flat Fading DA Receiver with Uniform Sampling 

> 

decrmatlon 
+I= :- 

frame 
sync 

+k %,T;k 
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(k’ = k mod F, I 
ML channel = 0, . . . . F-l) I I 
estimation 

,, %k,, 
length-v noncausal 1 I 

Wiener smoother 
I 

; I 
ML-MAP I 

Figure 14-8 Flat Fading DA Receiver for Continuous 
Data Transmission (Uniform Sampling) 

k replaced by n - k//F: 

1 
w,;$’ = 

1+ 2FX~/7, 
2FXb si 2rFA’ 

[ D(G)] 
(14-37) 

Naturally, the filters wk’ must be truncated to some finite length, say V. With 
symmetric filter length truncation (y/2 “causal” and Y/Z “noncausal” coefficients), 
quasi-optimal performance results if the filter spans (v/~)F >> l/A:, symbol 
intervals to either side of the present block. Such a receiver with uniform 
channel sampling is shown in Figure 14-8. Since uniform DA channel estimation 
from training samples zT;k Using Syn’imet.t’iC filters wk’ introduces a delay Of 
D = (v/2)F symbol intervals. the data samples zk must also be delayed by D. 
In the figure, the inner receiver outputs the (delayed) soft symbol decisions tik and 
the CSI 1 ck 12), but it may equivalently produce the tuple (&k, 7s;k) as in Figure 
13-6 or the signal pair (zk , &) [see eq. (13-14)] as needed for the computation of 
the decision metric increment AmD;k (c&k) according to eq. (13-12); the metric is 
identical to that of DD reception with the DD predictor estimate &lk- 1 replaced 
by the DA estimate ik. The receiver of Figure 14-8 readily extends to the case 
of diversity reception where DA channel estimation must be performed in each 
diversity branch prior to combining (Figure 13-6). 

The error analysis of uniform DA channel sampling and estimation closely 
follows that of DD channel estimation or optimal channel smoothing. Of course, 
ML channel estimation &J;k = (a&k/pT;k)zT;k [eq. (14-36)] yields the same 

. error covmance ci,T;k = l/(TspT;k) as in eqs. (14-7) (DD) and (12-53) (optimal 
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smoothing). The performance u,“;~ of MAP estimation according to eq. (14-37) 
is assessed as follows. With uniform sampling, the interpolated estimates & bear 
the same error covariance for all k as long as the sampling theorem holds. Since 
the optimal estimator works on a sequence of channel probes with F times larger 
Doppler than the original channel, the error covariance g,“;k = a: is identical 
to that of optimal Wiener smoothing [eq. (12-53)], with XL replaced by FX/,. 
However, since the approximation r=,(Xb, 7,) = re(Xb) % 2FX’, [eq. (12-62)] 
neglecting the impact of the SNR ya is too coarse in the case of smaller effective 
sampling margins, the approximation of eq. (12-61) is used so that the expression 
for the error covariance reduction factor TV - the total error covariance, assuming 
PSK training symbols, is then given by a: = rc/T8 - reduces to 

1 
r, = 

1+ 2F4,/79 
2FX(, (14-38) 

As expected, the error performance of uniform DA channel estimation (every Fth 
symbol is used for training) is worse by a factor of M F than that of optimal 
smoothing where all symbols are used as if they were training symbols. 

The total SNR loss factor q = ?jF?jc of DA reception depends on the quality 
of channel estimation and on the percentage VF = (F - 1)/F of training symbols 
inserted into the symbol stream. The SNR reduction factor qc resulting from 
imperfect channel estimation - originally derived for symbol-by-symbol QAM or 
PSK detection but, thanks to symbol randomization through interleaving, also valid 
for interleaved coded modulation - is obtained as follows. Since the performance 
analysis of the previous section [eqs. (13-12) through (14-27)] does not depend 
on the particular method of channel estimation, the term (1 - re/[navb])/( 1 + rc), 
which has been identified as the (average) SNR degradation factor resulting from 
DD channel prediction, is also valid for DA channel estimation, with a: now given 
by eq. (14-38). Hence, the average BER for DA reception on flat fading channels 
is well approximated by eqs. (14-26) (no diversity) or (14-27) (diversity), with 
SNR degradation factor: 

Total SNR loss : 

77 =qF% 

SNR loss due to training symbol insertion : 
F-l 

r)F =- 
F 

SNR loss due to imperfect channel estimation : 

1 - rc/7, 1 
qc = 

1+ rc = 1+ (1 + l/v,) 2F& 

and ‘J, = nbTb the (average) SNR per symbol. 
Obviously, there is a trade-off between qF and qc; a higher percentage of 

training symbols improves on the quality of channel estimation but reduces the 
power (and bandwidth) efficiency, and vice versa. Figure 14-9 displays SNR loss 
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flat 

Flat Fading DA Channel Estimation 
fayleigh fading, rect. Doppler, Doppler 0.001-0.05 
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channel sampling factor F 

Figure 14-9 SNR Loss of Optimal DA Receiver with Uniform 
Channel Sampling for Flat Fading Channels 

factors 10 logla( l/q) (in decibels) for Doppler frequencies XL = 10m3, 5 x 10B3, 
0.01, 0.02 and 0.05, versus the channel sampling factor (block length) F. Since 
Q is not much dependent on the SNR y8, the curves are given for the limiting 
case T8 ---f 00. The estimation loss 10 logre(l/qe) is seen to rise almost linearly 
with F until it reaches 3 dB at Fmax = l/ (2AL) (Nyquist rate) where the total 
SNR loss is dominated by qc (see, e.g., Xb=O.Ol, F=50). Depending on Xb, the 
total loss has a distinct minimum. By setting the derivative of q [eq. (14-39)] with 
respect to F to zero, one obtains the associated optimal sampling factor 

F 
1 

opt M int 1+ - [ 1 r 

= 
2x:, 

in+ + j/Z] (14-40) 

with int[z] the nearest integer to 2. This optimal frame length is usually much 
smaller than the maximum sampling factor Fmax determined by the Nyquist rate, 
which suggests that DA flat fading channel estimation should be designed such 
that there is a considerable oversampling margin. Apart from reducing the total 
SNR loss, selecting smaller values of F provides for a safety margin against larger 
Doppler (or frequency offsets) and may also facilitate other tasks such as frame 
sync or online estimation of unknown statistical channel parameters. 
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14.2.3 Aliasing and End Effects in DA Channel Estimation 

Let us now investigate aliasing and end effects resulting from various kinds of 
“nonideal sampling” of a flat fading channel. Nonideal sampling is often dictated 
by real-world constraints such as channel access, receiver complexity, or latency. 
For instance, limited complexity and latency both call for finite-length channel 
smoothing. Also, most multiuser cellular radio systems feature some kind of 
TDMA channel access so that the receiver must be able to perform synchronization 
based on a single message burst. This is even more important in the case of 
spontaneous packet transmission where frequency and frame synchronization may 
be required in addition to timing sync and channel estimation. Some examples of 
typical message formats are shown in Figure 14-10. The message formats studied 
here are the following: 

a. Finite-length DA channel estimation using Y uniformly spaced channel sam- 
ples with sampling factor F = Fopt= 11 I 4 (Doppler Xb= 0.005 I 0.05) 

b. DA channel estimation near the start (first four blocks) of a long message 
with uniform channel sampling (sampling factor F = Fopt) and no preamble 

C. DA channel estimation near the start (first four blocks) of a long message with 
uniform sampling, preceded by a short preamble block of length P = 5 I 2 

Flat Fading DA Channel Estimation Message Formats 
(Examples) 
finite-length DA channel estimation (shown here: length-4) 

. . . 
k 

DA channel estim 

DA channel estimation at start (or end) of message, with preamble 

0 F 

DA channel estimation using pre- and postamble 

k 

P P 0 
k 

DA channel estimation using midamble 

Figure 14-10 Examples of Message Formats for DA 
Flat Fading Channel Estimation 
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d. DA channel estimation (interpolation) within the data block of length 
F,,,/2 - 1 = 49 I 4 embedded in two short pre- and postamble blocks, 
both of length P = 5 I 2 

e. DA channel estimation (extrapolation) within the data block following a short 
midamble of length P = 5 I 2 

The error covariance factors T,;~c = u$kTs evaluated via eq. (14-7) are now 
dependent not only on (A b, 7,) but also on the sample index Ic. The result 
corresponding to the frame formats (a) through (e) listed above are shown in 
Figures 14-11 through 14-14. 

From Figure 14-11 (X’,=O.OO$ F = Fopt= 11) one observes that finite- 
length symmetric DA filtering (case a) will not significantly compromise estimator 
performance even in the case of short filters with only v= 6 or 4 coefficients. Very 
simple length-2 filters exhibit a noticeable - yet still tolerable - degradation which 
is due to the limited degree of noise averaging. The same is also true for fast 
Doppler (A’,=O.OS, F = Fopt= 4), except for the somewhat larger estimation error 
(T,;I, between 0.35 and 1; results not shown). At any rate, the use of finite-length 
Wiener filtering with spacing F = Fopt is seen to yield significant improvements 
(T+ usually well below 1) with respect to ML estimation alone, especially when 
the SNR is low. 

Data Aided Flat Fading Sync 
flat Rayleigh fading; rect. Doppler, SNR 5, 10 and 20 dB 

-Doppler 0.005, block length F=l 1, finite-length 
-symmetric Wiener channel estimation 

0.8 -h.. 
: : 

E SNR 5 dB 
. ..- 

_ . . . . ..*. 
.... ‘... . . m SNR 10 dB 

‘. ‘. ‘...., m SNR 20 dB 
0.6 - -*..,, 

. . . . 
,,..~~~~~~~~~~‘~~’ 

. . . . . . 
,,h..’ 

-- _ ‘....., 
---_ ‘......, ,...‘. ,..... 

---_ “‘~......,,.,...,.,......~‘~’ ---______----- 

0.4 - 

intra-block index k 

Figure 14-11 Performance of Finite-Length Symmetric 
DA Flat Fading Channel Estimation 
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Data Aided Flat Fading Sync 
flat Rayleigh fading, rect. Doppler, SNR 5, 10 and 20 dB 
0*8-Doppler 0.005 1 0.05, block length F=l 1 1 4 

w SW -inessage with and without preamble of length F 
G -‘,viener channel estimation for first four blocks 

E SNR 5 dB 
m SNRlOdB 
B SNR 20 dB 

Doppler 0.005, 
block len#h 11 . . . . . . . . . . . . . .._._..._....................... .~,.......“........‘..................... --------=- 

__---- __---- -= 
length- 11 preamble 

sample index k 

Figure 14-12 Performance of DA Flat Fading Channel 
Estimation at Start (End) of Message 

Figure 14-12 shows the results for unsymmetric DA filtering (cases b and c), 
most often performed near the start (end) of a message, or when a severe latency 
constraint precludes any noncausal filtering. Without a preamble (case b), some - 
again tolerable - degradation results for the first two or three data blocks (T+ is 
shown for the first four data blocks of length F = Fopt = 11 I 4). If necessary, 
this can be compensated by using a preamble (case c); Figure 14-12 reveals that 
a short preamble (length 11 I 4) suffices to more than offset any degradations due 
to end effects. 

Advanced multiuser channel access with TDMA component requires the 
transmission of short data bursts comprising very few training segments. Figure 14- 
13 shows the performance of DA channel estimation using two training segments, 
one at either end of the message, viz. a pre- and a postamble (case d). In this 
example, the data block is of length F,,,/Z - 1 = 49 I 4 where Fmax = l/(2&) 
= 100 I 10 is the maximum spacing between training symbols according to the 
sampling theorem [as if uniform sampling were applied; see eq. (14-40)]. The 
estimator is seen to yield almost uniform performance within the data block, except 
when the SNR is large. In that case aliasing effects dominate in the central region 
of the message, and the interpolation error can exceed the error in the ML estimate 
(r,;l; larger than I), whereas the estimation error near the training segments at either 
end of the message is dominated by the noise averaging capability of the training 
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Figure 14-13 Performance of DA Flat Fading Channel 
Estimation in Between Pre- and Postamble 

segments. When the SNR is small, on the other hand, the noise may completely 
mask any aliasing effects even in the center of the message (Figure 14-13, results 
for 5 and 10 dB). 

As a general rule of thumb, one may state that a message format should 
be designed such that aliasing effects can only become the dominant source of 
error at SNR levels considerably higher than the nominal point (or region) of 
operation. In the examples studied so far, this has always been the case, at least 
when considering average SNRs below 20 dB. If a message burst comprises only a 
single training segment (midamble, case e), the degree of aliasing heavily depends 
on the channel dynamics relative to the length of the data blocks preceding and 
following the midamble. As shown by Figure 14-14, the error in the extrapolated 
DA channel estimate quickly rises with increasing distance from the midamble. 
As a consequence, using a midamble is only advisable if the data blocks are 
much shorter than the channel coherence time. In this example, the estimation 
error remains below or is comparable to that of ML channel estimation at 10 
dB SNR (f,;k smaller than or in the order of 1) for data blocks not longer than 
about (1/7)x 1/(2Xb) = 14 I 1.4. Hence, if fading is a problem, it is advisable 
to augment the message by a postamble (case d) since then the data blocks are 
allowed to be much longer (here: data block length 49 I 4). 



752 Parameter Synchronization for Hat Fading Channels 

Data Aided Flat Fading Sync 
flat Raylei h fadin , rect. 

4.- Do ? er 0;OO !? 1 0.05, 
Doppler, SNR 5, 10 and 20 dB 

structure 
. p message 

-0 - SW 
08 

tdF: ta,midC&mble,data) with midamt@ length 5 1 2 
1 :Wi,ener channel estimation for dyb” block 

/ E ’ SNR 5 dB 
/ B SNR 10 dB 

B SNR 20 dB 

0.1 1 0 0 
0. 

sample index k 

Figure 14-14 Performance of DA Flat Fading Channel 
Estimation to Either Side of Midamble 

14.2.4 Example: DA Receiver for Uncoded M-PSK 

Let us now examine a DA receiver design example for uncoded M-PSK 
transmission. Again, the two design Doppler frequencies of 0.005 and 0.05 are 
considered. The corresponding uniform sampling factors F are chosen optimally 
[eq. (14-40)] as 11 and 4, respectively. With infinite-length optimal filtering [eq. 
(14-37)], the error covariance factors TV [eq. (14-38)] are in the range 0.106,...,0.11 
(Ta= 5 ,..., 30 dB) for (Xl,=O.OOS, F=ll), and 0.36 ,..., 0.4 (T5= 5 ,..., 30 dB) for 
(Xb=O.O5, F=4). The corresponding total SNR loss q [eq. (14-39)] evaluates as 
1.02 ,..., 0.87 dB (Xb=O.OOS, F=ll, q F=lO/ll) 
q~=3/4), respectively. 

and 3.3 ,..., 2.7 dB (&=O.OS, F=4, 

A good compromise between performance and complexity results if the length 
v of the symmetric DA estimation filter (Figure 14-8) is chosen such that the filter 
spans the main lobe of the channel autocorrelation function: (v/2)F M 1/(2Xb) 
4 v M l/(FXI,). With v=21 (X(,=0.005, F=ll) and 7 (A’,=O.OS, F=4), the 
error covariance factors T, [eq. (14-36)] evaluate as 0.14 ,..., 0.19 and 0.42 ,..., 0.70, 
respectively; these figures are not much worse than those associated with infinite- 
length filtering (see above). 
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Like with DD estimation, these error covariance factors translate into bit 
error curves via eqs. (14-26) (no diversity) or (14-27) (diversity). Figures 14-15 
(X’,=O.O05, F=ll) and 14-16 (Xl,=O.OS, F=4) display BER curves for 2-, 4-, 8- 
and 16-PSK without diversity. In addition, Table 14-3 summarizes these results - 
along with those obtained by simulation - for no diversity as well as dual diversity 
with maximum ratio combining. With length-v DA filtering and no diversity, the 
SNR loss is observed to be only slightly larger than with optimal infinite-length 
filtering; the additional degradation is in the order of 0.1-O-3 dB (Xl,=O.OOS, F=ll, 
v=21) and between 0.3 and 1 dB (X’,=O.O5, F=4, v=7) without diversity, and 
0.1-0.3 dB and 0.2-0.8 dB with dual diversity, respectively. Again, the use of 
diversity tends to mitigate the effects of imperfect channel estimation. 

The performance of the DA receiver (Figure 14-8) and its extension to 
diversity reception (Figure 13-6) was also verified by simulation. When it comes 
to receiver implementation, the dependence of the filter coefficient sets wk’ on the 
parameters Xl,, k’, and Ta is a nuisance that needs some attention. Assuming 
that the block length F is tailored to a certain (maximum) Doppler X/,, the 
filters wkl can likewise be designed for this particular Doppler frequency xb 
so that the two parameters k’ and T’, remain. Since the block length F M F,,t 
is considerably smaller than the maximum allowable Fmax [eq. (14-40)], the 
channel process is oversampled by a factor of 9 (X’,=O.O05, F,,,=lOO, F=ll) 
and 2.5 (X$,=0.05, Fmax= 10, F=4) for this example. Therefore, Wiener filtering 
needs not be performed for each and every k’ = 0, . . . , F - 1 but for very few 
intermediate “pole” positions only, say k’=O (Ab=O.OOS, F=ll) and k’=O and 2 
(Xl,=O.OS, F=4). For k’ in between these pole positions, the estimated trajectory 
is reconstructed by simple linear interpolation. 

With infinite-length filtering, the remaining parameter 7a = l/No affects only 
the overall gain factor l/(1 + 2FXb/yJ) [eq. (14-37)] so that the computation of 
wlc’(Ts) is very simple in that case. On the other hand, finding a simple functional 
approximation to the length-v filter coefficients 

-1 

* rD ,T;k’ (14-41) 

[eq. (14-36)J is less obvious. As shall be shown below, the vth-order matrix 
operations of eqs. (14-37) and (14-41) can be circumvented by an eigensystem 
synthesis approach where the matrix @ is expressed as 

v-1 

@(Ts) = RD,T + $1 = UAW = 
c 

xi * ugly 

= +,T ; +I)uH = u:-,TuH + U(tI)UX (14-42) 
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with eigenvector matrix U = (uc . . . u,-1) satisfying UHU = UUH = I, 
A = diag{Xc, . . . , &,-r} the (diagonal) eigenvalue matrix of a, and AD,T = 
diag(b,T;o, . . . , AD,T;~-~ ) the eigenvalue matrix of RD,T. The eigenvalues Xi 
of 0 are therefore given by Xi = XD,T+ + l/r,, and the eigenvectors ui of 4Ei 
are the same as those of RI),T and thus independent of the SNR Ts. Hence, the 
weight Vector wkJ (Ts ) can be Written as 

u-l 

c 

1 
= H 

i=. AD,T;i + l/Ts ‘“iui 
s rD,T;k’ 

(14-43) 

c 1 = - ([Ui$] - rD,T;k’) 
i=. XD,T;i + I/% \-+-H 

Wi;kJ 

Since the partial weigth vectors w;;kJ are independent of T8, they can be precom- 
puted and stored, together with the set of eigenvalues (XL),T;i}. During online 
receiver operation, the SNR-dependent weight vector wkJ(T8) can now be easily 
computed by superposition. 

When performing the eigensystem analysis of eq. (14-43, one finds that 
only a small number V < v of eigenvalues {AD,T;o, . . . , XD,T;F- 1) and respective 
eigenvectors { uc , . . . , UT- 1) are significant. Reformulating the inverse of <P as 

=U+kI 

= AD,T;i F 
AD,T;i + l/ys ’ uiu8 I) 

(14-44) 
leads to the simplified weight vector synthesis 

r-1 

WkJ(%) = *J8 e rD,T;kJ - c 
AD,T;i 

i=o XD,T;i + ‘ITS 
(14-45) 
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Hence, only v partial weight vectors {w~;kj, . . . , w~-~;~/} and eigenvalues 

v D,T;O, - - . , XD,T;~-~ ) need to be precomputed and stored for online SNR- 
dependent weight vector generation. 

If the filter WkJ exhibits even symmetry about the pole position k’ of interest12, 
V is even smaller; for the DA receiver example discussed here, only 27=3 symmetric 
partial weight vectors Wi;k’ and respective eigenvalues remain. This motivates the 
choice of v=21 for (Xl,, =O.OOS, F=l 1, k’=O), v=7 for (Ab=O.OS, F=4, k’=O), and 
v=6 for (Xb=O.OS, F=4, k’ = F/2=2). 

The results obtained by simulation, making use of linear interpolation between 
pole positions and the weight vector generation procedure just described, are shown 
in Figures 14-15 and 14-16 (no diversity) along with the analytically derived BER 
curves. Again, Table 14-3 summarizes these results for 2-,4-,8- and 16-PSK DA 
reception without and with dual diversity. 

Compared with DD reception, one observes a better agreement between 
analysis and simulation. For 2- and 4-PSK (no diversity) and all signal alphabets 
from 2- to 16-PSK (dual diversity, not shown here), the simulated BER curves are 
indistinguishable from their analytically obtained counterparts. Only in the case of 
no diversity and dense symbol constellations (8- and 16-PSK) the simulated BER 
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Figure 14-15 Simulated BER Performance of Receiver with Uniform DA 
Flat Fading Channel Estimation, Doppler 0.005, F=ll 

I2 The filter wk/ is symmetric for pole position k’=O and Y odd, or k’ = F/2 and v even. 
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is seen to be siightly larger (Figures 14-15 and 14-l@, which can be attributed to 
the fact that symbol errors occurring at low instantaneous SNR levels may entail 
more than a single bit error. 

According to Tables 14-2 (DD) and 14-3 (DA), DA reception is superior 
in terms of power efficiency (simulated BER) for all scenarios investigated here, 
even when considering the power that has to be spent for training. However, 
the insertion of training symbols also costs bandwidth which has to be taken into 
account for a fair comparison. Figure 14-17 compares DD and DA reception in 
terms of both power and bandwidth efficiency, based on the SNR (per bit, per 
channel) needed for a (simulated) BER of 0.01. For low Doppler (X’,=O.OOS), 
DA reception remains to be superior; here the reduction in bandwidth efficiency 
(factor 10/l 1) is more than offset by the good power efficiency. This is also true 
for high Doppler (0.05) and no diversity, in spite of the compromised bandwidth 
efficiency (factor 3/4), since with DD reception denser symbol constellations are 
more sensitive against fading. DD reception can be superior only when the DA 
training overhead is large (high Doppler) and dual diversity is available. In this 
case, however, DA reception can also be made more bandwidth efficient by using 
less frequent training, e.g., F = Fmax= 10 o(b=O.O5), and performing two-stage 
detection and channel estimation [ 111. 

Data-Aided Flat Fading Sync 
flat Rayleigh fading, rect. Doppler spectrum 

- ppler 0.05, 2-,4-,8- 
i\\opt. 

and 16-PSK, no diversity 
block length F=4, simulation results 

D perfect sync 
D analysis: optimal 

DA estimation 

“Y.y,PSK.;, ’ 
1 o-3 - , , 

Id.0’ 
I I , 

ILO 
I 1 I 

2d.O ’ 
, , .‘.., 

. ..‘.\=yL 

22.0 
, > “;, 

3d. 

average SNR per bit 

Figure 14-16 Simulated BER Performance of Receiver with Uniform DA 
Flat Fading Channel Estimation, Doppler 0.05, F=4 
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Table 14-3 BER Performance of Receiver with Uniform 
DA Flat Fading Channel Estimation 

D=l 

SNR [dB] per bit and channel @ BER=10B3 I 

D=2 

D = 1 2-PSK 24.0 24.9 I 26.7 25.2 I 27.5 25.2 I 27.6 

4-PSK 24.0 24.9 I 26.7 25.2 I 27.5 25.2 I 27.6 

8-PSK 25.8 26.7 I 28.5 27.0 I 29.5 27.4 I 30.6 

16-PSK 29.1 30.0 I 31.8 30.3 I 32.8 31.0 

D = 2 2-PSK 11.1 12.0 I 13.9 12.1 I 14.2 12.1 I 14.2 

4-PSK 11.1 12.0 I 13.9 12.1 I 14.2 12.1 I 14.2 

8-PSK 13.8 14.7 I 16.5 14.9 I 17.1 14.9 I 17.1 

16-PSK 17.7 18.6 I 20.4 18.9 I 21.2 18.9 I 21.2 

14.2.5 Example: DA Receiver for Trellis-Coded Modulation 

In the case of uncoded transmission, both DD and DA reception are viable 
options. With interleaved channel coding and high noise/interference, however, 
DD channel estimation is more critical, and feedforward DA receiver processing 
is highly desirable in order to avoid error propagation resulting from unreliable 
tentative symbol decisions. A channel-coded transmission system featuring DA 
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Figure 14-17 Performance Comparison of DD and DA 
Receivers: Power and Bandwidth Efficiency 

reception (inner receiver) and interleaved trellis-coded modulation (TCM, outer 
receiver) is shown in Figure 14- 18. 

The inner receiver performs uniform DA channel estimation and delivers 
fading-corrected soft decisions & and channel state information (CSI) ys;a (Figure 
13-6). The outer transmission system comprises trellis encoding, modulation 
(symbol mapping), block interleaving/deinterleaving, and Viterbi decoding using 
the CSI. The input bits bi (index i: noninterleaved time scale) are trellis-encoded 
and mapped onto PSK or QAM data symbols which are written row-wise into the 
block interleaver matrix. After adding training symbols for DA channel estimation, 
the channel symbols al, (index Ic: interleaved time scale) are read out column-wise 
for transmission. In the outer receiver, both the soft decisions tik and the CSI Ys;k 
are deinterleaved and used for Viterbi decoding. 

The interleaver depth is assumed to be a multiple I x F of the frame length F. 
In the case of continuous transmission without frequency hopping (FH), I should 
be sufficiently large so as to effectuate near-ideal interleaving. In this example, 
I = F is chosen so that the interleaver depth of F2 = F& R F,,, = l/(2$) 
[eq. (14-40)] approximately equals the (one-sided) width of the main lobe of 
the channel autocorrelation function. Then the channel samples pertaining to 
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Figure 14-18 Transmission System with DA Reception and TCM Channel Coding 

neighboring deinterleaved symbols, i.e., along a row in the deinterleaver matrix, 
are sufficiently uncorrelated. The interleaver length S, which must be large with 
respect to the code constraint length, is chosen here to be equal to the survivor 
depth DS (here S = Ds =25) of the Viterbi decoder. This choice is particularly 
advantageous in the context of combined decoding and equalization discussed in 
Section 15.2. 

It is important to note that this scheme may also be combined with TDMA 
channel access and/or frequency hopping (FH). This is made possible by DA 
reception being also applicable to short packets or bursts (Section 14.2.3). For 
instance, one interleaver column of length I x F, possibly enhanced by some 
additional preamble or training symbols, may constitute one FH-TDMA burst. 
This not only aids near-ideal interleaving at a reduced latency (I x F can be 
smali), but has also a number of other advantages in multiuser environments, e.g., 
interferer and frequency diversity effects [ 151. 

For the use on fading channels - especially on flat Rayleigh channels without 
antenna diversity where deep fades occur frequently - the codes should be selected 
for maximum eflective code length (ECL) rather than minimal distance [16]. 
The ECL is the minimum number of channel symbols with nonzero Euclidean 
distance in an error event path and can therefore be interpreted as the order 
of time diversity provided by the code. Using interleaved coded modulation 
designed for large ECL, combined with FH-TDMA channel access and feedforward 
DA receiver synchronization, constitutes a very effective anti-fading and anti- 
interference technique [ 171. 
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Figure 14-19 Simulated BER Performance of Transmission System with 
DA Flat Fading Channel Estimation and TCM Channel Coding 

Two trellis codes with large ECL have been selected for this example. Both 
codes convey two information bits per symbol and are therefore comparable (in 
terms of bandwidth efficiency) with uncoded 4-PSK. The first code (“8PSK”) 
is a rate-2/3, 16state 8-PSK Ungerboeck code [18] with asymptotic coding gain 
(AWGN channel) 4.1 dB and ECL 3. The second code (“16-QAM”) by Moher and 
Lodge [lo] is a 2x rate-l/2, 2x 16 state, 2x4-PAM (16-QAM with independently 
encoded I and Q rails) code with asymptotic coding gain 3.4 dB and ECL 5. 

Figure 14- 19 shows the BER simulation results for 8-PSK and 16-QAM 
trellis-coded transmission over flat Rayleigh channels with Ab= (0.005 I 0.05) and 
DA reception with uniform sampling and F= (11 I 4), along with the asymptotic 
matched filter lower bounds (MFB) for these codes [ 17, 191. The SNRs needed to 
achieve BERs of low2 and 10m3 extracted from Figure 14-19 are listed in Table 
14-4. As expected, the 16-QAM code is most effective especially when antenna 
diversity is not available. Thanks to the large ECL of 5, the BER decays as fast as 
one decade per 2 dB SNR, and a BER of 10m2 is achievable at (8.0 I 9.9) dB SNR 
per bit (A>= (0.005 I O.OS)), which is superior to the 8-PSK code by about 1.5 dB. 
With dual diversity, the 16-QAM code remains to be superior to the 8-PSK code 
(by about 0.7 dB), and a BER of low2 is achievable already at (3.6 I 5.5) dB SNR 
per bit and channel. Compared with uncoded 4-PSK - see also Figure 14-17 where 
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Table 14-4 Performance of Transmission System with DA Flat 
Fading Channel Estimation and TCM Channel Coding 

SNR [dB] per bit and SNR [dB] per bit and 
channel @ BER=10w2 channel @ BER=10w3 

Doppler Xl, = 0.00510.05, 
optimal block length (sampling factor) F=l 1 I 4, 
length-21 I 7 uniform DA reception 

8-PSK 16QAM II-PSK 16-QAM 
code code code code 

D=l 9.5 I 11.5 8.0 I 9.9 12.2 I 14.2 10.1 I 12.0 

D=2 4.3 I 6.3 3.6 I 5.5 6.0 I 7.9 5.1 I 7.1 

the power and bandwidth efficiencies of uncoded M-PSK and TCM 16-QAM are 
visualized - the 16-QAM code yields gains as large as 7 dB without diversity and 
still about 3 dB with dual diversity. Hence, at the expense of complexity and 
some latency, well-designed trellis-coded modulation combined with DA channel 
estimation can improve on the power efficiency and thus the system capacity by a 
considerable margin without compromising the bandwidth efficiency. 

14.2.6 Main Points 

. Feedforward data-aided (DA) flat fading channel estimation based on a set 
of training symbols aT has a number of advantages, resulting from the fact 
that channel estimation and data detection have become well-separated tasks. 
Optimal MAP or MMSE estimation from the received training sections zT 
can be performed via ML estimation: 

ML channel estimation: 

b,T(aT) = p$(aT) . AF . ZT 
MAP channel estimation from ML estimate: 

(14-46) 

tk =wf - h,T (aT) 

[eq. (14-36)] with Wiener filter WI,. Estimator performance now depends not 
only on the channel parameters (xb, No) but also the time instant k relative 
to the positions kK of training symbols. Both the power allocated to training 
and the estimation error contribute to the total SNR degradation. 

. In the important case of uniform DA channel sampling (sampling factor 
F), quasi-continuous transmission and steady-state estimation, a set of F 
Wiener filters wk’ suffices for optimal channel interpolation. As long as F is 
chosen such that the channel is sampled above the Nyquist rate, the estimator 
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performance is the same for all instants Ic. Best estimator performance results 
if the channel is well oversampled [optimal Fopt of eq. (14-40)]. 
Aliasing and end effects caused by “nonideal” message formats or finite-length 
filtering entail some performance degradation, which, however, is remarkably 
small in many relevant cases, e.g., near the start or end of a message, within 
very short message blocks, or when a truncated interpolation filter wk is used. 
A receiver design example has been studied featuring coherent M-PSK de- 
tection, uniform DA channel sampling, linear interpolation between selected 
pole positions, and eigenvalue-based synthesis of Wiener filter vectors wk’. 
Simulation results agree well with the analysis, and the extra SNR to be spent 
for DA channel estimation lies in the order of l-l.5 dB (Xb =0.005) and 3-4 
dB (AL =0.05). Compared with DD reception, this is superior in terms of 
power efficiency and, except for dual diversity and fast fading, also in terms 
of bandwidth efficiency. DA reception is particularly advantageous when 
combined with interleaved channel coding. For example, using trellis codes 
with large effective code length yields additional gains in the order of 7 dB 
(no diversity) and 3 dB (dual diversity). 

14.3 Bibliographical Notes 

For fundamentals of estimation theory, the reader is once again referred to the 
textbooks [ 1, 3, 20, 21, 221. IIR-type NDA channel prediction based on Kalman 
filtering is detailed in [2, 23, 241, and material for further readings on DA flat 
channel estimation using FDMA-like pilot tones and TDMA-like pilot samples is 
found in [lo, 25, 261 and [8, 9, 10, 12, 13, 271, respectively. 

For the application of trellis-coded modulation to fading channels and criteria 
for code selection, the reader is referred to [lo, 16, 17, 28, 29, 30, 31, 321. 
Publications [ 181 and [lo] detail on the codes by Ungerbijck and Moher/Lodge, 
respectively, and references [ 17, 191 present results on the matched filter bound. 
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15.1 Non-Data-Aided (NDA) Selective Fading Channel Estimation and Detection 773 

and every symbol hypothesis ak-1. By virtue of whitening matched prefiltering 
(WMF, previous chapter), only very few - in all of the simulation examples be- 
low, between M=l and 4 - contending symbol hypotheses need to be kept by the 
equalizer for quasi-optimal detection. The number of NDA parameter sync units 
working on the corresponding survivors is reduced accordingly, i.e., only M chan- 
nel estimates (and parameter sets derived from the channel estimates) remain to 
be generated. Estimating the channel - or any other parameters of interest - in 
such a survivor-dependent fashion is a rather general concept sometimes referred 
to as per-survivor-processing (PSP) [4]. 

Recall that, in uncoded systems with proper prefiltering, a single survivor 
(M=l) already suffices to achieve near-optimal BER performance (Section 13.3.5). 
In other words, the decision-feedback equalizer (DFE) symbol decisions &-1 are 
sufficiently reliable to be used for NDA channel estimation. Hence, the NDA 
receiver can be further simplified by retaining just a single, now DD online 
parameter synchronization unit, regardless of the number M of survivors actually 
kept for detection. If there is more than one survivor (M algorithm), the DD 
synchronizer uses the symbols (tentative symbol “decisions”) a&i associated with 
the best survivor having the smallest metric mg;k-l (a&i ) at time instant k: - 1. 

The block diagram of a complete digital receiver for differentially encoded M- 
PSK detection is shown in Figure 15-5. This receiver, which has been implemented 
to generate all of the simulation results reported below, features a detection path 
comprising matched filtering, decimation to symbol rate, whitening filtering, M 
algorithm equalization, and (not shown in the figure) differential decoding in order 
to resolve phase slips. The parameter synchronization path includes DD channel 
estimation, parameter computation from the channel estimate, and a unit referred 
to as timing slip control. As explained below, this unit is necessary to prevent 

parameter synchronization 

Figure 15-5 M-PSK Receiver with DD Selective Fading Channel Estimation 



























































































Index 
Acquisition, 96, 282 

of frequency error feedback system, 470 
feedback synchronizers, 401-407 
feedforward synchronizers, 

for long burst operation, 410-415 
for short burst operation, 407-409 

A/D conversion, see quantization 
Adder, 

carry ripple, 553 
carry save, 553 
vector merging, 554 

Amplitude and phase modulation 
(AM-PM), 211 

Analytic signal, 28 
Anti-aliasing filter, generalized, 242, 

see also prefilter, analog 
ASIC, application specific circuit, 534 

design case study, 540-566 
design methodology, 542 

Automatic gain control (AGC), 226 
Averaging, to remove unwanted parame- 

ters, 249, 271 
Band-limited signal, 46-53, 236-237 

series expansion, 236 
shift property, 238 

Baseband PAM communication, 61-65 
Basepoint, 302, 252, 523 
BER (bit error rate), degradation by, 

carrier frequency offset, M-P%, 375 
carrier phase error, 426-431 
synchronization error, general expres- 

sion, 439440 
timing error, 426-427, 431 

Binary antipodal signaling, 72 
Binary line codes (mBnB codes), 75 
Bit rate, normalized, 5 
CAD tools, 

Behavioral compiler, 566 
COSSAP, 565 
Cadence, 565 

SPW, 565 
Synopsys, 566 

Carrier recovery, see phase recovery and 
synchronization 

Channel access, 
code-division multiple access (CDMA), 

spread spectrum, 586, 7 14-7 17 
dynamic channel allocation (DCA), 805 
frequency hopping (FH), 758, 759, 804 
frequency-division multiple access (FDMA), 

740 
time-division multiple access (TDMA), 

615,712, 739, 740, 748, 750, 759, 
783, 804 

Channel capacity, 218-22 1 
Channel estimator, 2 
Channel modeling/simulation, 

channel intertap covariance, 663, 692 
channel tap cross-correlation, 619, 620 
direct filtering approach, 610-615, 624 
GSM hilly terrain (HT) model, 618, 

621-625, 698, 711, 770-772, 775 
GSM typical urban (TU) model, 618, 

623-625 
Monte Carlo model, 617 
normalization to symbol rate, 608 
software channel models, 610 
spectral decomposition, unitary filtering 

network, 621, 622, 625 
time-invarant 

linear, 212 
nonlinear, 2 17 

transformed filtering approach, 615-626 
Chapman jitter model, 139 
Classification, of synchronization algo- 

rithms, 273, 282 
Clipping, 538, 547 
Clock synchronizer, 80, see also timing 

recovery and timing parameter 
estimation 
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820 Index 

Closed-loop 
analysis, 94-97 
frequency response, 98 
synchronizer, 80 

Codes, 
concatenated, 571, 576, 543 
convolutional, 568-575 
punctured, 57 1 
Reed-solomon, 575 

Coding, 
channel state information (CSI), 680,689 
differential preceding, 660, 736, 737 
effective code length (ECL), 681, 759, 

804, 811 

of deterministic signal, 26-35 
of random process, 35-43 
of wide-sense cyclostationary process, 

41-43 

Euclidean distance, 688 
interleaving, 694, 807-809 
soft decision, 679, 688 
survivor depth, 687 
trellis coded modulation (TCM), 680, 

757-761, 804-812 
Communication, discrete model of, 218 
Complex envelope, 

filtered, 32, 42 

of wide-sense stationary process, 37-41 
Complexity, of VLSI circuits, 536 
CORDIC, algorithm, 550 
Correlation function, 10,12,16 

of in-phase and quadrature components, 
38 

Cosine rolloff pulse, 67 
COSSAP, 565-566 
Covariance matrix, 

of Gaussian noise, 250 
Hermitian, 262 
inverse, 262 

singular, 264 
Toeplitz, 260, 262 

Cramer-Rao bound for, 55, 58 
frequency estimation, 484-485, 330 
joint parameter estimation, 325-329 
phase estimation, 330 
timing estimation, 33 1 

Cycle slipping, 96, 385-399 
effect on symbol detection, 385-387 
in feedback synchronizers, 387-39 1 
in feedforward synchronizers, 391-395 

Cyclostationary process, 
continuous-time, 12-16 
filtered, 14-15 
randomly shifted, 13 
sampled, 18 
strict-sense, 12 
wide-sense, 13 

DA, data aided, 272 
Data-aided (DA) channel estimation, 654, 

687, 739-762 
aliasing and end effects, 748-752 
channel interpolation/filtering/extrapolation, 

743 
eigensystem synthesis, 753-755,795-796 
flat fading, 739-762 
ML channel snapshot acquisition, 783, 

786-793 
perfectKAZAC sequence, 785, 788 
preamble, midamble, postamble, 

748-75 1 
selective fading, 662-67 1, 782-8 13 
training symbol insertion, 654, 739, 746, 

782-784, 794 
uniform channel sampling, 744, 745 

DD, see decision-directed 
Decimation, 23 1, 252, 254, 524, see also 

interpolation 
variable rate, see decimation 

Decision-directed (DD) channel estima- 
tion, 

flat fading, 73 l-739 
selective fading, 772-782 

Decision-directed, 82, 272 
Decoder, convolutional, 568-575 

MAP, 571 
SOVA, 571 

DFT, discrete Fourier transform, 291, 455 
Detection, 2 

decision metric, 644-648 
flat fading, 653,654,659-662,687,731 
selective fading, 670, 671, 691-701, 

713, 8 
decision metric increment 

flat fading, 687, 688, 691 
selective fading, 692-694, 713, 808 
Viterbi algorithm, 696, 697 

flat fading channel estimation, 659-662 
loss, 5, 541 
selective fading channel estimation, 

662-676 
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MAP, 246 
online symbol-by-symbol detection, 732 
synchronized detection, 246, 63 1, 639, 

644, 679, 685 
Differentiation, 

in conjunction with matched filtering, 
299 

in digital domain, 299 
two-point approximation of, 301 

Digital filter and square algorithm, realiza- 
tion, 295 

Digital phase locked loop, 312, see also 
DPLL 

Digital transmission filtering, 
anti aliasing filter, 586, 587, 590 
chip matched filter, 715, 717 
frequency channel matched filter, 588 
(channel) matched filter (Ml?), 25 1, 

258-263, 586, 587, 590, 701-703 
prefiltering, 685, 699, 706-7 14 
pulse matched filter, 586-589, 593, 594, 

615, 623, 679, 680 
pulse shaping filter, 586, 587, 632 
whitening filter (WF), 701-703 
whitening matched filter (WMF), 615, 

691, 701-703, 773 
Discrete-time hybrid synchronizer, 104. 
108 
Discretization, 3 
Dither, 539 
Diversity, 

diversity reception, 680-685, 688, 689 
optimal combiner, 681, 689 
order of diversity, 681 
type of, 

antenna diversity, 581, 680 
frequency diversity, 581, 680, 804 
multipath diversity, 680, 780, 803 
time diversity, 581, 680, 681 

DPLL, digital phase locked loop, 549-562 
acquisition control, 550 
finite wordlength implementation, 550, 

556-557, 559 
loop filter, 557 
NCO, 557 
phase error detector, 555 
quantization effects, 553, 561 
sweep, 550 
timing error detector, 559 
tracking performance, 558, 561 

DSP, digital signal processor, 532 
DVB receiver ASIC, 

algorithm design, 565 
architecture design, 565 
bit error performance, 563 
carrier phase and frequency synchro- 

nizer, 549-550 
implementation, 563 
matched filter, 55 l-555 
structure, 544 
timing recovery, 599-56 1 

DVB-S, digital video broadcasting over 
satellite, 54 1 

specification of, 543 
Efficiency, spectral, 5 
Entropy, 218 
Equalization, 

(adaptive) equalization, 58 1, 684 
combined equalization and decoding 

(CED), 694, 807-812 
decision-feedback equalizer (DFE), 695, 

698, 701 
DFE feedback (FB) filter, 704, 705 
DFE feedforward (FF) filter, 704, 705 
equalizer state, 693, 696, 698 
linear equalizer (LE), 695 
M-algorithm CED, 809 
M-algorithm equalizer, 698, 711, 713, 

775, 797 
maximum-a-posterior-i (MAP) equalizer, 

694, 807 
maximum-likelihood sequence detection/ 

estimation (MLSE), 694701, 713 
per survivor processing (PSP), 638, 773 
precursor equalizer, 70 l-703 
reduced-complexity MLSE, 697-70 1,7 13 
soft-output Viterbi (SOVA) equalizer, 

694, 807 
super state, 809 
Viterbi algorithm (VA), 638, 695-697, 713 

Equilibrium points, 94 
Equivalence, of digital and analog signal 

processing, 229, 240 
Equivalent feedback synchronizer model, 

90-9 1, 94-97 
Equivalent lowpass transfer function, 33 
Error feedback synchronizer, 80, 89-9 1, 
Estimate, 

efficient, 56, 328 
unbiased, 55, see also bias of, 
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Estimation and detection theory, 
Bayesian approach, 639-642 
efficient estimate, 656 
Gauss-Markov model, 726, 766 
least-mean square (LMS), 727, 766 
least squares (LS), 638, 639 
linear estimation, 642644 
Kalman filter (KF), 726, 766 
matrix inversion lemma, 646, 674 
maximum a posteriori (MAP), 639 
maximum likelihood (ML), 638, 639 
optimal filtering / smoothing, 656 
orthogonality theorem, 705 
recursive least squares (RLS), 767 
sufficient statistic, 633, 634, 689 
Wiener filter, 657, 725 

Estimation error, 
bound on, 54 
variance of, 54 

Estimation interval, finite, 240 
Estimation theory, 54 
Estimation, 

nonlinear ML, 56 
of slowly varying synchronization para- 

meters, 275 
two-stage, 276 

Estimator, derived structure approach, 246 
Eye diagram, 64 
Fading channel characterization, 

cluster Doppler spectrum, 615 
cluster scattering function, 617, 619 
delay-Doppler plane, 598, 599 
derived short-term statistics, 60 l-605 
deterministic modeling, 596 
Doppler spectrum, 597, 601, 602, 615 
fundamental short-term statistics, 597, 

598 
Jakes Doppler spectrum, 607, 623, 651 
long-, medium-, short-term fading, 595, 

596, 610 
power delay profile, 602 
Rayleigh fading, 601, 610, 613 
Rice fading, 601, 610 
scattering function, 597, 604, 610, 694 
statistical characterization, 582, 595-610 
statistical WSSUS model, 597, 598 

Fading channel classes, 
bandlimited channel, 586 
continuous-time fading. 582-590 

discrete-equivalent fading, 590-595 
frequency-selective fading, 587, 590, 

608, 609 
nonselective/flat fading, 584, 587, 590. 

595, 608, 609, 614, 632 
Fading channel parameters, 

average fade duration, 604, 605 
channel coherence time/bandwidth, 602, 

603 
channel delay spread, 603, 604 
channel spread factor, 603, 604 
channel tap cross-correlation, 619, 620 
cluster Doppler shift / spread, 603, 604 
Doppler frequency, 603, 604, 607 
Doppler shift, 600, 603, 604, 612 
Doppler spread, 603, 604, 612 
level crossing rate, 604, 605 

Fading channel transmission models, 
channel impulse response (CIR), 582, 

608 
channel transfer function (CTF), 582, 608 
discrete-equivalent CIR, 59 l-593, 609, 

617 
effective CIR, 585 
equivalent channel (T-spaced), 615, 699- 

701 
multiplicative distortion (MD), 588, 593. 

595, 608, 614, 615, 679, 690 
partial channel (T-spaced), 59 l-593, 609 

Fading channels, 
geostationary satellite, 581, 605, 608 
indoor radio, 608, 609 
ionospheric shortwave (HF), 581, 606, 

607 
land mobile (LM), 581, 607609, 618, 

623-625 
line of sight (LOS), 581, 582, 605-608 
microwave LOS, 605, 609 
satellite mobile, 581, 608, 609 
tropospheric scattering, 605, 606, 609 

Feedback, synchronizer, 80, see also 
error feedback systems 

Feedforward, synchronizer, 80 
FIT, fast Fourier transform, 455 
Filtering, 

allpass filter, 700 
dual, 468 
finite-impulse-response (FIR), 700, 705, . 

73c 



infinite-impulse-response (IIR), 726, 727 
minimum-phase filter, 703 
mirror image, 468 
planar, 3 12, 292 
spectral factorization, 704 

FIR, filter with finite impulse response, 
552 

transposed direct form, 552 
Firmware, 534 
Fisher Information Matrix, 55, 331-340 
Fourier transform, discrete (DIT), 291 
Fractional delay, 302, see also interpola- 

tion 
Frequency error feedback system, 

no timing available, 464-477 
timing available, 478-492 

Frequency estimation, 
bias of frequency estimate, 449, 459, 

483-484 
channel model, 445 
classification of algorithm, 447 
D-spaced, 488 
for MSK signals, 499 
joint frame and frequency estimation, 

487 
joint frequency-timing estimation, for 

MSK, 501 
periodic data pattern, 462 
timing available, 478-499 
timing non available, 448-477 
via maximum seeking, 449 
via power difference measurement, 465 
via spectrum analysis, 453 

Frequency matched filter (FMF), 465, 494 
Frequency-locked-loop, see frequency 

error feedback system 
Gaussian MSK (GMSK), 214 
Gaussian channel, memoryless, 218 
Hang-up, 96, 295, 406, 414, 419 
Hardware-Software Codesign, 536, 566 
Hermitian matrix, 262 
Hilbert transform, 27 

discrete-time, 52 
Implementation loss, 54 1, 343 
In-phase component, 26 
Instantaneous amplitude, 26 
Instantaneous phase, 26 
Interpolation, 505-532, 594, 612, 614 

basepoint computation, 523, 526-529 

Index 823 

control word update, 525 
control, 5 17-524, 302 
decimator, 23 1, 254, 524-525 
Farrow structure, 514 
for timing recovery, 505-530, 231 
fractional delay computation, 53, 523, 

526-527 
ideal, 

frequency response, 507 
impulse response, 253, 506 

Lagrange, 5 18 
MMSE, FIR approximation, 507-5 13 
NCO, 528 
polynomial approximation, 5 13-523 

cubic, 516-517 
linear, 5 16 

pulse, 67 
sawtooth nonlinearity, 530 
timing error feedback, 523-529 
timing parameter (feedforward), 529-53 1 

Intersymbol interference (ISI), 63, 234, 
581, 602, 634, 698 

IS1 cancellation, 808, 810 
postcursor ISI, 704, 705, 809 
precursor ISI, 705, 706, 710 
residual ISI, 705 

Jitter accumulation, 138-142 
Jitter frequency response, 139 
Joint estimation and detection, 248 
Joint estimation, phase and timing, 296 
Likelihood function, see maximum likeli- 

hood function 
Line coding, 70-72, 76 
Linear channel model, signals and normal- 

izations, 2 15 
Linear modulation, 19 
Lock detector, 226, 405-407 
Log-likelihood function, of ML receiver, 

251, 256 
Loop 

bandwidth, 98 
filter, 90, 102-103 
noise, 90,92 
noise spectrum, 93 

Loss, 
detection, 5, 541 
implementation, 541, 543 

Manchester code, 75 
MAP (maximum a posteriori), 246-248 
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Matched filter, 
digital, 251, 258, 258-263 

architecture, 55 l-555 
ASIC implementation, 55 l-555 
bitplanes 553 
number representation of coefficients, 

552 
quadratic approximation, 55 1 

frequency response, 26 1, 263 
impulse response, 26 1 
SNR at output, 264 

Matrix, 
Hermitian, 262 
Toepliz, 262 

Maximum likelihood, see ML 
Measurement, truncated, 280 
Minimum shift keying (MSK), 214 
ML (maximum-likelihood), 

criterion, 246 
data detection, 248 
detection and estimation, 246 
estimation, 55 

asymptotic properties of, 58 
estimator, 277 
estimator, analog realization, 256 
function, low SNR approximation, 285 
receiver, optimum, 246-249 
truncation, 277 

Modulation, 
GMSK, 623 
linear modulation, 19, 213, 581, 631 
M-PSK, 582, 623, 631, 686 
M-QAM, 582, 623, 631, 686 
nonlinear, 2 13 

Mueller and Muller synchronizer, 86-88, 
196-206, 309, 354355, 

Multipath propagation, 
coherent LOS/specular scattering, 599, 

600, 607, 610, 613 
diffuse scattering, 600, 607, 610, 613 
multipath ray scattering, 582, 598, 599, 

608 
ray clustering, 598, 599, 610, 616 
shadowing, 596, 608 

Narrowband communication, 67 
Noise, 

additive white Gaussian (AWGN), 586, 
594, 605 

adjacent channel interference (ACI), 586 

average SNR, 682 
bandpass noise, 44 
co-channel interference (CCI), 586 
colored Gaussian, 241 
instantaneous SNR, 682-684, 688-689, 

707 
margin, 64 
noise autocorrelation, 589, 594, 632 
noise cross-correlation, 594 
thermal noise, 18 

Non-data-aided (NDA) channel estimation, 
eigensystem synthesis for, 770 
for flat fading, 685-691, 723-73 1, 738 
LMS-Kalman channel predictor, 727, 

765-772 
LMS-Wiener channel predictor, 769-779 
one-step channel prediction, 686, 692, 

693, 723-725 
reduced-complexity channel prediction, 

725-73 1 
for selective fading, 765-782 

Non-data-aided, 82, 272 
Nonlinear modulation, 

continuous phase modulation (CPM), 
211 

phase and timing recovery, 321 
Number representation, 

bitplane, 553 
booth encoding, 552 
canonical signed digit format (CSD), 552 
carry save, 553 
of filter coefficients, 552 
sign magnitude representation, 539 
two’s complement, 537 

Nyquist criteria, 
Nyquist-I pulse, 65-70, 256, 265 
Nyquist-II pulse, 184 

Open-loop, 
analysis, 91-94 
synchronizer, 80 

Oversampling, see sampling, bandpass sig- 
nals 

Oversampling, strict, 264 
PLL, 223 
Parameters, nonrandom, 55 
Parseval’s theorem, 229 
Partial response codes, 77 
Passband transmission, 211 
Pattern jitter, see selfnoise 
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Performance measure, 5 
Phase error feedback systems, 

DD, 311 
NDA, 317 

Phase, 
estimation, 232 
recovery, 232, 31 l-321, 584 

Phase-shift keying, M-PSK, 211 
Phasor estimation, 3 12 

for M-PSK signals, 316 
Phasor-locked loop (PHLL), 3 13 
Planar filtering, 292, 312, 457 
Post-processing, of feedforward estimates, 

276, 392-395,410 
Power spectral density, 10,13,16 
Preamble/Postamble 248, 487, 697, 749, 

793, 809 
Prefilter, analog, 228, 242 
Pulse-amplitude modulation (PAM), 

211 
QPSK, offset (OQPSK), 213 
Quadrature amplitude modulation (QAM), 

211 
Quadrature component, 26 
Quantization, 

ND converters, 537-540 
amplitude, 3 
bias, 540 
characteristic, 538 
clipping, 538, 547 
dead zone, 538 
dither, 539 
effect on error rate, 547-548 
error minimization, 546 
input signal, 545-548 
levels, 538 
offset, 538 
overload level, 545 
rounding, 538 
saturation, 538 
truncation, 538 
uniform, 537 

Quatemary line codes, 72 
Raised cosine pulse, 67 
Receiver objectives, 246 
Receiver performance, see also BER, 

degradation by 
average SNR, 682 
cycle slipping, 735, 736 

error propagation, 735 
lag / noise error, 728 
matched filter bound (MFB), 760, 776, 

798, 811 
(minimum) mean square error (MSE), 

705, 706 
power / bandwidth efficiency, 756, 761, 

780-783 
tap error covariance ratio, 658, 693 

Receiver structures, 
analog, 225 
canonical, 701 
digital, 225 
estimator-detector receiver, 63 1 
for PAM signal, 225 
hybrid, 225 
inner receiver, 2, 4, 5, 223, 679, 685 

flat fading channel, 685-691 
selective fading channel, 69 l-7 14 

joint detection and synchronization, 638. 
676 

M-PSK, 
flat fading DA receiver, 752-757 
flat fading DD receiver, 73 l-739 
selective fading DA receiver, 793-803 
selective fading DD receiver, 772-782 

outer receiver, 2, 4, 223, 615, 679, 
803 

synchronized detection, 631, 639, 679 
TCM flat fading DA receiver, 757-761 
TCM selective fading DA receiver, 804 

812 
Reed-Solomon decoder, 575-577 
Reversibility, concept of, 243 
Rounding, 538 
Running digital sum, 72 
S-curve, 90,92,93 
Sampling, 

A/D conversion, 590, 591 
asynchronous, 229 
bandpass signals, 48 
double-spaced sampling, 59 1 
oversampling, 264, 744 
theorem, 48, 228 
theory, 744, 787 

Search, 
iterative, 28 1 
maximum, 280 
parallel, 280 
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Self-noise, 84, 88, 278, 381-383 
in frequency estimation, 472-475, 494 
reduction, 151-157, 184-189, 200-201, 

494 
Separation, principle of, 3 
Shannon limit, 222 
Shift property, band-limited signals, 253 
Signal processing complexity, 5 
Simulation, see also channel modu- 

lation/simulation 
of communication systems, 566 
of error-tracking synchronizers, 108-l 11 
of spectral line generating synchronizers, 

142-143 
Soft-decision, output, 3 19, see also 

equalization, Vi terbi algo- 
rithm 

Spectral line generating synchronizer, 82 
with bandpass filter, 128-132 
with PLL, 118-128 

Spectrum analyzer, 22-24 
Spectrum, 13,16 

of in-phase and quadrature components, 
39 

Squaring synchronizer, 148-174, 83-84 
Stationary process, 

continuous-time, 9-l 1 
discrete-time, 16- 18 
filtered, 11,17 
sampled, 17 
strict-sense, 9,16 
wide-sense, 11,17 

Sufficient statistics, 234, 241, 3 
condition for, 243 

Symbol synchronizer, 80, see also timing 
recovery 

Symmetric bandpass filter, 34 
Synchronization algorithms, 27 1 

classification, 80-82, 273 
feedback, 273 
feedforward, 273 
phase-directed, 273 
timing-directed, 273 

Synchronization parameter, 
dynamic, 247 
static, 247 

Synchronization, 2 
amplitude gain control, 584 

coupling between carrier and symbol 
synchronizers, 345, 40 l-403 

data-aided (DA), 248, 272 
decision-directed (DD), 249, 272 
derived approach, 58 1 
non-data-aided (NDA), 249 
frequency, 233, see also frequency esti- 

mation 
parameter adjustment, inner receiver 

components, 701-709 
parameter sync, 632, 633 

flat fading channels, 723-764 
selective fading channels, 765-817 

phase recovery, 584 
reduced-complexity parameter sync, 7 12 
static/dynamic sync parameters, 640 
timing, 584, see also timing recovery 

Synchronized detection, principle of, 
249 

Synchronizer, hybrid, loo-105 
Synthesis, of sync. algorithms, 271 
Ternary line codes (k&T codes), 73 
Threshold, of frequency estimator, 456 
Time scale, 

separation, 250, 275 
transmitter/receiver time scales, 584 

Timing detector, 81, see also timing 
parameter estimation 

Timing error detector, 81, 89, 299 
characteristics, 90-93 

Timing error feedback 
linearized equivalent model, 97-99 
systems at symbol rate, 304-311 

for Nyqist pulses, 304 
for severely distorted pulses, 3 10 

systems at higher than symbol rate, 
DD, 298 
NDA, 303 

Timing parameter estimation, 
by spectral estimation, 285-295 
decision-directed (DD), 296-297 
digital square and filter, 289 
implicitly coherent, 287 
NDA, 283 
non-coherent, 286 

Timing parameter, 
basepoint, 252 
fractional time difference. 252 
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Timing recovery, see also timing para- 
meter estimation, timing 
error feedback system 

by interpolation, see interpolation 
digital, 229 
hybrid, 311, 225 
timing slip control, 773-774 
timing wave, 295 

Toepli tz, matrix, 25 8 
Tracking mode, 282 
Tracking performance, 

analysis, 99- 104, 34 l-347 
effect of carrier frequency offset, 370- 376 
effect of carrier phase noise, 369-370 
of data-transition tracking loop, 379 
of decision-directed ML carrier synchro- 

nizer, 347-349 
of decision-directed ML symbol synchro- 

nizer, 352-354 
of frequency error (FB) system, 494-499 
of frequency error (FB) system, 469-472 
of frequency estimator, 457-46 1 
of frequency estimator, 457-46 1 
of Gardner symbol synchronizer, 380 
of Mueller and Miiller symbol synchro- 

nizer, 196.206,354.355 
of non-decison-aided ML carrier synchro- 

nizer, 349-35 1 
of non-decison-aided ML symbol synchro- 

nizer, 355-358 
of Viterbi and Viterbi carrier synchro- 

nizer, 378 

Truncation, 538 
of ML-estimator, 277-280 
of series, expansion 240 

Unique word, for frame synchronization, 
487 

Unwrapping of feedforward estimates, 
392-395,410 

Vector space, 241 
base components, 235 
representations of signals, 235 

Vector, subspace, 235 
Vector-matrix transmission models, 
channel transmission matrix, 635-637 
CIR vector, 611-614, 632, 633 
for flat fading, 634, 635 
frequency offset matrix, 635-637 
for selective fading, 635-637 

VHDL, 563-564 
Viterbi algorithm, see equalization 
Viterbi decoder, 

add-compare-select unit (ACSU), 568. 
570 

architecture, 568-57 1 
branch metric unit, 568 
parallelism, 568-569 
register exchange, 570 
scarce transition rate, 570 
survivor memory unit (SMU), 570 
traceback, 57 1 

Zero-crossing timing error detector, 84-86, 
175-196 
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